Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38690647

ABSTRACT

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Subject(s)
Arousal , Choroid Plexus , Ependymoglial Cells , Hibernation , Proto-Oncogene Proteins c-fos , Torpor , Animals , Proto-Oncogene Proteins c-fos/metabolism , Arousal/physiology , Torpor/physiology , Hibernation/physiology , Ependymoglial Cells/metabolism , Ependymoglial Cells/physiology , Choroid Plexus/metabolism , Choroid Plexus/physiology , Mesocricetus , Male , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Cricetinae
2.
Fluids Barriers CNS ; 20(1): 39, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264368

ABSTRACT

The choroid plexus (ChP) has been suggested as an alternative central nervous system (CNS) entry site for CCR6+ Th17 cells during the initiation of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). To advance our understanding of the importance of the ChP in orchestrating CNS immune cell entry during neuroinflammation, we here directly compared the accumulation of CD45+ immune cell subsets in the ChP, the brain and spinal cord at different stages of EAE by flow cytometry. We found that the ChP harbors high numbers of CD45int resident innate but also of CD45hi adaptive immune cell subsets including CCR6+ Th17 cells. With the exception to tissue-resident myeloid cells and B cells, numbers of CD45+ immune cells and specifically of CD4+ T cells increased in the ChP prior to EAE onset and remained elevated while declining in brain and spinal cord during chronic disease. Increased numbers of ChP immune cells preceded their increase in the cerebrospinal fluid (CSF). Th17 but also other CD4+ effector T-cell subsets could migrate from the basolateral to the apical side of the blood-cerebrospinal fluid barrier (BCSFB) in vitro, however, diapedesis of effector Th cells including that of Th17 cells did not require interaction of CCR6 with BCSFB derived CCL20. Our data underscore the important role of the ChP as CNS immune cell entry site in the context of autoimmune neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Choroid Plexus/physiology , Neuroinflammatory Diseases , Brain , Central Nervous System , Mice, Inbred C57BL
3.
Fluids Barriers CNS ; 20(1): 49, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353833

ABSTRACT

BACKGROUND: It is crucial to maintain the intracranial pressure (ICP) within the physiological range to ensure proper brain function. The ICP may fluctuate during the light-dark phase cycle, complicating diagnosis and treatment choice in patients with pressure-related disorders. Such ICP fluctuations may originate in circadian or sleep-wake cycle-mediated modulation of cerebrospinal fluid (CSF) flow dynamics, which in addition could support diurnal regulation of brain waste clearance. METHODS: ICP was monitored continuously in patients who underwent placement of an external ventricular drain (EVD) and by telemetric monitoring in experimental rats. CSF was collected via the EVD in patients and the rodent CSF secretion rate determined by in vivo experimentation. Rodent choroid plexus transporter transcripts were quantified with RNAseq and transport activity with ex vivo isotope transport assays. RESULTS: We demonstrated that ICP increases by 30% in the dark phase in both species, independently of vascular parameters. This increase aligns with elevated CSF collection in patients (12%) and CSF production rate in rats (20%), the latter obtained with the ventriculo-cisternal perfusion assay. The dark-phase increase in CSF secretion in rats was, in part, assigned to increased transport activity of the choroid plexus Na+,K+,2Cl- cotransporter (NKCC1), which is implicated in CSF secretion by this tissue. CONCLUSION: CSF secretion, and thus ICP, increases in the dark phase in humans and rats, irrespective of their diurnal/nocturnal activity preference, in part due to altered choroid plexus transport activity in the rat. Our findings suggest that CSF dynamics are modulated by the circadian rhythm, rather than merely sleep itself.


Subject(s)
Choroid Plexus , Intracranial Pressure , Humans , Rats , Animals , Intracranial Pressure/physiology , Choroid Plexus/physiology , Brain , Membrane Transport Proteins , Cerebrospinal Fluid
4.
Cell Tissue Res ; 393(3): 537-545, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37354235

ABSTRACT

Choroid plexus, pineal gland, and habenula tend to accumulate physiologic calcifications (concrements) over a lifetime. However, until now the composition and causes of the intracranial calcifications remain unclear. The detailed analysis of concrements has been done by us using X-ray diffraction analysis (XRD), X-ray diffraction topography (XRDT), micro-CT, X-ray phase-contrast tomography (XPCT), as well as histology and immunohistochemistry (IHC). By combining physical (XRD) and biochemical (IHC) methods, we identified inorganic (hydroxyapatite) and organic (vimentin) components of the concrements. Via XPCT, XRDT, histological, and IHC methods, we assessed the structure of concrements within their appropriate tissue environment in both two and three dimensions. The study found that hydroxyapatite was a major component of all calcified depositions. It should be noted, however, that the concrements displayed distinctive characteristics corresponding to each specific structure of the brain. As a result, our study provides a basis for assessing the pathological and physiological changes that occur in brain structure containing calcifications.


Subject(s)
Calcinosis , Habenula , Pineal Gland , Humans , Choroid Plexus/pathology , Choroid Plexus/physiology , Calcinosis/pathology , Calcification, Physiologic , X-Ray Microtomography , Hydroxyapatites
5.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108817

ABSTRACT

The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3ß inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.


Subject(s)
Exosomes , Pluripotent Stem Cells , Humans , Amyloid beta-Peptides , Choroid Plexus/physiology , Glycogen Synthase Kinase 3 beta , Organoids
6.
Fluids Barriers CNS ; 19(1): 75, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088417

ABSTRACT

The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Blood-Brain Barrier/physiology , Brain , Choroid Plexus/physiology , Humans , SARS-CoV-2
7.
Semin Immunopathol ; 44(6): 869-882, 2022 11.
Article in English | MEDLINE | ID: mdl-35861857

ABSTRACT

The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.


Subject(s)
Choroid Plexus , Endothelial Cells , Humans , Choroid Plexus/blood supply , Choroid Plexus/pathology , Choroid Plexus/physiology , Brain-Gut Axis , Brain , Homeostasis , Blood-Brain Barrier/physiology
8.
Cell Mol Life Sci ; 79(6): 304, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589983

ABSTRACT

The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.


Subject(s)
Central Nervous System , Choroid Plexus , Animals , Brain , Choroid Plexus/physiology , Epithelial Cells , Mice
9.
Eur Neurol ; 85(4): 313-325, 2022.
Article in English | MEDLINE | ID: mdl-35405679

ABSTRACT

BACKGROUND AND PURPOSE: According to the classical hypothesis, the cerebrospinal fluid (CSF) is actively secreted inside the brain's ventricular system, predominantly by the choroid plexuses, before flowing unidirectionally in a cranio-caudal orientation toward the arachnoid granulations (AGs), where it is reabsorbed into the dural venous sinuses. This concept has been accepted as a doctrine for more than 100 years and was subjected only to minor modifications. Its inability to provide an adequate explanation to questions arising from the everyday clinical practice, in addition to the ever growing pool of experimental data contradicting it, has led to the identification of its limitations. Literature includes an increasing number of studies suggesting a more complex mechanism than that previously described. This review article summarizes the proposed mechanisms of CSF regulation, referring to the key clinical and experimental developments supporting or defying them. METHODS: A non-systematical literature search of the major databases was performed for studies on the mechanisms of CSF homeostasis. Gray literature was additionally assessed employing a hand-search technique. No restrictions were imposed regarding the time, language, or type of publication. CONCLUSION: CSF secretion and absorption are expected to take place throughout the entire brain's capillaries network under the regulation of hydrostatic and osmotic gradients. The unidirectional flow is defied, highlighting the possibility of its complete absence. The importance of AGs is brought into question, potentiating the significance of the lymphatic system as the primary site of reabsorption. However, the definition of hydrocephalus and its treatment strategies remain strongly associated with the classical hypothesis.


Subject(s)
Hydrocephalus , Hydrodynamics , Cerebral Ventricles/physiology , Cerebrospinal Fluid , Choroid Plexus/physiology , Homeostasis , Humans
10.
Br J Neurosurg ; 36(3): 307-315, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33821737

ABSTRACT

In this article, we review the available literature about the functions of the choroid plexus (ChP), including its basic role in cerebrospinal fluid (CSF) secretion, renewal and absorption. We discuss more recently described, lesser-known functions of the ChP, such as its role in circadian rhythm regulation, chemical and immune surveillance and functional implications of ChP disruption, as occurs in neurodegenerative disorders.


Subject(s)
Cerebrospinal Fluid , Choroid Plexus , Choroid Plexus/physiology , Humans
11.
J Neurosci ; 41(37): 7698-7711, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526407

ABSTRACT

Throughout the body, lymphatic fluid movement supports critical functions including clearance of excess fluid and metabolic waste. The glymphatic system is the analog of the lymphatic system in the CNS. As such, the glymphatic system plays a key role in regulating directional interstitial fluid movement, waste clearance, and, potentially, brain immunity. The glymphatic system enables bulk movement of CSF from the subarachnoid space along periarterial spaces, where it mixes with interstitial fluid within the parenchyma before ultimately exiting from the parenchyma via perivenous spaces. This review focuses on important questions about the structure of this system, why the brain needs a fluid transport system, and unexplored aspects of brain fluid transport. We provide evidence that astrocytes and blood vessels determine the shape of the perivascular space, ultimately controlling the movement of perivascular fluid. Glymphatic fluid movement has the potential to alter local as well as global transport of signaling molecules and metabolites. We also highlight the evidence for cross talk among the glymphatic system, cardiovascular system, gastrointestinal tract, and lymphatic system. Much remains to be studied, but we propose that the glymphatic/lymphatic system acts as a cornerstone in signaling between the brain and body.


Subject(s)
Brain/physiology , Glymphatic System/physiology , Animals , Astrocytes/physiology , Choroid Plexus/physiology , Humans , Neurobiology
12.
Neurobiol Dis ; 158: 105474, 2021 10.
Article in English | MEDLINE | ID: mdl-34384868

ABSTRACT

Choroid plexus epithelial cells (CPEpiCs) determine the composition of cerebrospinal fluid (CSF) and constitute the blood-CSF barrier (BCSFB), functions that are altered in neurodegenerative diseases. In Parkinson's disease (PD) the pathological environment oxidizes and deamidates the ceruloplasmin, a CSF-resident ferroxidase, which undergoes a gain of RGD-recognizing integrin binding property, that may result in signal transduction. We investigated the effects that oxidized/deamidated ceruloplasmin (Cp-ox/de) may exert on CPEpiCs functions. Through RGD-recognizing integrins binding, Cp-ox/de mediates CPEpiCs adhesion and intracellular signaling, resulting in cell proliferation inhibition and alteration of the secretome profile in terms of proteins related to cell-extracellular matrix interaction. Oxidative conditions, comparable to those found in the CSF of PD patients, induced CPEpiCs barrier leakage, allowing Cp-ox/de to cross it, transducing integrins-mediated signal that further worsens BCSFB integrity. This mechanism might contribute to PD pathological processes altering CSF composition and aggravating the already compromised BCSFB function.


Subject(s)
Blood-Brain Barrier/physiology , Ceruloplasmin/physiology , Choroid Plexus/physiology , Epithelial Cells/physiology , Integrins/metabolism , Amides , Cell Adhesion , Cell Proliferation , Choroid Plexus/cytology , Extracellular Matrix , Humans , Oligopeptides/metabolism , Oxidation-Reduction , Secretome/physiology , Signal Transduction/physiology
13.
Trends Neurosci ; 44(11): 864-875, 2021 11.
Article in English | MEDLINE | ID: mdl-34312005

ABSTRACT

The choroid plexus (ChP), an epithelial bilayer containing a network of mesenchymal, immune, and neuronal cells, forms the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While best recognized for secreting CSF, the ChP is also a hotbed of immune cell activity and can provide circulating peripheral immune cells with passage into the central nervous system (CNS). Here, we review recent studies on ChP immune cells, with a focus on the ontogeny, development, and behaviors of ChP macrophages, the principal resident immune cells of the ChP. We highlight the implications of immune cells for ChP barrier function, CSF cytokines and volume regulation, and their contribution to neurodevelopmental disorders, with possible age-specific features to be elucidated in the future.


Subject(s)
Blood-Brain Barrier , Choroid Plexus , Blood-Brain Barrier/physiology , Central Nervous System , Cerebrospinal Fluid/physiology , Choroid Plexus/physiology , Humans , Immunity , Macrophages
14.
Nutrients ; 13(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072120

ABSTRACT

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a "privileged" organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood-brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood-CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


Subject(s)
Blood-Brain Barrier , Brain , Manganese , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Brain/physiology , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/physiology , Choroid Plexus/metabolism , Choroid Plexus/physiology , Homeostasis/physiology , Humans , Manganese/metabolism , Manganese/physiology , Mice , Rats
15.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33932339

ABSTRACT

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Subject(s)
Choroid Plexus/embryology , Choroid Plexus/metabolism , Age Factors , Aging/physiology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/physiology , Brain Diseases/genetics , Brain Diseases/physiopathology , Cell Differentiation/genetics , Cell Lineage/genetics , Choroid Plexus/physiology , Epithelial Cells/metabolism , Female , Male , Mice/embryology , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis
16.
Fluids Barriers CNS ; 17(1): 58, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32962708

ABSTRACT

BACKGROUND: The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies. METHODS: Seven healthy volunteers were imaged on a 3T MR scanner. ASL images were acquired with 12 labeling durations and post labeling delays. Regions of the choroid plexus were manually segmented on high-resolution T1 weighted images. Choroid plexus perfusion was characterized with a dynamic ASL perfusion model. Cerebral gray matter perfusion was also quantified for comparison. RESULTS: Kinetics of the ASL signal were clearly different in the choroid plexus than in gray matter. The choroid plexus has a significantly longer T1 than the gray matter (2.33 ± 0.30 s vs. 1.85 ± 0.10 s, p < 0.02). The arterial transit time was 1.24 ± 0.20 s at the choroid plexus. The apparent blood flow to the choroid plexus was measured to be 39.5 ± 10.1 ml/100 g/min and 0.80 ± 0.31 ml/min integrated over the posterior lateral ventricles in both hemispheres. Correction with the choroid plexus weight yielded a blood flow of 80 ml/100 g/min. CONCLUSIONS: Our findings suggest that ASL can provide a clinically feasible option to quantify the dynamic characteristics of choroid plexus blood flow. It also provides useful reference values of the choroid plexus perfusion. The long T1 of the choroid plexus may suggest the transport of water from arterial blood to the CSF, potentially providing a method to quantify CSF generation.


Subject(s)
Cerebrovascular Circulation , Choroid Plexus/diagnostic imaging , Choroid Plexus/physiology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Cerebrovascular Circulation/physiology , Feasibility Studies , Female , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Magnetic Resonance Imaging/standards , Male , Middle Aged , Neuroimaging/standards , Spin Labels
17.
Int J Mol Sci ; 21(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899645

ABSTRACT

The volume, composition, and movement of the cerebrospinal fluid (CSF) are important for brain physiology, pathology, and diagnostics. Nevertheless, few studies have focused on the main structure that produces CSF, the choroid plexus (CP). Due to the presence of monocarboxylate transporters (MCTs) in the CP, changes in blood and brain lactate levels are reflected in the CSF. A lactate receptor, the hydroxycarboxylic acid receptor 1 (HCA1), is present in the brain, but whether it is located in the CP or in other periventricular structures has not been studied. Here, we investigated the distribution of HCA1 in the cerebral ventricular system using monomeric red fluorescent protein (mRFP)-HCA1 reporter mice. The reporter signal was only detected in the dorsal part of the third ventricle, where strong mRFP-HCA1 labeling was present in cells of the CP, the tela choroidea, and the neuroepithelial ventricular lining. Co-labeling experiments identified these cells as fibroblasts (in the CP, the tela choroidea, and the ventricle lining) and ependymal cells (in the tela choroidea and the ventricle lining). Our data suggest that the HCA1-containing fibroblasts and ependymal cells have the ability to respond to alterations in CSF lactate in body-brain signaling, but also as a sign of neuropathology (e.g., stroke and Alzheimer's disease biomarker).


Subject(s)
Choroid Plexus/metabolism , Receptors, G-Protein-Coupled/metabolism , Third Ventricle/metabolism , Animals , Brain/metabolism , Cerebral Ventricles/metabolism , Cerebral Ventricles/physiology , Cerebrospinal Fluid/metabolism , Choroid Plexus/physiology , Fibroblasts/metabolism , Humans , Lactic Acid/metabolism , Mice , Mice, Inbred C57BL , Third Ventricle/physiology
18.
J Alzheimers Dis ; 77(2): 795-806, 2020.
Article in English | MEDLINE | ID: mdl-32741824

ABSTRACT

BACKGROUND: The choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, was recently identified as an important component of the circadian clock system. OBJECTIVE: The fact that circadian rhythm disruption is closely associated to Alzheimer's disease (AD) led us to investigate whether AD pathology can contribute to disturbances of the circadian clock in the CP. METHODS: For this purpose, we evaluated the expression of core-clock genes at different time points, in 6- and 12-month-old female and male APP/PS1 mouse models of AD. In addition, we also assessed the effect of melatonin pre-treatment in vitro before amyloid-ß stimulus in the daily pattern of brain and muscle Arnt-like protein 1 (Bmal1) expression. RESULTS: Our results showed a dysregulation of circadian rhythmicity of Bmal1 expression in female and male APP/PS1 transgenic 12-month-old mice and of Period 2 (Per2) expression in male mice. In addition, a significant circadian pattern of Bmal1 was measured the intermittent melatonin pre-treatment group, showing that melatonin can reset the CP circadian clock. CONCLUSION: These results demonstrated a connection between AD and the disruption of circadian rhythm in the CP, representing an attractive target for disease prevention and/or treatment.


Subject(s)
ARNTL Transcription Factors/genetics , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Choroid Plexus/physiology , Circadian Rhythm/physiology , Presenilin-1/genetics , ARNTL Transcription Factors/metabolism , Alzheimer Disease/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cell Line, Transformed , Choroid Plexus/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Periodicity , Rats
19.
Sci Rep ; 10(1): 9391, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523019

ABSTRACT

In Alzheimer's disease (AD) amyloid-ß (Aß) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood-cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking Aß-induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on Aß toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse Aß accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on Aß-induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased Aß accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, Aß administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the Aß-induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as Aß accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Annexin A5/metabolism , Blood-Brain Barrier/pathology , Choroid Plexus/physiology , Cognitive Dysfunction/metabolism , Neurons/pathology , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Animals , Apoptosis , Autophagy , Calcium/metabolism , Cells, Cultured , Cognitive Dysfunction/genetics , Female , Humans , Male , Middle Aged , Proteomics , Rats , Rats, Wistar
20.
Science ; 369(6500)2020 07 10.
Article in English | MEDLINE | ID: mdl-32527923

ABSTRACT

Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.


Subject(s)
Blood-Brain Barrier/physiology , Cerebrospinal Fluid/physiology , Choroid Plexus/physiology , Organoids/physiology , Cell Culture Techniques , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid Proteins/metabolism , Gene Expression Profiling , Humans , Proteomics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...