Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Cancer Res ; 27(15): 4410-4421, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34031055

ABSTRACT

PURPOSE: Gemcitabine-based chemotherapy regimens are first-line for several advanced cancers. Because of better tolerability, gemcitabine + cisplatin is a preferred neoadjuvant, adjuvant, and/or palliative chemotherapy regimen for advanced bladder cancer. Nevertheless, predicting treatment failure and overcoming resistance remain unmet clinical needs. We discovered that splice variant (V1) of HYAL-4 is a first-in-class eukaryotic chondroitinase (Chase), and CD44 is its major substrate. V1 is upregulated in bladder cancer and drives a malignant phenotype. In this study, we investigated whether V1 drives chemotherapy resistance. EXPERIMENTAL DESIGN: V1 expression was measured in muscle-invasive bladder cancer (MIBC) specimens by qRT-PCR and IHC. HYAL-4 wild-type (Wt) and V1 were stably expressed or silenced in normal urothelial and three bladder cancer cell lines. Transfectants were analyzed for chemoresistance and associated mechanism in preclinical models. RESULTS: V1 levels in MIBC specimens of patients who developed metastasis, predicted response to gemcitabine + cisplatin adjuvant/salvage treatment and disease-specific mortality. V1-expressing bladder cells were resistant to gemcitabine but not to cisplatin. V1 expression neither affected gemcitabine influx nor the drug-efflux transporters. Instead, V1 increased gemcitabine metabolism and subsequent efflux of difluorodeoxyuridine, by upregulating cytidine deaminase (CDA) expression through increased CD44-JAK2/STAT3 signaling. CDA inhibitor tetrahydrouridine resensitized V1-expressing cells to gemcitabine. While gemcitabine (25-50 mg/kg) inhibited bladder cancer xenograft growth, V1-expressing tumors were resistant. Low-dose combination of gemcitabine and tetrahydrouridine abrogated the growth of V1 tumors with minimal toxicity. CONCLUSIONS: V1/Chase drives gemcitabine resistance and potentially predicts gemcitabine + cisplatin failure. CDA inhibition resensitizes V1-expressing tumors to gemcitabine. Because several chemotherapy regimens include gemcitabine, our study could have broad significance.


Subject(s)
Antigens, Neoplasm/physiology , Antimetabolites, Antineoplastic/therapeutic use , Chondroitinases and Chondroitin Lyases/physiology , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/physiology , Histone Acetyltransferases/physiology , Hyaluronoglucosaminidase/physiology , Urinary Bladder Neoplasms/drug therapy , Animals , Deoxycytidine/therapeutic use , Humans , Mice , Prognosis , Treatment Failure , Gemcitabine
2.
Peptides ; 24(5): 695-700, 2003 May.
Article in English | MEDLINE | ID: mdl-12895655

ABSTRACT

Activation of neuropeptide receptors on leukocytes induces chemotaxis. We determined in Boyden chambers with micropore filters, whether in human monocytes and lymphocytes this migratory response is heparan sulfate proteoglycan (HSPG) dependent. Chemotaxis toward calcitonin gene-related peptide, secretoneurin, vasoactive intestinal peptide (VIP), and substance P (SP) was abolished by removal of heparan sulfate side chains from cell surface proteoglycans or by addition of anti-syndecan-4 antibodies. Inhibition of neuropeptide-induced chemotaxis by dimethyl sphingosine (DMS), an inhibitor of sphingosine kinase, indicates transactivation of the sphingosine-1-phosphate chemotaxis pathway which was previously identified as being syndecan-4-related. Data suggest that HSPGs are involved in neuropeptide-induced chemotaxis of leukocytes.


Subject(s)
Chemotaxis/drug effects , Heparan Sulfate Proteoglycans/physiology , Leukocytes/immunology , Neuropeptides/pharmacology , Sphingosine/analogs & derivatives , Antibodies/pharmacology , Chondroitinases and Chondroitin Lyases/physiology , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparin Lyase/physiology , Humans , Leukocytes/drug effects , Membrane Glycoproteins/metabolism , Neuropeptides/metabolism , Proteoglycans/metabolism , Sphingosine/physiology , Syndecan-4
SELECTION OF CITATIONS
SEARCH DETAIL