Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64.730
Filter
1.
Food Res Int ; 186: 114380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729734

ABSTRACT

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Subject(s)
Hot Temperature , Pea Proteins , Pisum sativum , Scattering, Small Angle , X-Ray Diffraction , Hydrogen-Ion Concentration , Pisum sativum/chemistry , Pea Proteins/chemistry , Albumins/chemistry , Chromatography, Gel
2.
Methods Mol Biol ; 2799: 13-27, 2024.
Article in English | MEDLINE | ID: mdl-38727900

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.


Subject(s)
Baculoviridae , Chromatography, Affinity , Chromatography, Gel , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/isolation & purification , Receptors, N-Methyl-D-Aspartate/chemistry , Animals , Baculoviridae/genetics , Chromatography, Affinity/methods , Humans , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression , Sf9 Cells
3.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612751

ABSTRACT

The binding activity of various trastuzumab biosimilars versus the branded trastuzumab towards the glycosylated extracellular domain of the human epidermal growth factor receptor 2 (HER2) target in the presence of pertuzumab was investigated. We employed size exclusion chromatography with tetra-detection methodology to simultaneously determine absolute molecular weight, concentration, molecular size, and intrinsic viscosity. All trastuzumab molecules in solution exhibit analogous behavior in their binary action towards HER2 regardless of the order of addition of trastuzumab/pertuzumab. This analogous behavior of all trastuzumab molecules, including biosimilars, highlights the robustness and consistency of their binding activity towards HER2. Furthermore, the addition of HER2 to a mixture of trastuzumab and pertuzumab leads to increased formation of high-order HER2 complexes, up to concentrations of one order of magnitude higher than in the case of sequential addition. The observed increase suggests a potential synergistic effect between these antibodies, which could enhance their therapeutic efficacy in HER2-positive cancers. These findings underscore the importance of understanding the complex interplay between therapeutic antibodies and their target antigens, providing valuable insights for the development of more effective treatment strategies.


Subject(s)
Biosimilar Pharmaceuticals , Neoplasms , Humans , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Biosimilar Pharmaceuticals/pharmacology , Biosimilar Pharmaceuticals/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Chromatography, Gel
4.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38634234

ABSTRACT

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Subject(s)
Cellulose , Cellulose/chemistry , Cotton Fiber , Chromatography, Gel/methods
5.
Methods Mol Biol ; 2788: 49-66, 2024.
Article in English | MEDLINE | ID: mdl-38656508

ABSTRACT

Calibrated size exclusion chromatography (SEC) is a useful tool for the analysis of molecular dimensions of polysaccharides. The calibration takes place with a set of narrow distributed dextran standards and peak position technique. Adapted columns systems and dissolving processes enable for the adequate separation of carbohydrate polymers. Plant-extracted fructan (a homopolymer with low molar mass and excellent water solubility) and mucilage (differently structured, high molar mass heteropolysaccarides that include existing supramolecular structures, and require a long dissolving time) are presented as examples of the versatility of this technique. Since narrow standards similar to the samples (chemically and structurally) are often unavailable, it must be noted that the obtained molar mass values and distributions by this method are only apparent (relative) values, expressed as dextran equivalents.


Subject(s)
Chromatography, Gel , Molecular Weight , Polysaccharides , Chromatography, Gel/methods , Polysaccharides/chemistry , Polysaccharides/analysis , Dextrans/chemistry , Fructans/chemistry , Fructans/analysis , Calibration
6.
Arch Microbiol ; 206(5): 230, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649511

ABSTRACT

During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ßß'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σA) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor.


Subject(s)
Bacterial Proteins , DNA-Directed RNA Polymerases , Mycobacterium tuberculosis , Protein Multimerization , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/chemistry , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Holoenzymes/chemistry , Holoenzymes/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Microscopy, Electron, Transmission , Sigma Factor/metabolism , Sigma Factor/chemistry , Sigma Factor/genetics , Chromatography, Gel
7.
J Chromatogr A ; 1722: 464862, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581978

ABSTRACT

The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.


Subject(s)
Chromatography, Gel , Liposomes , Nanoparticles , Chromatography, Gel/methods , Nanoparticles/chemistry , Biological Products/analysis , Biological Products/chemistry , Nucleic Acids/analysis , Genetic Vectors , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/isolation & purification , Proteins/analysis , Proteins/chemistry , Humans , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods
8.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564658

ABSTRACT

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Subject(s)
Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
9.
Anal Chim Acta ; 1304: 342543, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637052

ABSTRACT

BACKGROUND: The non-enzymatic glycation of proteins and their advanced glycation end products (AGEs) are associated with protein transformations such as in the development of diseases and biopharmaceutical storage. The characterization of heavily glycated proteins at the intact level is of high interest as it allows to describe co-occurring protein modifications. However, the high heterogeneity of glycated protein makes this process challenging, and novel methods are required to accomplish this. RESULTS: In this study, we investigated two novel LC-HRMS methods to study glycated reference proteins at the intact protein level: low-flow hydrophilic-interaction liquid chromatography (HILIC) and native size-exclusion chromatography (SEC). Model proteins were exposed to conditions that favored extensive glycation and the formation of AGEs. After glycation, complicated MS spectra were observed, along with a sharply reduced signal response, possibly due to protein denaturation and the formation of aggregates. When using HILIC-MS, the glycated forms of the proteins could be resolved based on the number of reducing monosaccharides. Moreover, some positional glycated isomers were separated. The SEC-MS method under non-denaturing conditions provided insights into glycated aggregates but offered only a limited separation of glycated species based on molar mass. Overall, more than 25 different types of species were observed in both methods, differing in molar mass by 14-162 Da. 19 of these species have not been previously reported. SIGNIFICANCE: The proposed strategies show great potential to characterize highly glycated intact proteins from native and denaturing perspectives and provide new opportunities for fast clinical diagnoses and investigating glycation-related diseases.


Subject(s)
Protein Processing, Post-Translational , Proteins , Mass Spectrometry/methods , Chromatography, Liquid , Chromatography, Gel
10.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651549

ABSTRACT

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Subject(s)
Exosomes , Nanoparticles , Plants , Nanoparticles/chemistry , Exosomes/chemistry , Exosomes/metabolism , Plants/chemistry , Plants/metabolism , Particle Size , Ultracentrifugation , Chromatography, Gel
11.
Methods Mol Biol ; 2789: 35-43, 2024.
Article in English | MEDLINE | ID: mdl-38506989

ABSTRACT

Polymeric prodrugs have gained significant popularity as a strategy to enhance the bioavailability and improve the pharmacokinetic properties of active pharmaceutical ingredients (API). Since the amount of the API in a polymeric prodrug product directly impacts both safety and efficacy, there is a pressing need for robust and accurate analytical methods to quantify the API in these formulations. Presently, drug quantification methods include reversed-phase high-performance liquid chromatography (RP-HPLC) and size exclusion chromatography (SEC)-based molecular weight determination. Even though these methods are highly precise and reproducible, a deep understanding of chromatography is required for complex method development, including optimization of the elution profile and selecting the appropriate column and mobile phase. In this chapter, we introduce the automated elemental analyzer for drug quantification, which is simple to use and does not require special method development.


Subject(s)
Bulk Drugs , Drug Compounding , Chromatography, Gel , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
12.
Article in English | MEDLINE | ID: mdl-38430603

ABSTRACT

Molecular size distribution (MSD) of polysaccharides serves as a key parameter that directly correlates to the immunogenicity of vaccine. MSD at meningococcal polysaccharide (A, C, Y and W) or conjugate bulk level is well established under detailed pharmacopeial and WHO guidelines. We report here, a newly developed method for determination of molecular size distribution of pentavalent Meningococcal conjugate vaccine comprising of A, C, Y, W and X (MenFive). Although serogroup specific molecular size could not be estimated here; lot to lot consistency monitoring, molecular aggregates distribution in final lot, are key takeaways of this method. Determination of MSD in pentavalent fill finished product was quite challenging. Various columns/detectors combination, buffers, physico-chemical conditions (temperature, 2-8 °C, 25 °C, 40 °C and 60 °C; flow rate, 0.3 mL to 0.8 mL), liquid/lyophilized formulations, were explored. Polymer-based packed columns were explored for estimation for MSD by aqueous size exclusion chromatography, using combinations of- Shodex OHPAK SB 807 HQ, Shodex OHPAK SB 806 HQ, G6000 PWXL, coupled with guard Shodex OHPAK SB-G-6B. MenFive showed heterogenous distribution of molecules ranging from 200 to 19000 kDa, indicating its complex nature. However, 1000-8000 kDa was dominant range, comprising of ≥ 50 % distribution of molecules, in both liquid as well as lyophilized formulations, with average molecular weight around 6000-6500 kDa. The molar mass distribution after slicing would provide an insight to the conformation of molecules through its presentation as HMW, LMW, aggregates and subsequently, the presence of dominant population of molecules of a particular molecular weight and its total contribution in the sample.


Subject(s)
Meningococcal Vaccines , Meningococcal Vaccines/chemistry , Vaccines, Conjugate/chemistry , Polysaccharides , Chromatography, Gel , Molecular Weight , Antibodies, Bacterial
13.
Anal Chem ; 96(12): 4960-4968, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38436624

ABSTRACT

The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.


Subject(s)
Biological Products , Refractometry , Workflow , Chromatography, Gel , Proteins/analysis
14.
MAbs ; 16(1): 2334783, 2024.
Article in English | MEDLINE | ID: mdl-38536719

ABSTRACT

Aggregates are recognized as one of the most critical product-related impurities in monoclonal antibody (mAb)-based therapeutics due to their negative impact on the stability and safety of the drugs. So far, investigational efforts have primarily focused on understanding the causes and effects of mAb self-aggregation, including both internal and external factors. In this study, we focused on understanding mAb stability in the presence of its monovalent fragment, formed through hinge cleavage and loss of one Fab unit (referred to as "Fab/c"), a commonly observed impurity during manufacturing and stability. The Fab/c fragments were generated using a limited IgdE digestion that specifically cleaves above the IgG1 mAb hinge region, followed by hydrophobic interaction chromatographic (HIC) enrichment. Two IgG1 mAbs containing different levels of Fab/c fragments were incubated under thermally accelerated conditions. A method based on size exclusion chromatography coupled with native mass spectrometry (SEC-UV-native MS) was developed and used to characterize the stability samples and identified the formation of heterogeneous dimers, including intact dimer, mAb-Fab/c dimer, Fab/c-Fab/c dimer, and mAb-Fab dimer. Quantitative analyses on the aggregation kinetics suggested that the impact of Fab/c fragment on the aggregation rate of individual dimer differs between a glycosylated mAb (mAb1) and a non-glycosylated mAb (mAb2). An additional study of deglycosylated mAb1 under 25°C accelerated stability conditions suggests no significant impact of the N-glycan on mAb1 total aggregation rate. This study also highlighted the power of SEC-UV-native MS method in the characterization of mAb samples with regard to separating, identifying, and quantifying mAb aggregates and fragments.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Fab Fragments , Chromatography, Gel , Mass Spectrometry/methods
15.
ACS Sens ; 9(3): 1239-1251, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38436286

ABSTRACT

Extracellular vesicles (EVs) are nanometric lipid vesicles that shuttle cargo between cells. Their analysis could shed light on health and disease conditions, but EVs must first be preserved, extracted, and often preconcentrated. Here we first compare plasma preservation agents, and second, using both plasma and cell supernatant, four EV extraction methods, including (i) ultracentrifugation (UC), (ii) size-exclusion chromatography (SEC), (iii) centrifugal filtration (LoDF), and (iv) accousto-sorting (AcS). We benchmarked them by characterizing the integrity, size distribution, concentration, purity, and expression profiles for nine proteins of EVs, as well as the overall throughput, time-to-result, and cost. We found that the difference between ethylenediaminetetraacetic acid (EDTA) and citrate anticoagulants varies with the extraction method. In our hands, ultracentrifugation produced a high yield of EVs with low contamination; SEC is low-cost, fast, and easy to implement, but the purity of EVs is lower; LoDF and AcS are both compatible with process automation, small volume requirement, and rapid processing times. When using plasma, LoDF was susceptible to clogging and sample contamination, while AcS featured high purity but a lower yield of extraction. Analysis of protein profiles suggests that the extraction methods extract different subpopulations of EVs. Our study highlights the strengths and weaknesses of sample preprocessing methods, and the variability in concentration, purity, and EV expression profiles of the extracted EVs. Preanalytical parameters such as collection or preprocessing protocols must be considered as part of the entire process in order to address EV diversity and their use as clinically actionable indicators.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Chromatography, Gel , Proteins/analysis , Ultracentrifugation/methods
16.
Protein Sci ; 33(4): e4946, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501481

ABSTRACT

The two major challenges in synchrotron size-exclusion chromatography coupled in-line with small-angle x-ray scattering (SEC-SAXS) experiments are the overlapping peaks in the elution profile and the fouling of radiation-damaged materials on the walls of the sample cell. In recent years, many post-experimental analyses techniques have been developed and applied to extract scattering profiles from these problematic SEC-SAXS data. Here, we present three modes of data collection at the BioSAXS Beamline 4-2 of the Stanford Synchrotron Radiation Lightsource (SSRL BL4-2). The first mode, the High-Resolution mode, enables SEC-SAXS data collection with excellent sample separation and virtually no additional peak broadening from the UHPLC UV detector to the x-ray position by taking advantage of the low system dispersion of the UHPLC. The small bed volume of the analytical SEC column minimizes sample dilution in the column and facilitates data collection at higher sample concentrations with excellent sample economy equal to or even less than that of the conventional equilibrium SAXS method. Radiation damage problems during SEC-SAXS data collection are evaded by additional cleaning of the sample cell after buffer data collection and avoidance of unnecessary exposures through the use of the x-ray shutter control options, allowing sample data collection with a clean sample cell. Therefore, accurate background subtraction can be performed at a level equivalent to the conventional equilibrium SAXS method without requiring baseline correction, thereby leading to more reliable downstream structural analysis and quicker access to new science. The two other data collection modes, the High-Throughput mode and the Co-Flow mode, add agility to the planning and execution of experiments to efficiently achieve the user's scientific objectives at the SSRL BL4-2.


Subject(s)
Synchrotrons , X-Ray Diffraction , Scattering, Small Angle , Chromatography, Gel
17.
J Oleo Sci ; 73(4): 445-454, 2024.
Article in English | MEDLINE | ID: mdl-38556279

ABSTRACT

High-performance size exclusion chromatography (HPSEC) equipped with an evaporative light scattering detector (ELSD) was utilized for characterization of palm fatty acid distillate (PFAD) and its esterified products, with a particular focus on lipid profiles and diacylglycerol (DAG) regioisomers. The separation of triacylglycerol (TAG), DAG, monoacylglycerol (MAG), and free fatty acid (FFA) was achieved through a single 100-Å Phenogel column, coupled with a 2-cm C18 guard, utilizing toluene/acetic acid (100:0.25, v/v) as the mobile phase. This separation was based on size sieving principles and the interactions between the hydroxyl group(s) and the Phenogel matrix. The limit of detection (LOD) and limit of quantification (LOQ) for the esterified PFAD products analyzed by this method fell within the range of 4.8-5.5 µg/mL and 14.7-16.7 µg/mL, respectively. Additionally, the same column, paired with a 2-cm silica guard and a mobile phase comprised of toluene/isooctane/acetic acid (35:65:0.15, v/v/v), was used for the characterization of DAG regioisomers within the esterified PFAD. LODs and LOQs for sn-1,3-DAG and sn- 1,2-DAG were determined to be 39.2 and 118.7 µg/mL, and 32.8 and 99.5 µg/mL, respectively. Investigation of esterified PFAD products prepared using 4% H2SO4 at 120°C. After 2 h, the analysis revealed the highest MAG content at 31.85%, accompanied by 51.54% DAG, 2.35% TAG, and a residual 14.27% FFA. Notably, as the reaction time extended, the MAG content decreased, while both DAG and TAG levels exhibited an increasing trend. Further examination of DAG regioisomers during PFAD esterification, under varying catalyst concentrations (2-10%) and reaction temperatures (80-140°C), demonstrated a significant increase in the percentage of sn-1,3-DAG, inversely correlated with the reduction in FFA from 2% H 2 SO 4 and 80°C onwards. Remarkably, the percentage of sn-1,2-DAG remained relatively stable regardless of changes in catalyst concentrations or temperatures, confirming its susceptibility to isomerization into the thermodynamically more stable sn-1,3-DAG form. This study provides valuable insights into the composition and behavior of esterified PFAD products.


Subject(s)
Diglycerides , Fatty Acids, Nonesterified , Esterification , Triglycerides/chemistry , Fatty Acids, Nonesterified/analysis , Fatty Acids , Monoglycerides , Chromatography, Gel , Acetates , Toluene
18.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474026

ABSTRACT

Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.


Subject(s)
Cyanobacteria , Synechocystis , Light , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photosynthesis , Chromatography, Gel , Synechocystis/metabolism
19.
Environ Sci Pollut Res Int ; 31(14): 21869-21880, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38400973

ABSTRACT

An amphiphilic polymeric chelator (APC16-g-SX) grafted with sodium xanthate (SX) groups was successfully prepared for the efficient removal of high concentrations of Cu(II) from wastewater. The ordinary polymeric chelator (PAM-g-SX) based on linear polyacrylamide (PAM) was also prepared for comparative studies. The polymeric chelators were characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state nuclear magnetic resonance (13C-NMR), gel permeation chromatography (GPC), elemental analyzer, and scanning electron microscope (SEM). The chelating performance of these polymeric chelators was investigated, and the mechanism of APC16-g-SX for enhanced removal of Cu(II) from wastewater was proposed based on fluorescence spectroscopy, cryo-scanning electron microscope (Cryo-SEM), energy-dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS) tests. The results show that as the initial Cu(II) concentration in the wastewater increases, APC16-g-SX shows more excellent chelating performance than ordinary PAM-g-SX. For the wastewater with an initial Cu(II) concentration of 200 mg/L, the removal rate of Cu(II) was 99.82% and 89.34% for both 500 mg/L APC16-g-SX and PAM-g-SX, respectively. The pH of the system has a very great influence on the chelating performance of the polymeric chelators, and the increase in pH of the system helps to improve the chelating performance. The results of EDS and XPS tests also show that N, O, and S atoms in APC16-g-SX were involved in the chelation of Cu(II). The mechanism of enhanced removal of Cu(II) by APC16-g-SX can be attributed to the spatial network structure constructed by the self-association of hydrophobic groups that enhances the utilization of chelation sites.


Subject(s)
Chelating Agents , Isopoda , Animals , Wastewater , Spectroscopy, Fourier Transform Infrared , Chromatography, Gel , Polymers
20.
Article in English | MEDLINE | ID: mdl-38335765

ABSTRACT

The complex structure of biopharmaceutical products poses an inherent need for their thorough characterization to ensure product quality, safety, and efficacy. Analytical size exclusion chromatography (SEC) is a widely used technique throughout the development and manufacturing of monoclonal antibodies (mAbs) which quantifies product size variants such as aggregates and fragments. Aggregate and fragment content are critical quality attributes (CQAs) in mAb products, as higher contents of such size heterogeneities impact product quality. Historically, SEC methods have achieved sufficient separation between the high molecular weight (HMW) species and the main product. In contrast, some low molecular weight (LMW) species are often not sufficiently different in molecular mass from the main product, making it difficult to achieve appropriate resolutions between the two species. This lack of resolution makes it difficult to consistently quantify the LMW species in mAb-based therapeutics. The following work uses a design of experiments (DoE) approach to establish a robust analytical SEC procedure by evaluating SEC column types and mobile phase compositions using two mAb products with different physiochemical properties. The resulting optimized procedure using a Waters™ BioResolve column exhibits an improved ability to resolve and quantify mAb size variants, highlighting improvement in the resolution of the LMW species. Additionally, the addition of L-arginine as a mobile phase additive showed to reduce secondary interactions and was beneficial in increasing the recoveries of the HMW species.


Subject(s)
Antibodies, Monoclonal , Biological Products , Antibodies, Monoclonal/chemistry , Chromatography, High Pressure Liquid , Chromatography, Gel , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...