Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493352

ABSTRACT

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA, Ribosomal , Telomere Homeostasis , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Telomere/metabolism , Telomere/genetics , Chromatin Assembly Factor-1/metabolism , Chromatin Assembly Factor-1/genetics , Mutation , DNA-Binding Proteins
2.
Blood Adv ; 7(17): 4822-4837, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37205848

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.


Subject(s)
Chromatin Assembly and Disassembly , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Cell Line , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , DNA-Binding Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
3.
Epigenetics Chromatin ; 16(1): 15, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37118845

ABSTRACT

Histone modifications are one of the many key mechanisms that regulate gene expression. Ash1 is a histone H3K36 methyltransferase and is involved in gene activation. Ash1 forms a large complex with Mrg15 and Caf1/p55/Nurf55/RbAp48 (AMC complex). The Ash1 subunit alone exhibits very low activity due to the autoinhibition, and the binding of Mrg15 releases the autoinhibition. Caf1 is a scaffolding protein commonly found in several chromatin modifying complexes and has two histone binding pockets: one for H3 and the other for H4. Caf1 has the ability to sense unmodified histone H3K4 residues using the H3 binding pocket. However, the role of Caf1 in the AMC complex has not been investigated. Here, we dissected the interaction among the AMC complex subunits, revealing that Caf1 uses the histone H4 binding pocket to interact with Ash1 near the histone binding module cluster. Furthermore, we showed that H3K4 methylation inhibits AMC HMTase activity via Caf1 sensing unmodified histone H3K4 to regulate the activity in an internucleosomal manner, suggesting that crosstalk between H3K4 and H3K36 methylation. Our work revealed a delicate mechanism by which the AMC histone H3K36 methyltransferase complex is regulated.


Subject(s)
Histones , Transcription Factors , Histones/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Methylation , Histone-Lysine N-Methyltransferase/metabolism , Histone Methyltransferases/metabolism , Chromatin Assembly Factor-1/metabolism
4.
Mol Microbiol ; 119(5): 574-585, 2023 05.
Article in English | MEDLINE | ID: mdl-36855815

ABSTRACT

The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.


Subject(s)
Candida albicans , Histones , Animals , Histones/genetics , Histones/metabolism , Candida albicans/genetics , Candida albicans/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Chromatin , Chromatin Assembly Factor-1/chemistry , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Biofilms , Mammals/genetics , Mammals/metabolism
5.
Nucleic Acids Res ; 51(8): 3770-3792, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36942484

ABSTRACT

During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.


Subject(s)
Chromatin , Histones , Histones/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Chromatin/genetics , DNA Replication , DNA/genetics
6.
J Integr Plant Biol ; 65(1): 203-222, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36541721

ABSTRACT

Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.


Subject(s)
Arabidopsis , Histones , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin Assembly and Disassembly , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , DNA Replication/genetics , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Nucleosomes/metabolism
7.
Nat Commun ; 13(1): 6970, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379930

ABSTRACT

Histone chaperones and chromatin remodelers control nucleosome dynamics, which are essential for transcription, replication, and DNA repair. The histone chaperone Anti-Silencing Factor 1 (ASF1) plays a central role in facilitating CAF-1-mediated replication-dependent H3.1 deposition and HIRA-mediated replication-independent H3.3 deposition in yeast and metazoans. Whether ASF1 function is evolutionarily conserved in plants is unknown. Here, we show that Arabidopsis ASF1 proteins display a preference for the HIRA complex. Simultaneous mutation of both Arabidopsis ASF1 genes caused a decrease in chromatin density and ectopic H3.1 occupancy at loci typically enriched with H3.3. Genetic, transcriptomic, and proteomic data indicate that ASF1 proteins strongly prefers the HIRA complex over CAF-1. asf1 mutants also displayed an increase in spurious Pol II transcriptional initiation and showed defects in the maintenance of gene body CG DNA methylation and in the distribution of histone modifications. Furthermore, ectopic targeting of ASF1 caused excessive histone deposition, less accessible chromatin, and gene silencing. These findings reveal the importance of ASF1-mediated histone deposition for proper epigenetic regulation of the genome.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Epigenesis, Genetic , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proteomics , Arabidopsis Proteins
8.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232396

ABSTRACT

The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.


Subject(s)
Chromatin , DNA Replication , Amino Acids/metabolism , Arginine/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly Factor-1/chemistry , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , DNA/metabolism , Humans , Peptides/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
9.
Mol Cell Proteomics ; 21(10): 100411, 2022 10.
Article in English | MEDLINE | ID: mdl-36089195

ABSTRACT

Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.


Subject(s)
Histone Chaperones , Histones , Histones/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Chromatin , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Transcription Factors/metabolism , Nucleosomes
10.
J Transl Med ; 20(1): 296, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773729

ABSTRACT

PURPOSE: Aberrant epigenetic changes, like DNA methylation, histone modifications, or ubiquitination, could trigger metabolic disorders in human cancer cells. This study planed to uncover the biological roles of epigenetic SPOP/CHAF1A axis in modulating tumor autophagy during Diffuse large B-cell lymphoma (DLBCL) tumorigenesis. MATERIALS AND METHODS: The Immunohistochemistry (IHC) was performed to assess the CHAF1A expressions. The expression data of CHAF1A was derived from The Cancer Genome Atlas (TCGA), GSE32918 and GSE83632 datasets. Bioinformatic assays contain differential analysis, functional enrichment analysis and Kaplan-Meier survival curve analysis. The colony generation assay, Transwell assay and CCK-8 assays were conducted for the in vitro assays. The in vivo ubiquitination assays were used to assess regulations of SPOP on CHAF1A. The Chromatin immunoprecipitation (ChIP) assays were used to uncover epigenetic regulations of CHAF1A on TFEB. The relevant DLBCL cells were subcutaneously injected to SCID beige mice to establish the xenograft models. RESULTS: Bioinformatic results revealed that CHAF1A expressed highly in DLBCL that were validated in patients samples. Patients with high CHAF1A suffered from inferior prognosis with shorter survival months relative to those with low CHAF1A. High CHAF1A enhanced DLBCL aggressiveness, including cell proliferation, migration and in vivo growth. Mechanistically, E3 ubiquitin ligase SPOP binds to and induces the degradative ubiquitination of CHAF1A via recognizing a consensus SPOP-binding motif in CHAF1A. SPOP is down-regulated in DLBCL and habours two DLBCL-associated mutations. Deficient SPOP leads to accumulated CHAF1A proteins that promote malignant features of DLBCL. Subsequently, ChIP-qPCR assay revealed that CHAF1A directly binds to TFEB promoters to activate the expressions. High CHAF1A could enhance the transcriptional activity of TFEB and downstream genes. The SPOP/CHAF1A axis modulates TFEB-dependent transactivation to regulate the lysosomal biogenesis and autophagy. The in vivo models suggested that TFEB inhibition is effective to suppress growth of SPOP-deficient DLBCLs. CONCLUSIONS: CHAF1A is aberrantly elevated in SPOP-deficient DLBCL. The in-depth mechanism understanding of SPOP/CHAF1A/TFEB axis endows novel targets for DLBCL treatment.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Nuclear Proteins , Repressor Proteins , Animals , Autophagy/physiology , Cell Line, Tumor , Chromatin Assembly Factor-1/metabolism , Heterografts , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, SCID , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Ubiquitination
11.
Nat Commun ; 13(1): 2350, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487911

ABSTRACT

Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.


Subject(s)
Chromatin , Histone Chaperones , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Chromosomes/metabolism , Histone Chaperones/metabolism , Histones/metabolism
12.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216276

ABSTRACT

The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.


Subject(s)
Chromatin Assembly Factor-1/metabolism , Chromatin/metabolism , Protein Domains/physiology , Protein Kinases/metabolism , Protein Subunits/metabolism , Amino Acid Sequence , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Humans , Protein Binding/physiology , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism
13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074917

ABSTRACT

Early events of the retroviral life cycle are the targets of many host restriction factors that have evolved to prevent establishment of infection. Incoming retroviral DNAs are transcriptionally silenced before integration in most cell types, and efficient viral gene expression occurs only after formation of the provirus. The molecular machinery for silencing unintegrated retroviral DNAs of HIV-1 remains poorly characterized. Here, we identified the histone chaperones CHAF1A and CHAF1B as essential factors for silencing of unintegrated HIV-1 DNAs. Using RNAi-mediated knockdown (KD) of multiple histone chaperones, we found that KD of CHAF1A or CHAF1B resulted in a pronounced increase in expression of incoming viral DNAs. The function of these two proteins in silencing was independent of their interaction partner RBBP4. Viral DNA levels accumulated to significantly higher levels in CHAF1A KD cells over controls, suggesting enhanced stabilization of actively transcribed DNAs. Chromatin immunoprecipitation assays revealed no major changes in histone loading onto viral DNAs in the absence of CHAF1A, but levels of the H3K9 trimethylation silencing mark were reduced. KD of the H3K9me3-binding protein HP1γ accelerated the expression of unintegrated HIV-1 DNAs. While CHAF1A was critical for silencing HIV-1 DNAs, it showed no role in silencing of unintegrated retroviral DNAs of mouse leukemia virus. Our study identifies CHAF1A and CHAF1B as factors involved specifically in silencing of HIV-1 DNAs early in infection. The results suggest that these factors act by noncanonical pathways, distinct from their histone loading activities, to mediate silencing of newly synthesized HIV-1 DNAs.


Subject(s)
Chromatin Assembly Factor-1/metabolism , DNA, Viral , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Proviruses/genetics , Virus Integration , Gene Expression Regulation, Viral , Gene Silencing , HIV-1/genetics , Histones/metabolism , Host-Pathogen Interactions , Humans , Transcription, Genetic , Tripartite Motif-Containing Protein 28/metabolism
14.
Int J Biol Macromol ; 195: 547-557, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34906611

ABSTRACT

Chromatin assembly factor-1, subunit b (CHAF1b), the p60 subunit of the chromatin-assembly factor-1 (CAF-1) complex, is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to CHAF1b, its function in preimplantation embryos remains obscure. In this study, we showed that CHAF1b knockdown did not affect the blastocyst rate, but resulted in a low blastocyst hatching rate, outgrowth failure in vitro, and embryonic lethality after implantation in vivo. Notably, CHAF1b depletion increased apoptosis and caused down-regulated expression of key regulators of cell fate specification, including Oct4, Cdx2, Sox2, and Nanog. Further analysis revealed that CHAF1b mediated the replacement of H3.3 with H3.1/3.2, which was associated with decreased repressive histone marks (H3K9me2/3 and H3K27me2/3) and increased active histone marks (H3K4me2/3). Moreover, RNA-sequencing analysis revealed that CHAF1b depletion resulted in the differential expression of 1508 genes, including epigenetic modifications genes, multiple lineage-specific genes, and several genes encoding apoptosis proteins. In addition, assay for transposase-accessible chromatin-sequencing analysis demonstrated that silencing CHAF1b altered the chromatin accessibility of lineage-specific genes and epigenetic modifications genes. Taken together, these data imply that CHAF1b plays significant roles in preimplantation embryos, probably by regulating epigenetic modifications and lineage specification.


Subject(s)
Blastocyst/metabolism , Chromatin Assembly Factor-1/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Animals , Binding Sites , Cell Differentiation , Cell Lineage/genetics , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly Factor-1/metabolism , Epigenesis, Genetic , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Knockdown Techniques , Histones/metabolism , Mice , Protein Binding
15.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 10.
Article in English | MEDLINE | ID: mdl-34365742

ABSTRACT

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.


Subject(s)
Carcinogenesis/metabolism , Cell Differentiation/genetics , Chromatin Assembly Factor-1/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin Assembly Factor-1/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Nude , Neuroblastoma/genetics , Zebrafish
16.
EMBO J ; 40(10): e106632, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33739466

ABSTRACT

HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.


Subject(s)
HIV-1/metabolism , CD4-Positive T-Lymphocytes/metabolism , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , HEK293 Cells , Humans , Promoter Regions, Genetic/genetics
17.
Acta Biochim Pol ; 68(2): 193-199, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33740340

ABSTRACT

The anticancer effect of miR-1179 has been extensively studied in many tumors. The mechanism of miR-1179 action in cervical cancer, however, remains largely unknown. In the present study, miR-1179 was downregulated in both cervical cancer cell lines and cancer tissues. In addition, miR-1179 mimic suppressed cancer cells invasion and epithelial-mesenchymal transition (EMT) in cervical cancer SiHa and Caski cells. We found that chromatin assembly factor 1 subunit A (CHAF1A) might be a direct target of miR-1179 and could be regulated by miR-1179. Furthermore, CHAF1A shRNA suppressed the cervical cancer cells invasion and the expression of EMT-promoted proteins. Reversely, CHAF1A overexpression not only promoted cervical cancer cells invasion but also upregulated the level of Zinc finger E-box binding protein 1 (ZEB1), an EMT-related protein. The induction of ZEB1 could be counteracted by miR-1179 overexpression. It was observed that in cervical cancer patients' tissues, miR-1179 was downregulated while the pathway of CHAF1A/ZEB1 was upregulated. In summary, our research indicated that the miR-1179 might regulate CHAF1A/ZEB1 axis and inhibit the invasion of cervical cancer cells.


Subject(s)
MicroRNAs/metabolism , Uterine Cervical Neoplasms/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Cell Line, Tumor , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques/methods , Humans , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Uterine Cervical Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/metabolism
18.
Biosci Rep ; 41(3)2021 03 26.
Article in English | MEDLINE | ID: mdl-33616161

ABSTRACT

PURPOSE: Cervical cancer (CC) is one of the most general gynecological malignancies and is associated with high morbidity and mortality. We aimed to select candidate genes related to the diagnosis and prognosis of CC. METHODS: The mRNA expression profile datasets were downloaded. We also downloaded RNA-sequencing gene expression data and related clinical materials from TCGA, which included 307 CC samples and 3 normal samples. Differentially expressed genes (DEGs) were obtained by R software. GO function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed in the DAVID dataset. Using machine learning, the optimal diagnostic mRNA biomarkers for CC were identified. We used qRT-PCR and Human Protein Atlas (HPA) database to exhibit the differences in gene and protein levels of candidate genes. RESULTS: A total of 313 DEGs were screened from the microarray expression profile datasets. DNA methyltransferase 1 (DNMT1), Chromatin Assembly Factor 1, subunit B (CHAF1B), Chromatin Assembly Factor 1, subunit A (CHAF1A), MCM2, CDKN2A were identified as optimal diagnostic mRNA biomarkers for CC. Additionally, the GEPIA database showed that the DNMT1, CHAF1B, CHAF1A, MCM2 and CDKN2A were associated with the poor survival of CC patients. HPA database and qRT-PCR confirmed that these genes were highly expressed in CC tissues. CONCLUSION: The present study identified five DEmRNAs, including DNMT1, CHAF1B, CHAF1A, MCM2 and Kinetochore-related protein 1 (KNTC1), as potential diagnostic and prognostic biomarkers of CC.


Subject(s)
Biomarkers, Tumor/genetics , Transcriptome , Uterine Cervical Neoplasms/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Computational Biology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Female , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
Biomed Pharmacother ; 134: 111160, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33370630

ABSTRACT

Natural products are an important source of new drugs. Some of them may be used directly in clinical settings without further structural modification. One of these directly used natural products is puerarin (Pue), which protects cardiomyocytes against oxidative stress and high glucose stress. Although Pue has been used in clinics for many years, its direct binding targets involved in the protection of cardiomyocytes are not yet fully understood. Here, we reported that Pue could prevent cardiomyocytes from apoptosis under H2O2 and high glucose conditions. Based on affinity-based protein profiling methods, we synthesized an active Pue probe (Pue-DA) with a photosensitive crosslinker to initiate a biological orthogonal reaction. Because of the steric hindrance of Pue-DA, two conformational isomers (syn and anti) unequivocally existed in the probe, and these transformed into one isomer when the probe was heated at 60 °C. We confirmed that the alkylation was on the 7-position phenol group of Pue. Mass spectroscopy revealed that Pue-DA can bind with three proteins, namely CHAF1B, UBE2C, and UBE2T. Finally, cellular thermal shift assay showed that Pue has the ability to stabilize CHAF1B stabilization. The knock-down of CHAF1B reduced the protective effect of Pue on cardiomyocytes. In conclusion, Pue protects cardiomyocytes from apoptosis through binding with CHAF1B.


Subject(s)
Antioxidants/pharmacology , Chromatin Assembly Factor-1/metabolism , Isoflavones/pharmacology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Proteomics , Apoptosis/drug effects , Cell Line , Chromatin Assembly Factor-1/genetics , Glucose/toxicity , Humans , Hydrogen Peroxide/toxicity , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Ubiquitin-Conjugating Enzymes/metabolism
20.
J BUON ; 25(5): 2510-2514, 2020.
Article in English | MEDLINE | ID: mdl-33277876

ABSTRACT

PURPOSE: Retinoblastoma causes significant human mortality especially in children. Although retinoblastoma may be treated if detected at early stage, however, it becomes destructive at advanced stages. The treatment involves surgery and chemotherapy. However, the chemotherapeutic agents have severe adverse effects. Therefore, development of viable drugs and identification of novel molecular therapeutic targets may enable efficient management of retinoblastoma. This study was designed to examine the expression profile of Chromatin Assembly Factor-1 (CHAF1A) and explore its therapeutic implications in retinoblastoma. METHODS: The expression of CHAF1A was determined by qRT-PCR. MTT assay was used for the determination of the cell viability. Apoptosis was detected by acridine orange (AO)/ethidium bromide (EB) and annexin V/propidium iodide (PI) assay. Cell cycle analysis was determined by flow cytometery. Protein expression was determined by western blot analysis. RESULTS: The results showed that CHAF1A is significantly upregulated in human retinoblastoma, with 7.3 folds upregulation in retinoblastoma cells relative to normal cells. Knockdown of CHAF1A resulted in significant decline in the viability of the RB355 retinoblastoma cells. The flow cytometric analysis showed that knockdown of CHAF1A caused arrest of the RB355 cells at G0/G1 phase of the cell cycle. This was also linked with significant downregulation of cyclin D1 and cyclin E1. The AO/EB staining assay showed that CHAF1A knockdown promotes apoptosis which is associated with downregulation of Bcl-2 and upregulation of Bax. CONCLUSION: Taken together, these results suggest that CHAF1A is upregulated in retinoblastoma and regulates its proliferation and apoptosis. As such CHAF1A may act as biomarker as well as therapeutic target for the management of retinoblastoma.


Subject(s)
Retinoblastoma/genetics , Apoptosis , Cell Proliferation , Chromatin Assembly Factor-1/metabolism , Humans , Retinoblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...