Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.764
Filter
1.
J Environ Manage ; 359: 120973, 2024 May.
Article in English | MEDLINE | ID: mdl-38703644

ABSTRACT

Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.


Subject(s)
Chlorophenols , Chromium , Environmental Restoration and Remediation , Oxidation-Reduction , Soil Pollutants , Soil , Chromium/chemistry , Soil Pollutants/chemistry , Chlorophenols/chemistry , Soil/chemistry , Hydrogen Peroxide/chemistry , Potassium Permanganate/chemistry
2.
Sci Total Environ ; 931: 172973, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705294

ABSTRACT

In this work, corn straw was used as raw material, Hummers method and activation were used to adjust the graphite structure in biochar, and preparing straw based biochar (H-BCS) with ultra-high specific surface area (3441.80 m2/g), highly total pore volume (1.9859 cm3/g), and further enhanced physicochemical properties. Compared with untreated straw biochar (BCS), the specific surface area and total pore volume of H-BCS were increased by 47.24 % and 55.85 %, respectively. H-BCS showed good removal ability in subsequent experiments by using chloramphenicol (CP), hexavalent chromium (Cr6+), and crystal violet (CV) as adsorption models. In addition, the adsorption capacities of H-BCS (CP: 1396.30 mg/g, Cr6+: 218.40 mg/g, and CV: 1246.24 mg/g) are not only higher than most adsorbents, even after undergoing 5 cycles of regeneration, its adsorption capacity remains above 80 %, indicating significant potential for practical applications. In addition, we also speculated and analyzed the conjecture about the "graphite-structure regulation" during the preparation process, and finally discussed the possible mechanism during the adsorption processes. We hope this work could provide a new strategy to solve the restriction of biochar performance by further exploring the regulation of graphite structure in carbon materials.


Subject(s)
Charcoal , Graphite , Water Pollutants, Chemical , Charcoal/chemistry , Graphite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Waste Disposal, Fluid/methods , Chromium/chemistry , Water Pollution/prevention & control , Zea mays/chemistry , Water Purification/methods
3.
J Environ Manage ; 359: 120986, 2024 May.
Article in English | MEDLINE | ID: mdl-38696849

ABSTRACT

The efficient, safe and eco-friendly disposal of the chromium-containing sludge (CCS) has attracted an increasing concern. In this study, Co-processing of CCS was developed via employing sintering and ironmaking combined technology for its harmless disposal and resource utilization. Crystalline phase and valence state transformation of chromium (Cr), technical feasibility assessment, leaching risk, characteristics of sintered products, and pollutant release during CCS co-processing were investigated through a series of laboratory-scale sintering pot experiments and large scale industrial trials. The results showed that the content of Cr(VI) in sintered products first increased then decreased with increasing temperature ranges of 300 °C-800 °C, and reached a maximum of 2189.64 mg/kg at 500 °C. 99.99% of Cr(VI) can be reduced to Cr(III) at above 1000 °C, which was attributed to the transformation of the Cr(VI)-containing crystalline phases (such as, MgCrO4 and CaCrO4) to the (Mg, Fe2+)(Cr, Al, Fe3+)2O4. The industrial trial results showed that adding 0.5 wt‰ CCS to sintering feed did not have adverse effects on the properties of the sintered ore and the plant's operating stability. The tumbler index of sinter was above 78% and the leaching concentrations of TCr (0.069 mg/L) was significantly lower than the Chinese National Standard of 1.0 mg/L (GB5085.3-2007). The TCr contents of sintering dust and blast furnace gas (BFG) scrubbing water were less than 0.19 wt‰ and 0.11 mg/L, respectively, which was far below the regulatory limit (1.5 mg/L, GB13456-2012). The mass balance evaluation results indicated that at least 89.9% of the Cr in the CCS migrated into the molten iron in the blast furnace (BF), which became a useful supplement to the molten iron. This study provided a new perspective strategy for the safe disposal and resource utilization of CCS in iron and steel industry.


Subject(s)
Chromium , Sewage , Chromium/chemistry , Sewage/chemistry , Iron/chemistry
4.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731488

ABSTRACT

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Subject(s)
Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
5.
Bioresour Technol ; 401: 130761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692370

ABSTRACT

Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.


Subject(s)
Biomass , Chromium , Disulfides , Molybdenum , Wastewater , Water Purification , Molybdenum/chemistry , Disulfides/chemistry , Adsorption , Wastewater/chemistry , Water Purification/methods , Chromium/chemistry , Electroplating , Water Pollutants, Chemical , Solutions
6.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696244

ABSTRACT

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Subject(s)
Chromium , Hydroxides , Iron , Hydroxides/chemistry , Iron/chemistry , Chromium/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Humic Substances , Water/chemistry , Chemical Precipitation , Alginates/chemistry
7.
Environ Pollut ; 350: 124014, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642792

ABSTRACT

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.


Subject(s)
Charcoal , Chromium , Environmental Restoration and Remediation , Iron , Minerals , Oxidation-Reduction , Soil Pollutants , Soil , Charcoal/chemistry , Chromium/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Minerals/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods , Electrons
8.
Anal Chim Acta ; 1302: 342509, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38580413

ABSTRACT

Functional nucleic acids (FNAs) have attracted a lot of attention for the rapid detection of metal ions. Cr3+ is one of the major heavy metal ions in natural waters. Due to the slow ligand exchange rate of Cr3+, the FNA-based Cr3+ sensors require long assay times, limiting the on-site applications. In this study, we report that the good's buffers containing amino and polyhydroxy groups greatly increase the ligand exchange rate of Cr3+. Using EDTA as a model coordinate ligand, the Tris buffer (100 mM, pH 7.0) showed the best acceleration effect among the eight buffers. It improved the rate constant ∼20-fold, shorten the half-time 19-fold, and lowered the activation energy ∼70% at 40 °C. The Tris buffer was then applied for sensor based on the Cr3+-binding induced fluorescence quenching of fluorescein (FAM)-labeled and single-stranded DNA (ssDNA), which shortened the assay time from 1 h to 1 min. The Tris buffer also ∼100% enhanced the fluorescence intensity of FAM, achieving the 11.4-fold lower limit of detection (LOD = 6.97 nM, S/N = 3). By the combination use of the Tris buffer and ascorbic acid, the strong interference from Cu2+, Pb2+, and Fe3+ suffered in many previous reported Cr3+ sensors was avoided. The practical application of the sensor for the detection of Cr3+ spiked in the real water samples were demonstrated with high recovery percentages. The Tris buffer could be applied for other metal ions with slow ligand exchange rate (such as V2+, Co3+ and Fe2+) to solve diverse issues such as long assay time and low synthesis yield of metal complexes, without the need of heating treatment.


Subject(s)
Chromium , Tromethamine , Chromium/chemistry , Fluorescence , Ligands , Metals , Ions , DNA, Single-Stranded
9.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615650

ABSTRACT

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Subject(s)
Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
10.
Environ Sci Technol ; 58(16): 7186-7195, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598770

ABSTRACT

Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.


Subject(s)
Chromium , Groundwater , Oxidation-Reduction , Water Pollutants, Chemical , Groundwater/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Ferrous Compounds/chemistry , Benzopyrans/chemistry
11.
Water Res ; 256: 121580, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614029

ABSTRACT

This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to utilize ML algorithms and establish the parameter model, to link factors influencing the adsorption amount of oxyanions with optimized surface complexation constants. However, the results revealed the optimized chromate or arsenate surface complexation constants might fall into local extrema, making it unable to establish a reasonable mapping relationship between adsorption conditions and surface complexation constants by ML algorithms. In contrast, species-informed models were successfully obtained, by incorporating the surface species information calculated from the unoptimized SCM with the adsorption condition as input features. Compared with the optimized SCM, the species-informed model could make more accurate predictions on pH edges, isotherms, and kinetic data for various input conditions (for chromate: root mean square error (RMSE) on test set = 5.90 %; for arsenate: RMSE on test set = 4.84 %). Furthermore, the utilization of the interpretable formula based on Local Interpretable Model-Agnostic Explanations (LIME) enabled the species-informed model to provide surface species information like SCM. The species-informed SCM-ML hybrid modeling method proposed in this study has great practicality and application potential, and is expected to become a new paradigm in surface adsorption model.


Subject(s)
Chromium , Iron Compounds , Machine Learning , Adsorption , Chromium/chemistry , Iron Compounds/chemistry , Arsenic/chemistry , Minerals/chemistry , Arsenates/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
12.
Chemosphere ; 357: 141966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614401

ABSTRACT

Chromium is widely recognized as a significant pollutant discharged into the environment by various industrial activities. The toxicity of this element is dependent on its oxidation state, making speciation analysis crucial for monitoring the quality of environmental water and assessing the potential risks associated with industrial waste. This study introduces a single-well fluorometric sensor that utilizes orange emissive thioglycolic acid stabilized CdTe quantum dots (TGA-QDs) and blue emissive carbon dots (CDs) to detect and differentiate between various chromium species, such as Cr (III) and Cr (VI) (i.e., CrO42- and Cr2O72-). The variations of fluorescence spectra of the proposed probe upon chromium species addition were analyzed using machine learning techniques such as linear discriminant analysis and partial least squares regression as a classification and multivariate calibration technique, respectively. Linear discriminant analysis (LDA) demonstrated exceptional accuracy in differentiating single-component and bicomponent samples. Additionally, the findings from the partial least squares regression (PLSR) showed that the sensor created has strong linearity within the 1.0-100.0, 1.0-100.0, and 0.1-15 µM range for Cr2O72-, CrO42-, and Cr3+, respectively. Furthermore, appropriate detection limits were successfully achieved, which were 2.6, 2.9, and 0.7 µM for Cr2O72-, CrO42-, and Cr3+, respectively. Ultimately, the successful capability of the sensing platform in the identification and quantification of chromium species in environmental water samples provides innovative insights into general speciation analytics.


Subject(s)
Chromium , Machine Learning , Quantum Dots , Water Pollutants, Chemical , Chromium/analysis , Chromium/chemistry , Quantum Dots/chemistry , Water Pollutants, Chemical/analysis , Least-Squares Analysis , Fluorescent Dyes/chemistry , Discriminant Analysis , Tellurium/chemistry , Environmental Monitoring/methods , Cadmium Compounds/chemistry , Spectrometry, Fluorescence/methods , Carbon/chemistry
13.
Chemosphere ; 357: 141963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614397

ABSTRACT

Groundwater contaminated with hexavalent chromium Cr(VI) causes serious health concerns for the ecosystem. In this study, a hybrid amino functionalized MOF@rGO nanocatalyst was produced by utilization of a biowaste mediated carbon material (reduced graphene oxide; rGO) and its surface was modified by in situ synthesis of a nanocrystalline, mixed ligand octahedral MOF containing iron metal and NH2 functional groups and the prepared composite was investigated for Cr (VI) removal. The photocatalytic degradation of Cr(VI) in aqueous solutions was carried out under UV irradiation. Using a batch mode system, the effect of numerous control variables was examined, and the process design and optimization were carried out by response surface methodology (RSM). The photocatalyst, NH2-MIL(53)-Fe@rGO, was intended to be a stable and highly effective nanocatalyst throughout the recycling tests. XRD, SEM, EDS, FTIR examinations were exploited to discover more about surface carbon embedded with MOF. 2 g/L of NH2-MIL-53(Fe)/rGO was utilized in degrading 200 mg/L of Cr(VI) in just 100 min, implying the selective efficacy of such a MOF-rGO nanocatalyst. Moreover, the Eg determinations well agreed with the predicted range of 2.7 eV, confirming its possibility to be exploited underneath visible light, via the Tauc plot. Thus, MOF anchored onto biowaste derived rGO photo-catalyst was successfully implemented in chromium degradation.


Subject(s)
Chromium , Environmental Restoration and Remediation , Graphite , Metal-Organic Frameworks , Water Pollutants, Chemical , Chromium/chemistry , Graphite/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Metal-Organic Frameworks/chemistry , Carbon/chemistry , Photochemical Processes , Groundwater/chemistry
14.
Int J Biol Macromol ; 267(Pt 1): 131445, 2024 May.
Article in English | MEDLINE | ID: mdl-38588839

ABSTRACT

Carbonized bacterial cellulose embedded with highly dispersed nano zero-valent iron (nZVI), denoted as nZVI@CBC, was prepared through one-step in situ carbothermal treatment of bacterial cellulose adsorbing iron(III) nitrate. The structure characteristics of nZVI@CBC and its performance in removing hexavalent chromium Cr(VI) were investigated. Results showed the formation of nZVI@CBC with a surface area of 409.61 m2/g at 800 °C, with nZVI particles of mean size 28.2 nm well distributed within the fibrous network of CBC. The stability of nZVI was enhanced by its carbon coating, despite some inevitable oxidation of exposed nZVI. Batch experiments demonstrated that nZVI@CBC exhibited superior removal efficiency compared to bare nZVI and CBC. Under optimal conditions, nZVI@CBC exhibited a high Cr(VI) adsorption capacity of up to 372.42 mg/g. Therefore, nZVI@CBC shows promise as an effective adsorbent for remediating Cr(VI) pollution in water.


Subject(s)
Cellulose , Chromium , Iron , Water Pollutants, Chemical , Water Purification , Chromium/chemistry , Chromium/isolation & purification , Cellulose/chemistry , Adsorption , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Carbon/chemistry , Bacteria
15.
Water Res ; 256: 121625, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640565

ABSTRACT

Hexavalent chromium (Cr(VI)) contamination in groundwater poses a substantial global challenge due to its high toxicity and extensive industrial applications. While the bioelectroremediation of Cr(VI) has attracted huge attention for its eco-friendly attributes, its practical application remains constrained by the hydrogeochemical conditions of groundwater (mainly pH), low electron transfer efficiency, limitations in electrocatalyst synthesis and electrode fabrication. In this study, we developed and investigated the use of N, S co-doped carbon nanofibers (CNFs) integrated on a graphite felt (GF) as a self-standing cathode (NS/CNF-GF) for the comprehensive reduction of Cr(VI) from real contaminated groundwater. The binder free cathode, prepared through electro-polymerization, was employed in a dual-chamber microbial fuel cell (MFC) for the treatment of Cr (VI)-laden real groundwater (40 mg/L) with a pH of 7.4. The electrochemical characterization of the prepared cathode revealed a distinct electroactive surface area, more wettability, facilitating enhanced adsorption and rapid electron transfer, resulting in a commendable Cr(VI) reduction rate of 0.83 mg/L/h. The MFC equipped with NS/CNF-GF demonstrated the lowest charge transfer resistance (Rct) and generated the highest power density (155 ± 0.3 mW/m2) compared to control systems. The favorable electrokinetics for modified cathode led to swift substrate consumption in the anode, releasing more electrons and protons, thereby accelerating Cr(VI) reduction to achieve the highest cathodic coulombic efficiency (C.Eca)of80 ± 1.3 %. A similar temporal trend observed between Cr(VI) removal efficiency, COD removal efficiency, and C.Eca, underscores the effective performance of the modified electrode. The reusability of the binder free cathode, exemption from catholyte preparation and the absence of pH regulation requirements highlighted the potential scalability and applicability of our findings on a larger scale.


Subject(s)
Chromium , Electrodes , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Biodegradation, Environmental , Metals, Heavy/chemistry , Bioelectric Energy Sources , Hydrogen-Ion Concentration
16.
ACS Biomater Sci Eng ; 10(5): 2880-2893, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38630940

ABSTRACT

Cobalt-chromium-molybdenum (CoCrMo) alloys are common wear-exposed biomedical alloys and are manufactured in multiple ways, increasingly using additive manufacturing processes such as laser powder bed fusion (LPBF). Here, we investigate the effect of proteins and the manufacturing process (wrought vs LPBF) and building orientation (LPBF-XY and XZ) on the corrosion, metal release, tribocorrosion, and surface oxide composition by means of electrochemical, mechanical, microscopic, diffractive, and spectroscopic methods. The study was conducted at pH 7.3 in 5 g/L NaCl and 5 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer, which was found to be necessary to avoid metal phosphate and metal-protein aggregate precipitation. The effect of 10 g/L bovine serum albumin (BSA) and 2.5 g/L fibrinogen (Fbn) was studied. BSA and Fbn strongly enhanced the release of Co, Cr, and Mo and slightly enhanced the corrosion (still in the passive domain) for all CoCrMo alloys and most for LPBF-XZ, followed by LPBF-XY and the wrought CoCrMo. BSA and Fbn, most pronounced when combined, significantly decreased the coefficient of friction due to lubrication, the wear track width and severity of the wear mechanism, and the tribocorrosion for all alloys, with no clear effect of the manufacturing type. The wear track area was significantly more oxidized than the area outside of the wear track. In the reference solution without proteins, a strong Mo oxidation in the wear track surface oxide was indicative of a pH decrease and cell separation of the anodic and cathodic areas. This effect was absent in the presence of the proteins.


Subject(s)
Lasers , Serum Albumin, Bovine , Corrosion , Serum Albumin, Bovine/chemistry , Cattle , Animals , Powders , Fibrinogen/chemistry , Materials Testing , Cobalt/chemistry , Surface Properties , Chromium/chemistry , Vitallium/chemistry
17.
Int J Biol Macromol ; 268(Pt 2): 131682, 2024 May.
Article in English | MEDLINE | ID: mdl-38643914

ABSTRACT

This study aimed to prepare a new bio-based chromium-free tanning agent. The green epoxide monocase ethylene glycol diglycidyl ether (EGDE) was grafted with tannic acid (TA) derived from natural plant using the one-pot method to synthesize new plant polyphenol-derived tannic acid-based chromium-free tanning agents (TA-EGDE) with abundant terminal epoxides. FTIR, 1H NMR, XPS, GPC, SEM, and other analytical techniques were used to characterize tanning agents. These consequences manifested that EGDE was successfully grafted with the phenol hydroxyl group of TA. The epoxide value of TA-EGDE showed a tendency to increase and then decrease with increasing EGDE dosage, and the epoxide value of TA-EGDE-2 attained a maximum of 0.262 mol/100 g. GPC analysis showed that the formula weight of the prepared TA-EGDE was partially distributed above 5000 Da. The tanning experiment demonstrated that the shrinkage temperatures (Ts) of the TA-EGDE-tanned leathers were all higher than 81.5 °C. Compared with the traditional commercial chromium-free tanning agent (F-90, TWS), TA-EGDE-tanned leathers exhibited higher Ts and better mechanical properties. The TA-EGDE prepared in this study not only has ecological environmental protection but also provides finished leather with good moisture, heat resistance, and mechanical properties.


Subject(s)
Polyphenols , Tanning , Tannins , Tannins/chemistry , Polyphenols/chemistry , Chromium/chemistry
18.
J Environ Manage ; 358: 120821, 2024 May.
Article in English | MEDLINE | ID: mdl-38599087

ABSTRACT

In electroplating sludge, iron (Fe) and aluminum (Al) are common impurities that need to be separated before recycling valuable heavy metals. However, the traditional Fe/Al separation process often leads to significant losses of heavy metals. To address this issue, a new approach was developed to sequentially separate Fe/Al and recycle chromium (Cr) and nickel (Ni) from real electroplating sludge. The sludge contained 4.5% Cr, 1.2% Al, 1.1% Ni, and 14.6% Fe. Initially, the sludge was completely dissolved in a mixture of hydrochloric and nitric acids. The resulting acid solution was then heated to 160 °C for 10 h with the addition of saccharose. This hydrothermal treatment led to the hydrolysis and crystallization of 98.3% of Fe, 31.8% of Cr, 1.1% of Al, and 4.9% of Ni, forming akaganeite-bearing particles. It was observed that the excessive amount of saccharose also improved the removal of Cr, Al, and Ni, but decreased the removal of Fe. After the hydrothermal treatment, the remaining supernatant was adjusted to different pH levels (1.9, 2.9, and 4.5, respectively), and then Al, Cr, and Ni were stepwise extracted using di-(2-ethylhexyl) phosphate acid (P204). The recycling efficiencies achieved were 97.4% for Al, 61.2% for Cr, and 89.3% for Ni. This approach provides a promising method for the stepwise separation of Fe/Al and the recycling of heavy metals from electroplating sludge.


Subject(s)
Electroplating , Iron , Recycling , Sewage , Sewage/chemistry , Iron/chemistry , Chromium/chemistry , Metals, Heavy/chemistry , Crystallization , Nickel/chemistry , Aluminum/chemistry
19.
Environ Sci Pollut Res Int ; 31(19): 28789-28802, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558332

ABSTRACT

The release of hazardous elements by industrial effluents to aquatic ecosystems is a potential threat to the environment. Chromium (Cr) is one of the elements whose levels in several freshwater ecosystems should be reduced to promote water reuse. In recent years, magnetic materials have gained increasing interest as sorbents because of their easy removal from treated water through magnetic separation. In this study, colloidal cobalt ferrite (CoFe2O4) particles were investigated as magnetic sorbents for chromium-aqueous chemical species. The oxidative stress responses of Mytilus galloprovincialis mussels exposed to 200 µg/L of Cr, resembling remediated water, were evaluated. More than 95% of Cr was removed from contaminated solutions by CoFe2O4 aqueous suspensions at pH 6 and pH 10. The kinetics of sorption experiments were examined using pseudo-1st order, pseudo-2nd order and Elovich models to evaluate which mathematical model has a better adjustment to the experimental data. The present study revealed that the levels of Cr that remained in remediated water induced limited biochemical changes in mussels, being considered safe for aquatic systems. Overall, the use of cobalt ferrite-based sorbents may constitute a promising approach to remediate contaminated water.


Subject(s)
Chromium , Cobalt , Ferric Compounds , Water Pollutants, Chemical , Cobalt/chemistry , Chromium/chemistry , Ferric Compounds/chemistry , Animals , Mytilus
20.
Environ Sci Pollut Res Int ; 31(19): 28695-28705, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558343

ABSTRACT

Here, polyaniline/polyvinylidene fluoride (PANI/PVDF) nanofiber composite membrane was fabricated using electrostatic spinning technology to remove hexavalent chromium Cr(VI). The employment of PANI not only extremely enhanced the hydrophilic property of the nanofiber membrane, but also facilitated the transfer of Cr2O72- from water to the membrane. The PANI/PVDF membrane had an extremely excellent performance in getting rid of Cr(VI) and a quite large flux (250 L/m2 h). The maximum adsorption quantity of the membrane could reach 334.5 mg/g in which adsorption played 52.12% part and reduction played 47.87% part. The removal rate could reach nearly 100% immediately in the permeate solution under filtration while it needed 240 min to reach 100% only by static adsorption. Therefore, the interception of the membrane and the adsorption reduction of PANI had synergistic effect on removal of Cr(VI). Furthermore, the removal rate of Cr(VI) could still reach 95.97% after reused 8 times. The membrane showed a very good reusability and application prospect.


Subject(s)
Chromium , Filtration , Fluorocarbon Polymers , Nanofibers , Polyvinyls , Water Pollutants, Chemical , Water Purification , Nanofibers/chemistry , Adsorption , Chromium/chemistry , Polyvinyls/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Membranes, Artificial , Aniline Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...