Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 729
Filter
1.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
2.
J Cancer Res Clin Oncol ; 150(5): 257, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753184

ABSTRACT

PURPOSE: Breast cancer metastasis relies on cellular invasion and angiogenesis facilitated by the downregulation of metastatic suppressor proteins like Cluster of Differentiation 82 (CD82). Currently, no medicines target multiple systems to prevent metastatic progression through CD82 upregulation. This study screened for plant extracts displaying effects on cell proliferation, invasion, and CD82 expression in breast cancer cells, and in vivo angiogenesis, and further correlated between the biological activities and effect on CD82 expression. METHODS: Seventeen ethanolic plant extracts were screened for their effect on cell proliferation (against MDA-MB-231 and MCF-7 breast cancer and Hek293 kidney cells), cell invasion and effect on CD82 expression in metastatic MDA-MB-231 cells. Selected extracts were further evaluated for in vivo anti-angiogenesis. RESULTS: Extracts displayed varying antiproliferative activity against the different cell lines, and those that showed selectivity indexes (SI) > 0.5 against MDA-MB-231 were selected for anti-invasion evaluation. Buddleja saligna Willd. (BS), Combretum apiculatum Sond. (CA), Foeniculum vulgare, Greyia radlkoferi, Gunnera perpensa and Persicaria senegalensis (Meisn.) Soják (PS) displayed 50% inhibitory concentration (IC50) values of 44.46 ± 3.46, 74.00 ± 4.48, 180.43 ± 4.51, 96.97 ± 2.29, 55.29 ± 9.88 and 243.60 ± 2.69 µg/mL, respectively against MDA-MB-231, and compared to Hek293 showed SI of 0.9, 0.7, 1.4, 1.1, 2.2 and 0.5. Significant invasion inhibition was observed at both 20 and 40 µg/mL for BS (94.10 ± 0.74 and 96.73 ± 0.95%) and CA (87.42 ± 6.54 and 98.24 ± 0.63%), whereas GR (14.91 ± 1.62 and 41 ± 1.78%) and PS (36.58 ± 0.54 and 51.51 ± 0.83%), only showed significant inhibition at 40 µg/mL, and FV (< 5% inhibition) and GP (10 ± 1.03 and 22 ± 1.31%) did not show significant inhibition at both concentrations. Due to the significant anti-invasive activity of BS, CA and PS at 40 µg/mL, these extracts were further evaluated for their potential to stimulate CD82. BS showed significant (p < 0.05) reduction in CD82 at 20 and 40 µg/mL (13.2 ± 2.2% and 20.3 ± 1.5% decrease, respectively), whereas both CA and PS at 20 µg/mL increased (p < 0.05) CD82 expression (16.4 ± 0.8% and 5.4 ± 0.6% increase, respectively), and at 40 µg/mL significantly reduced CD82 expression (23.4 ± 3.1% and 11.2 ± 2.9% decrease, respectively). Using the yolk sac membrane assay, BS (59.52 ± 4.12 and 56.72 ± 3.13% newly formed vessels) and CA (83.33 ± 3.17 and 74.00 ± 2.12%) at both 20 and 40 µg/egg showed significant (p < 0.001) angiogenesis inhibition, with BS showing statistical similar activity to the positive control, combretastatin A4 (10 nmol/egg), whereas PS only displayed significant (p < 0.001) angiogenesis stimulation at 40 µg/egg (120.81 ± 3.34% newly formed vessels). CONCLUSION: BS exhibits antiproliferative, anti-invasive, and anti-angiogenic activity despite inhibiting CD82, suggesting an alternative mode of action. CA at 20 µg/mL shows moderate anti-invasive and anti-angiogenic potential by stimulating CD82, while at 40 µg/mL it still displays these properties but inhibits CD82, suggesting an additional mode of action. PS, with the least antiproliferative activity, stimulates CD82 and inhibits angiogenesis at 20 µg/mL but inhibits CD82 and increases angiogenesis at 40 µg/mL, indicating CD82 targeting as a major mode of action. Future studies should explore breast cancer xenograft models to assess the extracts' impact on CD82 expression and angiogenesis in the tumor microenvironment, along with isolating bioactive compounds from the extracts.


Subject(s)
Breast Neoplasms , Cell Proliferation , Kangai-1 Protein , Neoplasm Invasiveness , Neovascularization, Pathologic , Plant Extracts , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Female , Animals , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/prevention & control , Kangai-1 Protein/metabolism , Plants, Medicinal/chemistry , HEK293 Cells , Cell Line, Tumor , Ethanol/chemistry , Ethanol/pharmacology , Chick Embryo , Neoplasm Metastasis , Chorioallantoic Membrane/drug effects , Angiogenesis
3.
Med Oncol ; 41(6): 144, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717574

ABSTRACT

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 µg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.


Subject(s)
Angiogenesis Inhibitors , Cell Movement , Peganum , Phenols , Plant Extracts , Humans , Cell Movement/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Peganum/chemistry , Chick Embryo , Phenols/pharmacology , Phenols/analysis , Angiogenesis Inhibitors/pharmacology , MCF-7 Cells , Animals , Cell Proliferation/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply
4.
J Indian Prosthodont Soc ; 24(2): 175-185, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38650343

ABSTRACT

AIM: To evaluate the potential of iron nanoparticles (FeNPs) in conjunction with magnetic fields (MFs) to enhance osteoblast cytomechanics, promote cell homing, bone development activity, and antibacterial capabilities, and to assess their in vivo angiogenic viability using the chicken egg chorioallantoic membrane (CAM) model. SETTINGS AND DESIGN: Experimental study conducted in a laboratory setting to investigate the effects of FeNPs and MFs on osteoblast cells and angiogenesis using a custom titanium (Ti) substrate coated with FeNPs. MATERIALS AND METHODS: A custom titanium (Ti) was coated with FeNPs. Evaluations were conducted to analyze the antibacterial properties, cell adhesion, durability, physical characteristics, and nanoparticle absorption associated with FeNPs. Cell physical characteristics were assessed using protein markers, and microscopy, CAM model, was used to quantify blood vessel formation and morphology to assess the FeNP-coated Ti's angiogenic potential. This in vivo study provided critical insights into tissue response and regenerative properties for biomedical applications. STATISTICAL ANALYSIS: Statistical analysis was performed using appropriate tests to compare experimental groups and controls. Significance was determined at P < 0.05. RESULTS: FeNPs and MFs notably improved osteoblast cell mechanical properties facilitated the growth and formation of new blood vessels and bone tissue and promoted cell migration to targeted sites. In the group treated with FeNPs and exposed to MFs, there was a significant increase in vessel percentage area (76.03%) compared to control groups (58.11%), along with enhanced mineralization and robust antibacterial effects (P < 0.05). CONCLUSION: The study highlights the promising potential of FeNPs in fostering the growth of new blood vessels, promoting the formation of bone tissue, and facilitating targeted cell migration. These findings underscore the importance of further investigating the mechanical traits of FeNPs, as they could significantly advance the development of effective bone tissue engineering techniques, ultimately enhancing clinical outcomes in the field.


Subject(s)
Chorioallantoic Membrane , Magnetic Fields , Neovascularization, Physiologic , Osteoblasts , Tissue Engineering , Titanium , Animals , Tissue Engineering/methods , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Osteoblasts/drug effects , Titanium/chemistry , Titanium/pharmacology , Chick Embryo , Chickens , Iron/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Adhesion/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Angiogenesis
5.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673959

ABSTRACT

Ovarian cancer poses a significant threat to patients in its advanced stages, often with limited treatment options available. In such cases, palliative management becomes the primary approach to maintaining a reasonable quality of life. Therefore, the administration of any medication that can benefit patients without a curative option holds potential. Resveratrol, a natural compound known for its in vitro anticancer activities, has generated contrasting results in vivo and human studies. In this study, we aimed to assess the anticancer effects of resveratrol on ovarian cancer cells grown on the chorioallantoic membrane (CAM) of chicken embryos. Two ovarian cancer cell lines, OVCAR-8 and SKOV-3, were cultured in collagen scaffolds for four days before being implanted on the CAM of chicken embryos on day 7. Different doses of resveratrol were applied to the CAM every two days for six days. Subsequently, CAM tissues were excised, fixed, and subjected to histological analysis. Some CAM tumours were extracted to analyse proteins through Western blotting. Our findings indicate that specific doses of resveratrol significantly reduce angiogenic activities, pNF-κB levels, and SLUG protein levels by using immunohistochemistry. These results suggest that resveratrol may have the potential to impact the behaviour of ovarian cancer CAM tumours, thereby warranting further consideration as a complementary treatment option for women with incurable ovarian cancer.


Subject(s)
Chorioallantoic Membrane , Ovarian Neoplasms , Resveratrol , Resveratrol/pharmacology , Chorioallantoic Membrane/drug effects , Animals , Female , Chick Embryo , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Humans , Cell Line, Tumor , Snail Family Transcription Factors/metabolism , Neovascularization, Pathologic/drug therapy , NF-kappa B/metabolism , Antineoplastic Agents, Phytogenic/pharmacology
6.
J Exp Zool A Ecol Integr Physiol ; 341(5): 544-552, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462737

ABSTRACT

The hatch rate of chick embryos cultured outside of the eggshell with 350 mg calcium l-lactate hydrate (CaL) and 3.5 mL water is fourfold greater in cultures in which the chorioallantoic membrane (CAM) surrounds the egg contents by incubation day 17.5 (E17.5) an event which occurs in ovo by E13. It was first investigated whether decreasing the volume of water added with 350 mg CaL would promote CAM expansion due to the smaller volume to enclose. When 350 mg CaL was present, the CAM did not surround the egg contents by E13. By E17.5, the CAM surrounded the egg contents in 53%-74% of cultures; however, CAM expansion was not significantly different when 0, 1, 2, or 3.5 mL water was present. The hatch rate with 2 or 3.5 mL water was greater than 50% but was not improved with less water. Second, it was investigated whether CaL or water inhibits CAM expansion. In the absence of CaL, the CAM surrounded the egg contents in up to two-thirds of cultures by E13, whether 2 mL water was present or not. Thus CaL, but not water, inhibits expansion of the CAM by E13, even though CaL promotes hatching. Finally, it was investigated whether injection of aqueous CaL into the allantoic fluid, in conjunction with not adding CaL to culture hammocks, would promote CAM expansion. Allantoic injection of CaL starting at E13 did not promote CAM expansion at E17.5 but resulted in hatch rates of approximately 30%. Allantoic injection is a novel route for supplementation of calcium in cultured chick embryos.


Subject(s)
Chorioallantoic Membrane , Animals , Chick Embryo , Chorioallantoic Membrane/drug effects , Allantois , Calcium/metabolism , Calcium Compounds/pharmacology , Calcium Compounds/administration & dosage , Embryo Culture Techniques/veterinary , Lactates/administration & dosage , Egg Shell , Injections
7.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Article in English | MEDLINE | ID: mdl-38450923

ABSTRACT

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Subject(s)
Cell Proliferation , Collagenases , Hyaluronoglucosaminidase , Melanins , Paeonia , Pancreatic Elastase , Plant Oils , Seeds , Paeonia/chemistry , Seeds/chemistry , Animals , Mice , Melanins/analysis , Pancreatic Elastase/metabolism , Plant Oils/pharmacology , Cell Proliferation/drug effects , Collagenases/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/analysis , Cosmetics/chemistry , Cosmetics/pharmacology , Melanoma, Experimental/drug therapy , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/analysis , Chorioallantoic Membrane/drug effects , Cell Line, Tumor , Chickens
8.
Biomol Biomed ; 24(3): 575-581, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38158791

ABSTRACT

Angiogenesis is the process of forming new blood capillaries from pre-existing vessels. Even though it is essential during normal development, it plays a major role in cancer progression. Neratinib is a pan-human epidermal growth factor receptor (HER) inhibitor that has recently been approved for the treatment of HER2-positive breast cancer. However, its effects on angiogenesis and embryogenesis remain unknown. This study examined the antiangiogenic effects of neratinib using the chorioallantoic membrane (CAM) of chicken embryos. We also evaluated neratinib's toxicity during the early stages of normal development using the chicken embryos, primary embryonic fibroblasts (EFBs), and human umbilical vein endothelial cells (HUVEC). Our findings revealed that neratinib significantly inhibited the CAM angiogenesis compared to controls by reducing vessel percentage area and the average vessel length. Furthermore, neratinib downregulated vascular endothelial growth factor (VEGF), a key mediator of angiogenesis. At lower concentrations, neratinib was well-tolerated during early stages of normal development. Additionally, EFBs treated with neratinib showed no morphological or viability changes when compared to controls. However, at the highest concentration tested, neratinib treatment reduced HUVEC cell viability. This effect may be associated with the dysregulation of key apoptotic genes, including caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 (Bcl2) gene. Our findings indicate a novel potential application of neratinib as an antiangiogenic agent, exhibiting tolerable toxicity in the early stages of embryogenesis.


Subject(s)
Angiogenesis Inhibitors , Chorioallantoic Membrane , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Quinolines , Vascular Endothelial Growth Factor A , Chick Embryo , Animals , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Quinolines/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Angiogenesis Inhibitors/pharmacology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Neovascularization, Physiologic/drug effects , Apoptosis/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Angiogenesis
9.
Mar Drugs ; 20(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35323503

ABSTRACT

Wound healing is a highly orchestrated process involving many cell types, such as keratinocytes, fibroblasts and endothelial cells. This study aimed to evaluate the potential application of synthetic peptides derived from tilapia piscidin (TP)2, TP2-5 and TP2-6 in skin wound healing. The treatment of HaCaT keratinocytes with TP2-5 and TP2-6 did not cause cytotoxicity, but did enhance cell proliferation and migration, which could be attributed to the activation of epidermal growth factor receptor signaling. In CCD-966SK fibroblasts, although TP2-5 (31.25 µg/mL) and TP2-6 (125 µg/mL) showed cytotoxic effects, we observed the significant promotion of cell proliferation and migration at low concentrations. In addition, collagen I, collagen III, and keratinocyte growth factor were upregulated by the peptides. We further found that TP2-5 and TP2-6 showed pro-angiogenic properties, including the enhancement of human umbilical vein endothelial cell (HUVEC) migration and the promotion of neovascularization. In a murine model, wounds treated topically with TP2-5 and TP2-6 were reduced by day 2 post-injury and healed significantly faster than untreated wounds. Taken together, these findings demonstrate that both TP2-5 and TP2-6 have multifaceted effects when used as topical agents for accelerating wound healing.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Fibroblasts/drug effects , Fish Proteins/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Keratinocytes/drug effects , Tilapia , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Collagen Type I/genetics , Collagen Type III/genetics , ErbB Receptors/metabolism , Fibroblast Growth Factor 7 , Fibroblasts/metabolism , Fibroblasts/physiology , Human Umbilical Vein Endothelial Cells/physiology , Humans , Keratinocytes/physiology , Male , Mice, Inbred BALB C , Neovascularization, Physiologic/drug effects , Wound Healing/drug effects
10.
PLoS One ; 17(2): e0263822, 2022.
Article in English | MEDLINE | ID: mdl-35157705

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor. While there are a number of in vivo rodent models for evaluating tumor biology and response to therapy, these models require significant time and resources. Here, we established the chick-embryo chorioallantoic (CAM) assay as an affordable and time efficient xenograft model for testing a variety of treatment approaches for DIPG. We found that patient-derived DIPG tumors develop in the CAM and maintain the same genetic and epigenetic characteristics of native DIPG tumors. We monitored tumor response to pharmaco- and radiation therapy by 3-D ultrasound volumetric and vasculature analysis. In this study, we established and validated the CAM model as a potential intermediate xenograft model for DIPG and its use for testing novel treatment approaches that include pharmacotherapy or radiation.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Stem Neoplasms/genetics , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/radiation effects , Diffuse Intrinsic Pontine Glioma/genetics , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/radiotherapy , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/pathology , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/pathology , Diffuse Intrinsic Pontine Glioma/radiotherapy , Humans , Rats , Ultrasonography , Xenograft Model Antitumor Assays
11.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216113

ABSTRACT

It is necessary to elucidate the individual effects of temozolomide (TMZ) on carcinogenesis and tumor resistance to chemotherapy mechanisms. The study aimed to investigate the TMZ 50 and 100 µM dose effect difference between PBT24 and SF8628 cell line high-grade pediatric glioblastoma (phGBM) xenografts in a chicken chorioallantoic membrane (CAM) model, on PCNA and EZH2 immunohistochemical expression in the tumor and on the expression of NKCC1, KCC2, E- and N-cadherin genes in TMZ-treated and control cell groups in vitro. TMZ at a 100 µg dose reduced the incidence of PBT24 xenograft invasion into the CAM, CAM thickening and the number of blood vessels in the CAM (p < 0.05), but did not affect the SF8628 tumor in the CAM model. The TMZ impact on PBT24 and SF8628 tumor PCNA expression was similarly significantly effective but did not alter EZH2 expression in the studied tumors. The TMZ at 50 µM caused significantly increased RNA expression of the NKCC1 gene in both studied cell types compared with controls (p < 0.05). The expression of the KCC2 gene was increased in PBT24 TMZ-treated cells (p < 0.05), and no TMZ effect was found in SF8628-treated cells. The study supports the suggestion that individual sensitivity to TMZ should be assessed when starting treatment.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Carcinogenesis/drug effects , Glioblastoma/drug therapy , Temozolomide/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chickens , Chorioallantoic Membrane/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/genetics , Humans , Male , Rats
12.
Toxicol In Vitro ; 78: 105255, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34743969

ABSTRACT

The Hen's Egg Test - Chorioallantoic Membrane (HET-CAM) is a valid alternative method used to assess the potential for eye irritation from chemicals. This method is the only one that mimics the conjunctivae of the eye and aims to semi-quantitatively evaluate the irritant potential of a chemical on the chorioallantoic membrane surrounding the chicken embryo in egg by observing the irritation effects on the membrane immediately after the pure or diluted chemical is applied. The purpose of this study was to compare the different protocols of the HET-CAM, the French and German protocols, by evaluating the eye irritation potential of surfactants. The comparison led to the optimization of the French protocol, generating an adapted one, to reduce subjectivity in the test evaluation, ensuring more accurate results and greater quality control. The comparison showed that there are no significant differences between the results obtained in the French and German protocols. HET-CAM is known to overestimate the results and to be able to accurately identify non-irritant products and it is a great candidate to be part of a Bottom-up test strategy. It also can be used in a battery of tests to completely replace rabbits.


Subject(s)
Animal Testing Alternatives/methods , Chorioallantoic Membrane/drug effects , Surface-Active Agents/toxicity , Animals , Biological Assay , Chick Embryo , Irritants/toxicity
13.
Pharm Biol ; 59(1): 1566-1575, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34767490

ABSTRACT

CONTEXT: Gambogic amide (GA-amide) is a non-peptide molecule that has high affinity for tropomyosin receptor kinase A (TrkA) and possesses robust neurotrophic activity, but its effect on angiogenesis is unclear. OBJECTIVE: The study investigates the antiangiogenic effect of GA-amide on endothelial cells (ECs). MATERIALS AND METHODS: The viability of endothelial cells (ECs) treated with 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 µM GA-amide for 48 h was detected by MTS assay. Wound healing and angiogenesis assays were performed on cells treated with 0.2 µM GA-amide. Chicken eggs at day 7 post-fertilization were divided into the dimethyl sulfoxide (DMSO), bevacizumab (40 µg), and GA-amide (18.8 and 62.8 ng) groups to assess the antiangiogenic effect for 3 days. mRNA and protein expression in cells treated with 0.1, 0.2, 0.4, 0.8, and 1.2 µM GA-amide for 6 h was detected by qRT-PCR and Western blots, respectively. RESULTS: GA-amide inhibited HUVEC (IC50 = 0.1269 µM) and NhEC (IC50 = 0.1740 µM) proliferation, induced cell apoptosis, and inhibited the migration and angiogenesis at a relatively safe dose (0.2 µM) in vitro. GA-amide reduced the number of capillaries from 56 ± 14.67 (DMSO) to 20.3 ± 5.12 (62.8 ng) in chick chorioallantoic membrane (CAM) assay. However, inactivation of TrkA couldn't reverse the antiangiogenic effect of GA-amide. Moreover, GA-amide suppressed the expression of VEGF and VEGFR2, and decreased activation of the AKT/mTOR and PLCγ/Erk1/2 pathways. CONCLUSIONS: Considering the antiangiogenic effect of GA-amide, it might be developed as a useful agent for use in clinical combination therapies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Xanthones/pharmacology , Angiogenesis Inhibitors/administration & dosage , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Receptor, trkA/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xanthones/administration & dosage
14.
Exp Eye Res ; 213: 108824, 2021 12.
Article in English | MEDLINE | ID: mdl-34742693

ABSTRACT

Corneal alkali burns are a major ophthalmic emergency, as current therapeutic treatments are limited. Novel treatment targets and new potential agents are required to combat this severe ocular injury. Glycyrrhizin and rebamipide (RBM) are both FDA-approved drugs with potential effects against corneal alkali burns, but RBM is limited by its low aqueous solubility and low bioavailability. This study aimed to utilize dipotassium glycyrrhizinate (DG, a dipotassium salt of glycyrrhizin) as a nanocarrier encapsulating RBM to formulate an ophthalmic solution (marked DG-RBM) with strengthened activities to treat corneal alkali burns. Results showed that an easy DG-RBM preparative process generated particles with high encapsulation efficacy and ultra-small micellar size. The solubility of RBM in DG-RBM in aqueous solution was 3.1 × 105-fold enhanced than its free solution. DG-RBM exhibited excellent storage stability. In vitro cytotoxicity, ex vivo conjunctival responses, and rabbit eye tolerance tests showed that DG-RBM possessed good ocular safety profiles. DG-RBM exhibited improved in vivo corneal permeation profiles and demonstrated a strong effect against H2O2-induced oxidative damage, with a significant effect on promoting epithelial wound healing in corneal cells in vitro. As expected, in a mouse model of corneal alkali burns, the topical administration of DG-RBM achieved a strengthened efficacy against alkali burn damages. The mechanism of this therapeutic effect involved regulating high-mobility group box 1 (HMGB1) signaling and its related angiogenic and proinflammatory cytokines. These findings demonstrate the ease of preparing DG-RBM and its great potential as a novel ocular topical formulation to treat corneal alkali burns by regulating HMGB1 signaling.


Subject(s)
Alanine/analogs & derivatives , Antioxidants/therapeutic use , Burns, Chemical/drug therapy , Eye Burns/chemically induced , HMGB1 Protein/metabolism , Quinolones/therapeutic use , Alanine/chemistry , Alanine/therapeutic use , Alanine/toxicity , Animals , Antioxidants/chemistry , Antioxidants/toxicity , Blotting, Western , Burns, Chemical/metabolism , Chickens , Chorioallantoic Membrane/drug effects , Disease Models, Animal , Drug Carriers/chemistry , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Glycyrrhizic Acid/chemistry , Humans , Mice , Ophthalmic Solutions , Quinolones/chemistry , Quinolones/toxicity , Rabbits , Signal Transduction/physiology , Sodium Hydroxide/toxicity , Wound Healing/drug effects
15.
Pak J Pharm Sci ; 34(3): 943-949, 2021 May.
Article in English | MEDLINE | ID: mdl-34602417

ABSTRACT

Allium sativum (As), commonly known as garlic, has been used for a long time, for its therapeutic effects. Recent studies showed the ability of As to modulate vascular activity. The present study aimed to investigate the vasomodulatory effects of aqueous extract of As and to analyse the molecular nature of the active components. Experiments were performed on chick chorioallantoic membrane. Fractions of garlic were directly injected using micropipette on a high vessel density area. Our results clearly indicated that garlic increased permeability and induced vasodilatation of blood vessels and capillaries. These effects were dose-dependent and had been observed just few minutes after the onset of treatment. The active component responsible of these effects, which had a low molecular weight seems to be of peptide nature and appeared different from Dially Sulfide (DAS) and Dially Disulfide (DADS).


Subject(s)
Blood Vessels/drug effects , Capillary Permeability/drug effects , Chorioallantoic Membrane/drug effects , Garlic , Plant Extracts/pharmacology , Vasodilation/drug effects , Animals , Chick Embryo , Chorioallantoic Membrane/blood supply , Chromatography, Thin Layer , Dose-Response Relationship, Drug , Plant Extracts/chemistry
16.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638895

ABSTRACT

Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.


Subject(s)
Apoptosis/drug effects , Colorectal Neoplasms/prevention & control , Neovascularization, Pathologic/prevention & control , Polycyclic Sesquiterpenes/pharmacology , Xenograft Model Antitumor Assays/methods , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Colorectal Neoplasms/blood supply , HCT116 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice, Nude , Microvessels/drug effects , Rats, Sprague-Dawley
17.
Eur J Pharm Biopharm ; 168: 195-207, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34500025

ABSTRACT

Leber's Hereditary Optic Neuropathy (LHON) is a hereditary mitochondrial neurodegenerative disease of unclear etiology and lack of available therapeutic alternatives. The main goal of the current pilot study was based on the evaluation of the feasibility and characteristics of prolonged and controlled idebenone release from a PCL intravitreal implant. The design, development, and characterization of idebenone-loaded PCL implants prepared by an homogenization/extrusion/solvent evaporation method allowed the obtention of high PY, EE and LC values. In vitro characterization was completed by the assessment of mechanical and instrumental properties. The in vitro release of idebenone from the PCL implants was assessed and the implant erosion was monitored by the mass loss and surface morphology changes. DSC was used to estimate stability and interaction among implant's components. The present work demonstrated the controlled and prolonged idebenone delivery from the PCL implants in an in vitro model. A consistent preclinical base was established, supporting the idea of idebenone-loaded PCL implants as a new strategy of long-term sustained intraocular delivery for the LHON treatment.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Polyesters/chemistry , Ubiquinone/analogs & derivatives , Animals , Chemistry, Pharmaceutical/methods , Chickens , Chorioallantoic Membrane/drug effects , Delayed-Action Preparations , Drug Implants , Drug Stability , Optic Atrophy, Hereditary, Leber/drug therapy , Pilot Projects , Ubiquinone/administration & dosage , Ubiquinone/chemistry
18.
Int J Biol Macromol ; 191: 548-559, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34536476

ABSTRACT

The usefulness of sirolimus (SIR) in the treatment of diseases that involve retinal degeneration like age-related macular degeneration (AMD) has been well documented. However, the problem still remains probably owing to the peculiar environment of the eye and/or unfavourable physiochemical profile of SIR. In the present work, we aimed to fabricate sirolimus loaded PLGA nanoparticles (SIR-PLGA-NP) and chitosan decorated PLGA nanoparticles (SIR-CH-PLGA-NP) to be administered via non-invasive subconjunctival route. Both the nanoparticles were characterized in terms of size, zeta potential, DSC, FTIR and XRD analysis. Quality by Design (QbD) approach was employed during the preparation of nanoparticles and the presence of chitosan coating was confirmed through thermogravimetric analysis and contact angle studies. Cationic polymer modification showed sustained in-vitro SIR release and enhanced ex-vivo scleral permeation and penetration. Further, SIR-CH-PLGA-NP revealed enhanced cellular uptake and thus, reduced lipopolysaccharide (LPS)-induced free-radicals generation by RAW 264.7 cells. The prepared nanoparticles were devoid of residual solvent and were found to be safe in HET-CAM analysis, RBCs damage analysis and histopathology studies. Moreover, high anti-angiogenic potential was observed in SIR-CH-PLGA-NP compared with SIR-PLGA-NP in chorioallantoic membrane (CAM) test. Overall, the current work opens up an avenue for further investigation of CH-PLGA-NP as SIR nanocarrier in the treatment of AMD.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Chitosan/analogs & derivatives , Macular Degeneration/drug therapy , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Sirolimus/administration & dosage , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Chick Embryo , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , Macular Degeneration/metabolism , Male , Mice , RAW 264.7 Cells , Rats , Rats, Wistar , Sclera/drug effects , Sclera/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use
19.
Int J Biol Macromol ; 189: 100-113, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34411613

ABSTRACT

In the present work, lactoferrin (Lf) based nanoparticle incorporated self-supporting gel encapsulating a flavonoid, quercetin (Q), was developed. The complex formation between Lf and Q was assessed using molecular docking and dynamics simulation that lactoferrin and quercetin showed strong interaction and binding supporting hydrophobic interaction. The microscopic, spectroscopic, and x-ray techniques were used to characterize the gel extensively. In vitro drug release was studied to understand the release pattern of quercetin from the protein gel. The viscosity of the gel and its rheological characteristics were determined using a Brookfield viscometer. Ex vivo skin permeation studies using vertical diffusion cells were carried out to understand its skin permeation properties. The gel showed strong anti-oxidant activity using the DPPH scavenging assay. The enhanced effect of the Lf-Q complex on antioxidant enzyme activity (superoxide dismutase, catalase, and malondialdehyde), was supported by molecular dynamics, surface hydrophobicity, and in vitro studies. To investigate the effect of the gel on angiogenesis, the chorioallantoic membrane assay was performed and its compatibility with erythrocytes was also assessed. Suitability for topical administration was assessed using skin irritation studies performed on Sprague Dawley rats. The overall results suggest that the developed NiPG is suitable for cutaneous localization of quercetin with enhanced antioxidant activity.


Subject(s)
Gels/chemistry , Lactoferrin/chemistry , Molecular Dynamics Simulation , Nanoparticles/chemistry , Oxidative Stress , Polyphenols/chemistry , 3T3 Cells , Animals , Antioxidants/pharmacology , Cattle , Cell Survival/drug effects , Chickens , Chorioallantoic Membrane/drug effects , Drug Liberation , Erythrocytes/drug effects , Hydrophobic and Hydrophilic Interactions , Kinetics , Ligands , Male , Mice , Molecular Docking Simulation , Quercetin/chemistry , Rats, Sprague-Dawley , Skin/drug effects , Skin Irritancy Tests , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , Viscosity , X-Ray Diffraction
20.
Biomolecules ; 11(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34199986

ABSTRACT

The natural product elaiophylin is a macrodiolide with a broad range of biological activities. However, no direct target of elaiophylin in eukaryotes has been described so far, which hinders a systematic explanation of its astonishing activity range. We recently showed that the related conglobatin A, a protein-protein interface inhibitor of the interaction between the N-terminus of Hsp90 and its cochaperone Cdc37, blocks cancer stem cell properties by selectively inhibiting K-Ras4B but not H-Ras. Here, we elaborated that elaiophylin likewise disrupts the Hsp90/ Cdc37 interaction, without affecting the ATP-pocket of Hsp90. Similarly to conglobatin A, elaiophylin decreased expression levels of the Hsp90 client HIF1α, a transcription factor with various downstream targets, including galectin-3. Galectin-3 is a nanocluster scaffold of K-Ras, which explains the K-Ras selectivity of Hsp90 inhibitors. In agreement with this K-Ras targeting and the potent effect on other Hsp90 clients, we observed with elaiophylin treatment a submicromolar IC50 for MDA-MB-231 and MIA-PaCa-2 3D spheroid formation. Finally, a strong inhibition of MDA-MB-231 cells grown in the chorioallantoic membrane (CAM) microtumor model was determined. These results suggest that several other macrodiolides may have the Hsp90/ Cdc37 interface as a target site.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Chaperonins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Macrolides/pharmacology , Nanoconjugates , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Cell Cycle Proteins/metabolism , Chaperonins/metabolism , Chickens , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Macrolides/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...