Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.657
Filter
1.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791144

ABSTRACT

Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.


Subject(s)
DNA Copy Number Variations , DNA Methylation , Fibrosarcoma , Myxoma , Humans , Myxoma/genetics , Myxoma/diagnosis , Myxoma/pathology , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Fibrosarcoma/diagnosis , Fibrosarcoma/metabolism , Middle Aged , Female , Aged , Male , Adult , Mutation , Diagnosis, Differential , GTP-Binding Protein alpha Subunits, Gs/genetics , Chromogranins/genetics , Aged, 80 and over , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology
2.
Sci Rep ; 14(1): 8044, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580769

ABSTRACT

The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell-cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Adrenal Glands/metabolism , Catecholamines/metabolism , Chromogranins/metabolism
3.
BMC Pediatr ; 24(1): 271, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664677

ABSTRACT

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION: We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS: This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.


Subject(s)
Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism/diagnosis , Chromogranins/genetics , Female , Child , Phenotype , Pedigree , Mutation , Adolescent , Child, Preschool
4.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529810

ABSTRACT

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Subject(s)
Cerebellar Neoplasms , Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Medulloblastoma , Ossification, Heterotopic , Skin Diseases, Genetic , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Male , Chromogranins/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/pathology , Skin Diseases, Genetic/complications , Infant , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/complications , Prognosis , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Mutation
6.
J Pediatr Endocrinol Metab ; 37(3): 289-295, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38353264

ABSTRACT

OBJECTIVES: Pseudohypoparathyroidism type 1A (PHP1A) encompasses the association of resistance to multiple hormones, features of Albright hereditary osteodystrophy and decreased Gsα activity. Little is known about the early signs of PHP1A, with a delay in diagnosis. We report two PHP1A cases and their clinical and biochemical findings during a 20-year follow-up. CASE PRESENTATION: Clinical suspicion was based on obesity, TSH resistance and ectopic ossifications which appeared several months before PTH resistance, at almost 3 years of age. Treatment with levothyroxine, calcitriol and calcium was required in both patients. DNA sequencing of GNAS gene detected a heterozygous pathogenic variant within exon 7 (c.569_570delAT) in patient one and a deletion from XLAS to GNAS-exon 5 on the maternal allele in patient 2. In patient 1, ectopic ossifications that required surgical excision were found. Noticeably, patient 2 displayed adult short stature, intracranial calcifications and psychomotor delay. In terms of weight, despite early diagnosis of obesity, dietary measures were established successfully in both cases. CONCLUSIONS: GNAS mutations should be considered in patients with obesity, ectopic ossifications and TSH resistance presented in early infancy. These cases emphasize the highly heterogeneous clinical picture PHP1A patients may present, especially in terms of final height and cognitive impairment.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Adult , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Pseudohypoparathyroidism/diagnosis , Pseudohypoparathyroidism/genetics , Mutation , Obesity , Thyrotropin , Chromogranins/genetics
7.
Am J Surg Pathol ; 48(5): 562-569, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38407279

ABSTRACT

Primary pulmonary myxoid sarcoma (PPMS) and thoracic angiomatoid fibrous histiocytoma (AFH) are rare neoplasms with EWSR1 fusions and overlapping morphology. Both tumor types often show epithelial membrane antigen expression, but AFH characteristically co-expresses desmin. We encountered a case of PPMS with the unexpected finding of patchy, strong anaplastic lymphoma kinase (ALK) (previously reported in AFH) and synaptophysin expression. We evaluated a cohort of PPMS and thoracic AFH with systematic morphologic comparison and surveyed for aberrant expression of ALK and synaptophysin. Medical records and slides were reviewed for 16 molecularly confirmed cases of PPMS (n=5) and thoracic AFH (n=11). Each case was scored for morphologic characteristics typical of PPMS and/or AFH. ALK, synaptophysin, chromogranin, desmin, and epithelial membrane antigen immunostains were performed on cases with available tissue. AFH and PPMS cases showed similar age at presentation and long-term tumor behavior. Almost all cases of PPMS and AFH had a fibrous pseudocapsule and lymphoid rim. All PPMS had myxoid stroma and reticular growth pattern, but these features were also present in a subset of AFH. Synaptophysin expression was present in 6 of 11 AFH and 1 of 5 PPMS; all tested cases were negative for chromogranin (n=15). One case of AFH and 1 case of PPMS showed focally strong coexpression of synaptophysin and ALK. AFH and PPMS show considerable clinicopathologic overlap. When supportive, the immunohistochemical findings described may aid in diagnosis before molecular confirmation. PPMS and AFH may be morphologic variants of the same clinicopathologic entity, which can show more immunophenotypic variability than previously reported.


Subject(s)
Histiocytoma, Benign Fibrous , Histiocytoma, Malignant Fibrous , Humans , Synaptophysin , Mucin-1 , Desmin , Chromogranins , Histiocytoma, Malignant Fibrous/genetics , Histiocytoma, Malignant Fibrous/surgery , Histiocytoma, Malignant Fibrous/diagnosis , Receptor Protein-Tyrosine Kinases
8.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38319157

ABSTRACT

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Subject(s)
Chromogranins , Colorectal Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , GTP-Binding Protein alpha Subunits, Gs , Animals , Humans , Mice , Chromogranins/genetics , Chromogranins/metabolism , Colorectal Neoplasms/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , HCT116 Cells , Mice, Nude , Mutation , Phosphodiesterase 4 Inhibitors/pharmacology
9.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38290008

ABSTRACT

Pseudohypoparathyroidism type 1B (PHP1B) results from aberrant genomic imprinting at the GNAS gene. Defining the underlying genetic cause in new patients is challenging because various genetic alterations (e.g., deletions, insertions) within the GNAS genomic region, including the neighboring STX16 gene, can cause PHP1B, and the genotype-epigenotype correlation has not been clearly established. Here, by analyzing patients with PHP1B with a wide variety of genotypes and epigenotypes, we identified a GNAS differentially methylated region (DMR) of distinct diagnostic value. This region, GNAS AS2, was hypomethylated in patients with genetic alterations located centromeric but not telomeric of this DMR. The AS2 methylation status was captured by a single probe of the methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) assay utilized to diagnose PHP1B. In human embryonic stem cells, where NESP55 transcription regulates GNAS methylation status on the maternal allele, AS2 methylation depended on 2 imprinting control regions (STX16-ICR and NESP-ICR) essential for NESP55 transcription. These results suggest that the AS2 methylation status in patients with PHP1B reflects the position at which the genetic alteration affects NESP55 transcription during an early embryonic period. Therefore, AS2 methylation levels can enable mechanistic PHP1B categorization based on genotype-epigenotype correlation and, thus, help identify the underlying molecular defect in patients.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Pseudohypoparathyroidism , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , DNA Methylation , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism/diagnosis , Genomic Imprinting , Alleles , Chromogranins/genetics
10.
Cytopathology ; 35(3): 362-370, 2024 May.
Article in English | MEDLINE | ID: mdl-38213192

ABSTRACT

BACKGROUND: Recognizing the parathyroid gland and distinguishing the parathyroid from thyroid lesions in fine needle aspiration (FNA) is challenging. This study aimed to identify cytomorphologic features suggestive of parathyroid origin and to assess the utility of cytopathology in conjunction with ancillary tests in the identification of parathyroid glands. MATERIALS AND METHODS: Ultrasound (US) guided FNA of parathyroid gland and lesions in 81 patients were reviewed concerning clinical history and correlated to histopathologic findings in available cases. FNA smears were evaluated for cellularity, architectural patterns, cellular and nuclear features, and background of the smears. In 78 cases, FNA was supplemented by a measurement of parathormone (PTH) levels in the needle washout fluid (FNA-PTH assay) and/or GATA3/PTH/chromogranin-A immunostainings. RESULTS: Sixty-four cases were diagnosed cytologically as parathyroid lesions in conjunction with FNA-PTH assay and/or immunocytochemical examinations. In an additional nine cases, a diagnosis of parathyroid lesions was rendered after repeated FNA with FNA-PTH assay. The histolopathologic diagnosis of surgically excised cases (n = 75) included parathyroid adenoma (60 cases), atypical parathyroid adenoma (4 cases), parathyroid hyperplasia (10 cases), and parathyroid carcinoma (1 case). Major cytological findings of parathyroid tissue included high cellularity, scattered naked nuclei, cribriform and three-dimensional clusters, stippled chromatin, and oxyphilic cytoplasm while papillary pattern or colloid-like material was identified in three cases respectively. No nuclear grooves or inclusions were seen in any case. CONCLUSIONS: High cellularity scattered naked nuclei, cribriform and three-dimensional patterns, stippled chromatin and oxyphilic cytoplasm are cytomorphologic features that favour parathyroid origin. A combination of these features with FNA-PTH assay and/or GATA3, PTH, and chromogranin-A immunostainings on cytologic specimens aid in the identification of parathyroid glands and the distinguishing of parathyroid from thyroid lesions.


Subject(s)
Adenoma , Parathyroid Neoplasms , Humans , Parathyroid Glands/pathology , Parathyroid Neoplasms/diagnosis , Parathyroid Neoplasms/pathology , Biopsy, Fine-Needle/methods , Chromogranins , Parathyroid Hormone , Adenoma/pathology , Chromatin
11.
Cardiovasc Res ; 120(2): 132-139, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38242632

ABSTRACT

The chromogranin-secretogranin secretory proteins-granins-are acidic proteins localized in granules of endocrine cells and neurons. The chromogranin family includes chromogranins A (CgA) and B, as well as secretogranin II (once called chromogranin C). Members of this family undergo catalytic proteolysis to produce active peptides. The CgA-derived peptides vasostatin-1 and vasostatin-2, in particular, appear to protect against atherosclerosis, suppressing the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, as well as exerting vasodilatory effects by enhancing nitric oxide bioavailability. Vasostatin-1 also suppresses vasoconstriction and abnormal angiogenesis. Vasostatin-1 and vasostatin-2 may be novel therapeutic targets for atherosclerosis and coronary heart disease, also protecting the myocardium against ischaemic damage.


Subject(s)
Atherosclerosis , Calreticulin , Chromogranins , Peptide Fragments , Humans , Chromogranins/chemistry , Chromogranins/metabolism , Angiogenesis , Proteins/metabolism , Peptides
12.
Neoplasia ; 49: 100965, 2024 03.
Article in English | MEDLINE | ID: mdl-38245923

ABSTRACT

BACKGROUND: The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS: Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS: Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS: We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Azacitidine/pharmacology , Azacitidine/therapeutic use , DNA Methylation , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Chromogranins/genetics , Chromogranins/therapeutic use , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/therapeutic use
13.
J Pediatr Endocrinol Metab ; 37(1): 84-89, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38095637

ABSTRACT

OBJECTIVES: Pseudohypoparathyroidism (PHP1B) is most commonly caused by epigenetic defects resulting in loss of methylation at the GNAS locus, although deletions of STX16 leading to GNAS methylation abnormalities have been previously reported. The phenotype of this disorder is variable and can include hormonal resistances and severe infantile obesity with hyperphagia. A possible time relationship between the onset of obesity and endocrinopathies has been previously reported but remains unclear. Understanding of the condition's natural history is limited, partly due to a scarcity of literature, especially in children. CASE PRESENTATION: We report three siblings with autosomal dominant PHP1B caused by a deletion in STX16 who presented with early childhood onset PTH-resistance with normocalcemia with a progressive nature, accompanied by TSH-resistance and severe infantile obesity with hyperphagia in some, not all of the affected individuals. CONCLUSIONS: PHP1B from a STX16 deletion displays intrafamilial phenotypic variation. It is a novel cause of severe infantile obesity, which is not typically included in commercially available gene panels but must be considered in the genetic work-up. Finally, it does not seem to have a clear time relationship between the onset of obesity and hormonal resistance.


Subject(s)
Obesity, Morbid , Pediatric Obesity , Pseudohypoparathyroidism , Child , Humans , Child, Preschool , GTP-Binding Protein alpha Subunits, Gs/genetics , Siblings , Pediatric Obesity/genetics , Chromogranins/genetics , Pseudohypoparathyroidism/genetics , DNA Methylation , Obesity, Morbid/genetics , Phenotype , Hyperphagia , Syntaxin 16/genetics
14.
Apoptosis ; 29(1-2): 121-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37848672

ABSTRACT

Bladder cancer (BLCA) is ranked among the top ten most prevalent cancers worldwide and is the second most common malignant tumor within the field of urology. The limited effectiveness of immune targeted therapy in treating BLCA, due to its high metastasis and recurrence rates, necessitates the identification of new therapeutic targets. Secretogranin II (SCG2), a member of the chromaffin granin/secreted granin family, plays a crucial role in the regulated release of peptides and hormones. The role of SCG2 in the tumor microenvironment (TME) of lung adenocarcinoma and colon cancer has been established, but its functional significance in BLCA remains uncertain. This study aimed to investigate SCG2 expression in 15 bladder cancer tissue samples and their corresponding adjacent control tissues. The potential involvement of SCG2 in BLCA progression was assessed using various techniques, including analysis of public databases, immunohistochemistry, Western Blotting, immunofluorescence, wound-healing assay, Transwell assay, and xenograft tumor formation experiments in nude mice. This study provided novel evidence indicating that SCG2 plays a pivotal role in facilitating the proliferation, migration, and invasion of BLCA by activating the MEK/Erk and MEK/IKK/NF-κB signaling pathways, as well as by promoting M2 macrophage polarization. These findings propose the potential of SCG2 as a molecular target for immunotherapy in human BLCA.


Subject(s)
NF-kappa B , Urinary Bladder Neoplasms , Animals , Humans , Mice , Apoptosis , Chromogranins/therapeutic use , Mice, Nude , Mitogen-Activated Protein Kinase Kinases , NF-kappa B/genetics , NF-kappa B/metabolism , Secretogranin II/genetics , Secretogranin II/metabolism , Secretogranin II/therapeutic use , Tumor Microenvironment , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism
15.
Int J Gynecol Pathol ; 43(2): 123-133, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37406366

ABSTRACT

Expression of neuroendocrine (NE) markers in primary ovarian non-NE epithelial tumors has rarely been evaluated. The aim of our study was to evaluate the expression of the most widely used NE markers in these neoplasms and to determine any prognostic significance of NE marker expression. The cohort consisted of 551 primary ovarian tumors, including serous borderline tumors, low-grade serous carcinomas, high-grade serous carcinomas (HGSC), clear cell carcinomas, endometroid carcinomas, mucinous borderline tumors, and mucinous carcinomas. Immunohistochemical analysis was performed using antibodies against INSM1, synaptophysin, chromogranin, and CD56 on tissue microarray. Positivity for INSM1, synaptophysin, chromogranin, and CD56 was most frequently observed in mucinous tumors (48.7%, 26.0%, 41.5%, and 100%, respectively). The positivity for these NE markers was mostly restricted to nonmucinous elements distributed throughout the tumor. The mucinous borderline tumor and mucinous carcinomas groups had similar proportions of positivity (mucinous borderline tumor: 53%, mucinous carcinomas: 39%). In the other tumor types, except for HGSC, there was only focal expression (5%-10%) or negativity for NE markers. HGSC showed high CD56 expression (in 26% of cases). Survival analysis was only performed for CD56 in HGSC as this was the only group with sufficient positive cases, and it showed no prognostic significance. Except for mucinous tumors, expression of NE markers in non-NE ovarian epithelial tumors is low. CD56 expression in HGSC occurs frequently but is without diagnostic or prognostic value.


Subject(s)
Adenocarcinoma, Mucinous , Neuroendocrine Tumors , Ovarian Neoplasms , Female , Humans , Synaptophysin/metabolism , Biomarkers, Tumor/metabolism , Chromogranins , Neuroendocrine Tumors/pathology , Ovarian Neoplasms/pathology , Adenocarcinoma, Mucinous/diagnosis , Repressor Proteins/metabolism
16.
J Clin Endocrinol Metab ; 109(2): 424-438, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37669316

ABSTRACT

CONTEXT: Pseudohypoparathyroidism type IA (PHPIA) is a rare genetic disorder characterized by hormone resistance and a typical phenotype named Albright hereditary osteodystrophy. Unawareness of this rare disease leads to delays in diagnosis. OBJECTIVE: The aims of this study were to describe the clinical and molecular characteristics of patients with genetically confirmed GNAS mutations and to evaluate their long-term outcomes. METHODS: A retrospective search for all patients diagnosed with PHPIA in 2 referral centers in Israel was conducted. RESULTS: Nine children (8 females) belonging to 6 families were included in the study. Five patients had GNAS missense mutations, 2 had deletions, and 2 had frameshift mutations. Four mutations were novel. Patients were referred at a mean age of 2.4 years due to congenital hypothyroidism (5 patients), short stature (2 patients), or obesity (2 patients), with a follow-up duration of up to 20 years. Early obesity was observed in the majority of patients. Elevated parathyroid hormone was documented at a mean age of 3 years; however, hypocalcemia became evident at a mean age of 5.9 years, about 3 years later. All subjects were diagnosed with mild to moderate mental retardation. Female adult height was very short (mean -2.5 SD) and 5 females had primary or secondary amenorrhea. CONCLUSION: Long-term follow-up of newborns with a combination of congenital hypothyroidism, early-onset obesity, and minor dysmorphic features associated with PHPIA is warranted and molecular analysis is recommended since the complete clinical phenotype may develop a long time after initial presentation.


Subject(s)
Congenital Hypothyroidism , Pseudohypoparathyroidism , Infant, Newborn , Child , Adult , Humans , Female , Child, Preschool , GTP-Binding Protein alpha Subunits, Gs/genetics , Follow-Up Studies , Retrospective Studies , Chromogranins/genetics , Pseudohypoparathyroidism/diagnosis , Pseudohypoparathyroidism/genetics , Obesity
18.
Endocrine ; 83(2): 473-482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37828397

ABSTRACT

PURPOSE: Transient pregnancy-induced Cushing's syndrome is a rare condition characterized by the manifestation of symptoms solely during pregnancy, which typically resolve spontaneously following delivery or miscarriage. While it has been established that GNAS is associated with adrenal tumors, its specific role in the pathogenesis of pregnancy-induced Cushing's syndrome remains uncertain.This work aims to examine the association between GNAS mutation and pregnancy-induced Cushing's syndrome. METHODS: DNA was extracted from patients' peripheral blood and tumor tissues for whole-exome sequencing (WES) and Sanger sequencing. We used AlphaFold to predict the protein structure of wild-type and mutant GNAS and to make functional predictions, and immunohistochemistry was used to detect disease-associated protein expression. A review and summary of reported cases of transient pregnancy-induced Cushing's syndrome induced by pregnancy was conducted. RESULTS: Using WES, we identified a somatic mutation in GNAS (NM_000516, c.C601T, p.R201C) that was predicted to have a deleterious effect using computational methods, such as AlphaFold. Human chorionic gonadotropin (hCG) stimulation tests had weakly positive results, and immunohistochemical staining of adrenal adenoma tissue also revealed positivity for luteinizing hormone/chorionic gonadotropin receptor (LHCGR) and cytochrome P450 family 11 subfamily B member 1 (CYP11B1). We reviewed 15 published cases of transient Cushing's syndrome induced by pregnancy. Among these cases, immunohistochemical staining of the adrenal gland showed positive LHCGR expression in 3 case reports, similar to our findings. CONCLUSION: Transient pregnancy-induced Cushing's syndrome may be associated with somatic GNAS mutations and altered adrenal pathology due to abnormal activation of LHCGR.


Subject(s)
Cushing Syndrome , Female , Pregnancy , Humans , Cushing Syndrome/diagnosis , Receptors, LH/genetics , Receptors, LH/metabolism , Luteinizing Hormone/metabolism , Chorionic Gonadotropin , Mutation , Hydrocortisone , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics
19.
Mutat Res Rev Mutat Res ; 793: 108487, 2024.
Article in English | MEDLINE | ID: mdl-38103632

ABSTRACT

BACKGROUND: GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, ß2- and ß3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW: This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS: Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.


Subject(s)
Chromogranins , Epigenesis, Genetic , GTP-Binding Protein alpha Subunits, Gs , Obesity , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Chromogranins/genetics , Epigenesis, Genetic/genetics , Obesity/genetics , Animals , Pseudohypoparathyroidism/genetics , Mutation/genetics , Receptor, Melanocortin, Type 4/genetics , Age of Onset
20.
Br J Cancer ; 130(2): 327-335, 2024 02.
Article in English | MEDLINE | ID: mdl-38097740

ABSTRACT

BACKGROUND: Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial-to-mesenchymal transition (EMT). METHODS: We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS: While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma (HGSOC). Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFß, NOTCH); chrX is a highly enriched target of these microRNAs and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION: CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.


Subject(s)
Carcinosarcoma , MicroRNAs , Ovarian Neoplasms , Sarcoma , Female , Humans , Multiomics , Carcinosarcoma/genetics , Carcinosarcoma/metabolism , Carcinosarcoma/pathology , Ovarian Neoplasms/pathology , MicroRNAs/genetics , Epithelial-Mesenchymal Transition/genetics , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...