Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.266
Filter
1.
Mikrochim Acta ; 191(6): 325, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38739279

ABSTRACT

Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.


Subject(s)
Chromatography, Affinity , Glial Fibrillary Acidic Protein , Limit of Detection , Glial Fibrillary Acidic Protein/blood , Humans , Chromatography, Affinity/methods , Reagent Strips , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnosis , Biomarkers/blood
2.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709728

ABSTRACT

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Subject(s)
Colorimetry , Food Contamination , Fungicides, Industrial , Pesticide Residues , Fungicides, Industrial/analysis , Food Contamination/analysis , Colorimetry/methods , Pesticide Residues/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Fluorescence , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Limit of Detection , Flour/analysis
3.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736384

ABSTRACT

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Subject(s)
Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Immunoglobulin G/chemistry , Polymethacrylic Acids/chemistry , Sepharose/chemistry
4.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738876

ABSTRACT

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Subject(s)
Chromatography, Affinity , Chromatography, Affinity/methods , Flap Endonucleases/chemistry , Flap Endonucleases/isolation & purification , Flap Endonucleases/metabolism , Chromatography, Liquid/methods , Histidine/chemistry , Escherichia coli/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Methods Mol Biol ; 2799: 13-27, 2024.
Article in English | MEDLINE | ID: mdl-38727900

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.


Subject(s)
Baculoviridae , Chromatography, Affinity , Chromatography, Gel , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/isolation & purification , Receptors, N-Methyl-D-Aspartate/chemistry , Animals , Baculoviridae/genetics , Chromatography, Affinity/methods , Humans , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression , Sf9 Cells
6.
J Chromatogr A ; 1726: 464968, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723492

ABSTRACT

The steric mass-action (SMA) model has been widely reported to describe the adsorption of proteins in different types of chromatographic adsorbents. Here in the present work, a pore-blocking steric mass-action model (PB-SMA) was developed for the adsorption of large-size bioparticles, which usually exhibit the unique pore-blocking characteristic on the adsorbent and thus lead to a fraction of ligands in the deep channels physically inaccessible to bioparticles adsorption, instead of being shielded due to steric hindrance by adsorbed bioparticles. This unique phenomenon was taken into account by introducing an additional parameter, Lin, which is defined as the inaccessible ligand densities in the physically blocked pore area, into the PB-SMA model. This fraction of ligand densities (Lin) will be deducted from the total ligand (Lt) for model development, thus the steric factor (σ) in the proposed PB-SMA will reflect the steric shielding effect on binding sites by adsorbed bioparticles more accurately than the conventional SMA model, which assumes that all ligands on the adsorbent have the same accessibility to the bioparticles. Based on a series of model assumptions, a PB-SMA model was firstly developed for inactivated foot-and-mouth disease virus (iFMDV) adsorption on immobilized metal affinity chromatography (IMAC) adsorbents. Model parameters for static adsorption including equilibrium constant (K), characteristic number of binding sites (n), and steric factor (σ) were determined. Compared with those derived from the conventional SMA model, the σ values derived from the PB-SMA model were dozens of times smaller and much closer to the theoretical maximum number of ligands shielded by a single adsorbed iFMDV, indicating the modified model was more accurate for bioparticles adsorption. The applicability of the PB-SMA model was further validated by the adsorption of hepatitis B surface antigen virus-like particles (HBsAg VLPs) on an ion exchange adsorbent with reasonably improved accuracy. Thus, it is considered that the PB-SMA model would be more accurate in describing the adsorption of bioparticles on different types of chromatographic adsorbents.


Subject(s)
Chromatography, Affinity , Adsorption , Chromatography, Affinity/methods , Foot-and-Mouth Disease Virus/chemistry , Ligands , Porosity , Models, Chemical
7.
J Agric Food Chem ; 72(20): 11794-11803, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739902

ABSTRACT

High-performance liquid chromatography with ultraviolet detection (HPLC-UV) is a common analysis technique due to its high versatility and simple operation. In the present study, HPLC-UV detection was integrated with immunoaffinity cleanup (IAC) of the sample extracts. The matrix effect was greatly reduced, and the limit of detection was as low as 1 ng/g of free abscisic acid (ABA) in fresh plant tissues. A monoclonal antibody 3F1 (mAb 3F1) was developed to specifically recognize free ABA but not ABA analogues. The mAb 3F1-immobilized immunoaffinity column exhibited a capacity of 850 ng/mL and an elution efficiency of 88.8-105% for standards. The extraction recoveries of the column for ABA ranged from 80.4 to 108.9%. ABA content was detected in various plant samples with IAC-HPLC-UV. The results were verified with ultraperformance liquid chromatography-electrospray tandem mass spectrometry. IAC-HPLC-UV can be a sensitive and cost-efficient method for plant hormone analysis.


Subject(s)
Abscisic Acid , Chromatography, Affinity , Plant Growth Regulators , Abscisic Acid/analysis , Chromatography, High Pressure Liquid/methods , Plant Growth Regulators/analysis , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Antibodies, Monoclonal/chemistry , Tandem Mass Spectrometry/methods
8.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729049

ABSTRACT

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Subject(s)
Biosensing Techniques , Edible Grain , Food Contamination , Limit of Detection , Microspheres , Mycotoxins , Zearalenone , Mycotoxins/analysis , Edible Grain/chemistry , Edible Grain/microbiology , Biosensing Techniques/methods , Food Contamination/analysis , Zearalenone/analysis , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Aflatoxin B1/analysis , Aflatoxin B1/isolation & purification , Trichothecenes/analysis , Reagent Strips/analysis , Immunoassay/methods , Immunoassay/instrumentation , Fluorescent Dyes/chemistry
9.
Mikrochim Acta ; 191(6): 311, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38717575

ABSTRACT

Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.


Subject(s)
Chromatography, Affinity , Renal Insufficiency, Chronic , Retinol-Binding Proteins, Plasma , Humans , Retinol-Binding Proteins, Plasma/urine , Chromatography, Affinity/methods , Renal Insufficiency, Chronic/urine , Renal Insufficiency, Chronic/diagnosis , Limit of Detection , Reagent Strips , Biomarkers/urine , Immunoassay/methods
10.
Anal Chim Acta ; 1306: 342513, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692783

ABSTRACT

Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.


Subject(s)
Chromatography, Affinity , Proteomics , Chromatography, Affinity/methods , Proteomics/methods , Humans , Proteins/isolation & purification , Proteins/analysis , Proteins/chemistry
11.
Sci Rep ; 14(1): 8714, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622266

ABSTRACT

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Subject(s)
Chromatography , Staphylococcal Protein A , Staphylococcal Protein A/chemistry , Ligands , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Antibodies, Monoclonal/metabolism , Immunoglobulin G/metabolism , Plant Proteins/metabolism , Chromatography, Affinity/methods
12.
Article in English | MEDLINE | ID: mdl-38663075

ABSTRACT

In this Part IV of the article series dealing with the functionalization of the precursor carboxy silica with various chromatographic ligands, immuno affinity (IA) columns were prepared with immobilized anti-apolipoprotein B (AAP B) and anti-haptoglobin (AHP) antibodies for use in immuno affinity chromatography (IAC) in the aim of selectivily capturing their corresponding antigens from healthy and cancer human sera. Diseased human serum with adenocarcinoma cancer was selected as a typical diseased biological fluid. Besides preferentially capturing their corresponding antigens, the AAP B column captured from disease-free and cancer sera, 34 proteins and 33 proteins, respectively, while the AHP column enriched 38 and 47 proteins, respectively. This nonspecific binding can be attributed to the many proteins human serum have, which could mediate protein-protein interactions thus leading to the so-called "sponge effect". This kind of behavior can be exploited positively in the determination of differentially expressed proteins (DEPs) for diseased serum with respect to healthy serum and in turn allow the identification of an array of potential biomarkers for cancer. In fact, For AHP column, 13 upregulated and 22 downregulated proteins were identified whereas for AAP B column the numbers were 23 and 10, respectively. The DEPs identified with both columns match those reported in the literature for other types of cancers. The different expression of proteins in each IAC column can be related to the variability of protein-protein interactions. In addition, an array of a few biomarkers is more indicative of a certain disease than a single biomarker.


Subject(s)
Antibodies, Immobilized , Chromatography, Affinity , Silicon Dioxide , Humans , Chromatography, Affinity/methods , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Silicon Dioxide/chemistry , Ligands , Chromatography, High Pressure Liquid/methods , Blood Proteins/chemistry , Biomarkers, Tumor/blood
13.
Article in English | MEDLINE | ID: mdl-38669775

ABSTRACT

Filamentous hemagglutinin (FHA) is a critical adhesion molecule produced by Bordetella pertussis (BP), the causative agent of highly contagious respiratory infection known as whooping cough. FHA plays a pivotal role in the pathogenesis of whooping cough and is a key component of acellular pertussis vaccines (aPV). However, conventional purification methods for FHA often involve labor-intensive processes and result in low purity and recovery rates. Therefore, this study explores the use of monoclonal and polyclonal antibodies as specific tools to achieve highly pure and efficient FHA purification. To generate FHA-specific antibodies, polyclonal antibodies were produced by immunizing sheep and monoclonal antibodies (MAbs) were generated by immunizing mice with recombinant and native FHA. The MAbs were selected based on affinity, isotypes, and specificity, which were assessed through ELISA and Western blot assays. Two immunoaffinity columns, one monoclonal and one polyclonal, were prepared for FHA antigen purification. The purity and recovery rates of these purifications were determined using ELISA, SDS-PAGE, and immunoblotting. Furthermore, the MAbs were employed to develop an ELISA assay for FHA antigen concentration determination. The study's findings revealed that immunoaffinity column-based purification of FHA resulted in a highly pure antigen with recovery rates of approximately 57% ± 6.5% and 59% ± 7.9% for monoclonal and polyclonal columns, respectively. Additionally, the developed ELISA exhibited appropriate reactivity for determining FHA antigen concentration. This research demonstrates that affinity chromatography is a viable and advantageous method for purifying FHA, offering superior purity and recovery rates compared to traditional techniques. This approach provides a practical alternative for FHA purification in the context of aPV development.


Subject(s)
Antibodies, Monoclonal , Bordetella pertussis , Chromatography, Affinity , Virulence Factors, Bordetella , Chromatography, Affinity/methods , Animals , Bordetella pertussis/immunology , Bordetella pertussis/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/immunology , Mice , Virulence Factors, Bordetella/immunology , Virulence Factors, Bordetella/chemistry , Adhesins, Bacterial/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/isolation & purification , Mice, Inbred BALB C , Sheep , Antibodies, Bacterial/immunology , Antibodies, Bacterial/chemistry , Enzyme-Linked Immunosorbent Assay/methods
14.
J Pharm Biomed Anal ; 245: 116146, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38631069

ABSTRACT

Thymidine kinase 1 (TK1) is a marker of cell proliferation that can be used for early screening, treatment monitoring, and evaluating the prognosis of patients with tumors. The main purpose of this study was to develop clinically applicable TK1 antibodies, establish an appropriate detection method, and provide material and technical support for the research and clinical application for different types of tumors. Experimental mice were immunized with the C-terminal 31 peptide of human TK1 to screen monoclonal cell lines capable of stably secreting specific antibodies. Monoclonal antibodies were then prepared, purified and screened for optimal pairing following the identification of purity and isotype. Finally, based on the principles adopted by the double-antibody sandwich detection method, we constructed a lateral flow immunochromatographic assay (LFIA) to quantify the concentration of TK1 in serum samples when using a gold nanoparticle-labeled anti-TK1 monoclonal antibody as a probe. The limit of detection for TK1 in serum was 0.31 pmol/L with a detection range of 0.31-50 pmol/L. The spiked recoveries ranged from 97.7% to 109.0% with an analytical precision of 5.7-8.2%; there was no cross-reactivity with common proteins in the serum. The established LFIA also exhibited good consistency with commercially available chemiluminescent immunoassay kits for the detection of clinical samples. The LFIA developed in this study has the advantages of high sensitivity, accuracy, reproducibility and strong specificity, and provides a new technical tool for the quantitative detection of TK1.


Subject(s)
Antibodies, Monoclonal , Chromatography, Affinity , Gold , Metal Nanoparticles , Thymidine Kinase , Thymidine Kinase/blood , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Animals , Antibodies, Monoclonal/immunology , Mice , Chromatography, Affinity/methods , Mice, Inbred BALB C , Limit of Detection , Immunoassay/methods , Female , Reproducibility of Results
15.
J Immunol Methods ; 529: 113669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582259

ABSTRACT

Because of their superior properties for certain biological applications small antibody derivatives like fragment of antigen binding (Fab) have found widespread use in basic research and as therapeutics. However, generation of Fab-fragments is still a rather complex matter, reflected by the fact that a variety of methods and purification techniques are necessary for the production of all the different classes of Fab-fragments (kappa/lambda light chains, type of species). Here we demonstrate that Fab-fragments derived from six different antibodies of human or murine origin produced by transient expression in HEK cells can be purified in a single step to a high degree of purity by standard protein G affinity chromatography. This is most likely due to alternative contact sites for protein G located in the CH1 domain of the Fab heavy chain. Our data demonstrate that protein G affinity chromatography as for whole antibodies is a robust method for the purification of tag-less Fab-fragments independent of species, significantly simplifying the process of Fab-fragment purification.


Subject(s)
Chromatography, Affinity , Immunoglobulin Fab Fragments , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/chemistry , Chromatography, Affinity/methods , Humans , Animals , Mice , HEK293 Cells , Bacterial Proteins/isolation & purification , Bacterial Proteins/immunology , Bacterial Proteins/chemistry
16.
J Chromatogr A ; 1722: 464890, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38598892

ABSTRACT

The rapidly growing market of monoclonal antibodies (mAbs) within the biopharmaceutical industry has incentivised numerous works on the design of more efficient production processes. Protein A affinity chromatography is regarded as one of the best processes for the capture of mAbs. Although the screening of Protein A resins has been previously examined, process flexibility has not been considered to date. Examining performance alongside flexibility is crucial for the design of processes that can handle disturbances arising from the feed stream. In this work, we present a model-based approach for the identification of design spaces, enhanced by machine learning. We demonstrate its capabilities on the design of a Protein A chromatography unit, screening five industrially relevant resins. The computational results favourably compare to experimental data and a resin performance comparison is presented. An improvement on the computational time by a factor of 300,000 is achieved using the machine learning aided methodology. This allowed for the identification of 5,120 different design spaces in only 19 h.


Subject(s)
Antibodies, Monoclonal , Chromatography, Affinity , Computer-Aided Design , Machine Learning , Staphylococcal Protein A , Chromatography, Affinity/methods , Antibodies, Monoclonal/chemistry , Staphylococcal Protein A/chemistry
17.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608368

ABSTRACT

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Subject(s)
Immunoglobulin G , Particle Size , Adsorption , Ligands , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Chromatography, Affinity/methods , Biomimetic Materials/chemistry , Animals , Biomimetics/methods , Cricetulus , CHO Cells
18.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626540

ABSTRACT

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Immunoglobulin G , Printing, Three-Dimensional , Staphylococcal Protein A , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Staphylococcal Protein A/chemistry , Immunoglobulin G/isolation & purification , Immunoglobulin G/chemistry , CHO Cells , Chromatography, Affinity/methods , Animals , Chromatography, Ion Exchange/methods , Ink
19.
J Chromatogr A ; 1723: 464912, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38643740

ABSTRACT

Since the outbreak of coronavirus disease 2019, the global demand for vaccines has increased rapidly to prevent infection and protect high-risk populations. However, identifying viral mutations poses an additional challenge for chromatographic purification of vaccines and subunit vaccines. In this study, a new affinity peptide model, X1VX2GLNX3WX4RYSK, was established, and a library of 612 peptides was generated for ligand screening. Based on a multistep strategy of ligand screening, 18 candidate peptides were obtained. The top ranking peptide, LP14 (YVYGLNIWLRYSK), and two other representative peptides, LP02 and LP06, with lower rankings were compared via molecular dynamics simulation. The results revealed that peptide binding to the receptor binding domain (RBD) was driven by hydrophobic interactions and the key residues involved in the binding were identified. Surface plasmon resonance analysis further confirmed that LP14 had the highest affinity for the wild RBD (Kd=0.520 µmol/L), and viral mutation had little influence on the affinity of LP14, demonstrating its great potential as a broad-spectrum ligand for RBD purification. Finally, chromatographic performance of LP14-coupled gel-packed column verified that both wild and omicron RBDs could be purified and were eluted by 0.1 mol/L Gly-HCl buffer (pH 3.0). This research identified a broad-spectrum peptide for RBD purification based on rational design and demonstrated its potential application in the purification of RBDs from complex feedstock.


Subject(s)
Peptides , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Ligands , Peptides/chemistry , Peptides/isolation & purification , Molecular Dynamics Simulation , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Protein Binding , COVID-19/virology , Chromatography, Affinity/methods , Surface Plasmon Resonance
20.
J Chromatogr A ; 1724: 464908, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38669943

ABSTRACT

Affinity tags are frequently engineered into recombinant proteins to facilitate purification. Although this technique is powerful, removal of the tag is desired because the tag can interfere with biological activity and can potentially increase the immunogenicity of therapeutic proteins. Tag removal is complex, as it requires adding expensive protease enzymes. To overcome this limitation, split intein based affinity purification systems have been developed in which a CC-intein tag is engineered into a protein of interest for binding to a NC-intein peptide ligand fixed to a chromatographic support. Tag removal in these systems is achieved by creating an active intein-complex during protein capture, which triggers a precise self-cleavage reaction. In this work, we show applications of a new split intein system, Cytiva™ ProteinSelect™. One advantage of the new system is that the NC-intein ligand can be robustly produced and conjugated to large volumes of resin for production of gram scale proteins. SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager in this work were successfully captured on the affinity resin and scaled 10-fold. Another advantage of this system is the ability to sanitize the resin with sodium hydroxide without loosing the 10-20 g/L binding capacity. Binding studies with IL-1b and IFNAR-1 ECD showed that the resin can be regenerated and sanitized for up to 50 cycles without loosing binding capacity. Additionally, after several cycles of sanitization, binding capacity was retained for the SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager. As with other split intein systems, optimization was needed to achieve ideal expression and recovery. The N-terminal amino acid sequence of the protein of interest required engineering to enable the cleavage reaction. Additionally, ensuring the stability of the CC-intein tag was important to prevent premature cleavage or truncation. Controlling the hold time of the expression product and the prevention of protease activity prior to purification was needed. These results demonstrate the feasibility of the Cytiva™ ProteinSelect™ system to be used in academic and industrial research and development laboratories for the purification of novel proteins expressed in either bacterial or mammalian systems.


Subject(s)
Chromatography, Affinity , Inteins , Chromatography, Affinity/methods , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...