Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.277
Filter
1.
Sci Rep ; 14(1): 11502, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769353

ABSTRACT

Astronauts travelling in space will be exposed to mixed beams of particle radiation and photons. Exposure limits that correspond to defined cancer risk are calculated by multiplying absorbed doses by a radiation-type specific quality factor that reflects the biological effectiveness of the particle without considering possible interaction with photons. We have shown previously that alpha radiation and X-rays may interact resulting in synergistic DNA damage responses in human peripheral blood lymphocytes but the level of intra-individual variability was high. In order to assess the variability and validate the synergism, blood from two male donors was drawn at 9 time points during 3 seasons of the year and exposed to 0-2 Gy of X-rays, alpha particles or 1:1 mixture of both (half the dose each). DNA damage response was quantified by chromosomal aberrations and by mRNA levels of 3 radiation-responsive genes FDXR, CDKN1A and MDM2 measured 24 h post exposure. The quality of response in terms of differential expression of alternative transcripts was assessed by using two primer pairs per gene. A consistently higher than expected effect of mixed beams was found in both donors for chromosomal aberrations and gene expression with some seasonal variability for the latter. No synergy was detected for alternative transcription.


Subject(s)
Chromosome Aberrations , Lymphocytes , Radiation, Ionizing , Humans , Lymphocytes/radiation effects , Lymphocytes/metabolism , Male , Chromosome Aberrations/radiation effects , X-Rays/adverse effects , DNA Damage , Space Flight , Alpha Particles/adverse effects , Transcription, Genetic/radiation effects , Adult , Gene Expression Regulation/radiation effects , Dose-Response Relationship, Radiation
2.
Int J Radiat Biol ; 100(6): 875-889, 2024.
Article in English | MEDLINE | ID: mdl-38647504

ABSTRACT

PURPOSE: To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS: Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS: The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS: The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.


Subject(s)
Chromosome Aberrations , Dose-Response Relationship, Radiation , Gamma Rays , Humans , Chromosome Aberrations/radiation effects , Cytogenetic Analysis , Lymphocytes/radiation effects , Radiation Dosage , Radiometry/methods
3.
Int J Radiat Biol ; 100(6): 865-874, 2024.
Article in English | MEDLINE | ID: mdl-38687685

ABSTRACT

PURPOSE: The dicentric chromosome assay (DCA), often referred to as the 'gold standard' in radiation dose estimation, exhibits significant challenges as a consequence of its labor-intensive nature and dependency on expert knowledge. Existing automated technologies face limitations in accurately identifying dicentric chromosomes (DCs), resulting in decreased precision for radiation dose estimation. Furthermore, in the process of identifying DCs through automatic or semi-automatic methods, the resulting distribution could demonstrate under-dispersion or over-dispersion, which results in significant deviations from the Poisson distribution. In response to these issues, we developed an algorithm that employs deep learning to automatically identify chromosomes and perform fully automatic and accurate estimation of diverse radiation doses, adhering to a Poisson distribution. MATERIALS AND METHODS: The dataset utilized for the dose estimation algorithm was generated from 30 healthy donors, with samples created across seven doses, ranging from 0 to 4 Gy. The procedure encompasses several steps: extracting images for dose estimation, counting chromosomes, and detecting DC and fragments. To accomplish these tasks, we utilize a diverse array of artificial neural networks (ANNs). The identification of DCs was accomplished using a detection mechanism that integrates both deep learning-based object detection and classification methods. Based on these detection results, dose-response curves were constructed. A dose estimation was carried out by combining a regression-based ANN with the Monte-Carlo method. RESULTS: In the process of extracting images for dose analysis and identifying DCs, an under-dispersion tendency was observed. To rectify the discrepancy, classification ANN was employed to identify the results of DC detection. This approach led to satisfaction of Poisson distribution criteria by 32 out of the initial pool of 35 data points. In the subsequent stage, dose-response curves were constructed using data from 25 donors. Data provided by the remaining five donors served in performing dose estimations, which were subsequently calibrated by incorporating a regression-based ANN. Of the 23 points, 22 fell within their respective confidence intervals at p < .05 (95%), except for those associated with doses at levels below 0.5 Gy, where accurate calculation was obstructed by numerical issues. The accuracy of dose estimation has been improved for all radiation levels, with the exception of 1 Gy. CONCLUSIONS: This study successfully demonstrates a high-precision dose estimation method across a general range up to 4 Gy through fully automated detection of DCs, adhering strictly to Poisson distribution. Incorporating multiple ANNs confirms the ability to perform fully automated radiation dose estimation. This approach is particularly advantageous in scenarios such as large-scale radiological incidents, improving operational efficiency and speeding up procedures while maintaining consistency in assessments. Moreover, it reduces potential human error and enhances the reliability of results.


Subject(s)
Chromosome Aberrations , Neural Networks, Computer , Radiation Dosage , Humans , Chromosome Aberrations/radiation effects , Dose-Response Relationship, Radiation , Algorithms , Poisson Distribution , Deep Learning
4.
Environ Res ; 251(Pt 1): 118634, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38452915

ABSTRACT

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.


Subject(s)
Cell Phone , Cytokinesis , Mouth Mucosa , Humans , Mouth Mucosa/radiation effects , Mouth Mucosa/cytology , Adult , Male , Cytokinesis/radiation effects , Cell Death/radiation effects , Young Adult , Female , Chromosome Aberrations/radiation effects , Micronucleus Tests , Electromagnetic Fields/adverse effects , Micronuclei, Chromosome-Defective/radiation effects
5.
Radiat Res ; 201(5): 479-486, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38407403

ABSTRACT

High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), ß- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.


Subject(s)
Beta Particles , Cesium Radioisotopes , Chromosome Aberrations , Gamma Rays , Iodine Radioisotopes , Tritium , Chromosome Aberrations/radiation effects , Gamma Rays/adverse effects , Animals , Linear Energy Transfer , Cricetulus , Electrons , Humans , Cell Cycle/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Cricetinae , CHO Cells
6.
Int J Radiat Biol ; 99(8): 1188-1203, 2023.
Article in English | MEDLINE | ID: mdl-35930491

ABSTRACT

PURPOSE: To deepen our knowledge on the effects of high levels of indoor radon exposure, we assessed the frequencies of unstable and stable chromosome aberrations and micronucleus (MN), as well as the concentration of an endogenous antioxidant (catalase, CAT), in blood samples of individuals chronically exposed to high indoor radon concentrations in Indonesia (Tande-Tande sub-village, Mamuju, West Sulawesi). Moreover, we also investigated the occurrence of a radio-adaptive response (RAR) in Tande-Tande sub-village inhabitants using the G2 MN assay. MATERIALS AND METHODS: The frequencies of dicentric (DC), acentric (AF), ring (R), and translocation (Tr) chromosomes in Tande-Tande inhabitants were compared to those in people living in a reference area with low levels of indoor radon levels (Topoyo village, Indonesia). The number of MN per 1000 binucleated cells (BNC) and CAT concentration per total protein was quantified and compared between groups. Lastly, we irradiated (2 Gy) phytohemagglutinin-stimulated samples in vitro and measured the frequency of MN to verify the occurrence of a RAR in Tande-Tande sub-village inhabitants. RESULTS AND CONCLUSION: The frequencies of DC, AF, and Tr did not differ between Tande-Tande inhabitants and control subjects (p = 0.350, 0.521, 0.597). The frequency of MN in Tande-Tande inhabitants was significantly lower than that in the control group (p = 0.006). Similarly, CAT concentration in Tande-Tande inhabitants was also significantly lower than that in the control population (p < 0.001). Significant negative correlations were identified for MN number and CAT concentration versus indoor radon concentration, annual effective dose, or cumulative dose both within groups and when all data were analyzed together. Our findings indicate that, despite the high indoor radon levels, Tande-Tande inhabitants are not under oxidative stress, since this group had lower CAT concentration and MN frequency than those in the control group. The negative correlation between MN frequency and indoor radon concentration, annual effective dose, and cumulative dose suggests the occurrence of an RAR phenomenon in Tande-Tande sub-village inhabitants. This interpretation is also supported by the results of the G2 MN assay, which revealed lower MN frequencies after in vitro irradiation of samples from Tande-Tande sub-village inhabitants than those in samples from the control group (p = 0.0069, for cumulative MN frequency; p = 0.0146, for radiation-induced MN only).


Subject(s)
Catalase , Chromosome Aberrations , Micronuclei, Chromosome-Defective , Radon , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Indonesia , Chromosome Aberrations/radiation effects , Chromosome Aberrations/statistics & numerical data , Micronuclei, Chromosome-Defective/statistics & numerical data , Catalase/blood , Radon/analysis , Radon/toxicity , Radiation Dosage , Adaptation, Physiological/radiation effects
7.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055062

ABSTRACT

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6-85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Subject(s)
Models, Theoretical , Neutrons , Relative Biological Effectiveness , Chromosome Aberrations/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Humans , Lymphocytes/metabolism , Lymphocytes/radiation effects , Micronucleus Tests/methods
8.
Sci Rep ; 11(1): 24406, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34949762

ABSTRACT

Brachytherapy (BT) and external beam radiotherapy (EBRT) apply different dose rates, overall treatment times, energies and fractionation. However, the overall impact of these variables on the biological dose of blood is neglected. As the size of the irradiated volume influences the biological effect as well, we studied chromosome aberrations (CAs) as biodosimetric parameters, and explored the relationship of isodose surface volumes (ISVs: V1%, V1Gy, V10%, V10Gy, V100%, V150%) and CAs of both irradiation modalities. We performed extended dicentrics assay of lymphocytes from 102 prostate radiotherapy patients three-monthly for a year. Aberration frequency was the highest after EBRT treatment. It increased after the therapy and did not decrease significantly during the first follow-up year. We showed that various types of CAs 9 months after LDR BT, 3 months after HDR BT and in a long time-range (even up to 1 year) after EBRT positively correlated with ISVs. Regression analysis confirmed these relationships in the case of HDR BT and EBRT. The observed differences in the time points and aberration types are discussed. The ISVs irradiated by EBRT showed stronger correlation and regression relationships with CAs than the ISVs of brachytherapy.


Subject(s)
Brachytherapy/adverse effects , Dose Fractionation, Radiation , Prostatic Neoplasms/radiotherapy , Brachytherapy/methods , Chromosome Aberrations/radiation effects , Follow-Up Studies , Humans , Lymphocytes , Male , Radiation Dosage , Radiotherapy Dosage , Regression Analysis , Time Factors
9.
Probl Radiac Med Radiobiol ; 26: 398-409, 2021 Dec.
Article in English, Ukrainian | MEDLINE | ID: mdl-34965562

ABSTRACT

The objective of the study was to improve the biological dosimetry approach among patients with acute radiationsickness of various degrees based on the analysis of radiation-induced chromosome aberrations in peripheral bloodlymphocytes of the victims. MATERIALS AND METHODS: The study was based on primary cytogenetic data obtained in May 1986 within examina-tion of the 30 clean-up workers («liquidators¼) having got stage I-III acute radiation sickness. Dose verificationwas performed using the cytogenetic dosimetry based on a culture of peripheral blood lymphocytes with metaphaseanalysis of chromosome aberrations. RESULTS: A new method of evaluating the results of patients' cytogenetic examination at the beginning of specifictherapy has been developed. Procedure was performed using a model of multiple linear regression (complex of cyto-genetic parameters) and provided a satisfactory diagnostic level (featuring a compliance with initially definedclinical and laboratory diagnoses). Overall frequency of the aberrant cells and radiation markers increased in high-er disease stages. There was a trend of the frequency growth of chromatid-type aberrations with increasing of radi-ation burden. Adequacy of the proposed method based on the regression analysis of cytogenetic results was con-firmed through the preservation of group differences in estimates of disease stage in subjects with verified diagnosis. CONCLUSION: Cytogenetic dosimetry in the scope of examination of persons exposed to ionizing radiation is an oblig-atory component of radiation sickness stage verification. The recommended method of cytogenetic data evaluationbefore and at the beginning of detoxification therapy provides a satisfactory level of diagnostics.


Subject(s)
Chernobyl Nuclear Accident , Chromosome Aberrations/radiation effects , Emergency Responders/statistics & numerical data , Lymphocytes/radiation effects , Radiation Dosage , Radiation Injuries/genetics , Radiation, Ionizing , Adult , Cytogenetic Analysis , Humans , Male , Middle Aged , Radiation Injuries/epidemiology , Radiation Injuries/physiopathology , Ukraine/epidemiology
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830065

ABSTRACT

The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations. These correlations support the heteropolymer globule principle of chromosome organization in G1-arrested pro-B mouse cells. The joint analysis of Hi-C, HTGTS and physical modeling data offers mechanistic insight into how chromosome structure heterogeneity, globular folding and lesion dynamics drive IR-recurrent CAs. The results provide the biophysical and computational basis for the analysis of chromosome aberration landscape under IR and nuclease-induced DSBs.


Subject(s)
Chromosome Aberrations/radiation effects , Chromosomes/chemistry , DNA Breaks, Double-Stranded/radiation effects , Deoxyribonucleases/toxicity , Animals , G1 Phase , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Mice , Models, Theoretical , Molecular Conformation , Physical Phenomena , Precursor Cells, B-Lymphoid/chemistry , Radiation, Ionizing , Translocation, Genetic
11.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34639218

ABSTRACT

Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.


Subject(s)
Cell Death , Chromosome Aberrations/radiation effects , Heavy Ion Radiotherapy/adverse effects , Lymphocytes/pathology , Monte Carlo Method , Neoplasms/radiotherapy , Relative Biological Effectiveness , Biophysics , Humans , Lymphocytes/drug effects
12.
Cytogenet Genome Res ; 161(6-7): 328-351, 2021.
Article in English | MEDLINE | ID: mdl-34488218

ABSTRACT

For long-term survival and evolution, all organisms have depended on a delicate balance between processes involved in maintaining stability of their genomes and opposing processes that lead toward destabilization. At the level of mammalian somatic cells in renewal tissues, events or conditions that can tip this balance toward instability have attracted special interest in connection with carcinogenesis. Mutations affecting DNA (and its subsequent repair) would, of course, be a major consideration here. These may occur spontaneously through endogenous cellular processes or as a result of exposure to mutagenic environmental agents. It is in this context that we discuss the rather unique destabilizing effects of ionizing radiation (IR) in terms of its ability to cause large-scale structural rearrangements to the genome. We present arguments supporting the conclusion that these and other important effects of IR originate largely from microscopically visible chromosome aberrations.


Subject(s)
Cell Cycle/radiation effects , Chromosome Aberrations/radiation effects , DNA Breaks, Double-Stranded/radiation effects , DNA Damage , DNA Repair , Radiation, Ionizing , Animals , Cell Cycle/genetics , Cytogenetic Analysis/methods , Humans , In Situ Hybridization, Fluorescence/methods
13.
Exp Oncol ; 43(3): 242-246, 2021 09.
Article in English | MEDLINE | ID: mdl-34591418

ABSTRACT

BACKGROUND: The state-of-the-art brachytherapy technologies with high-dose sources of 60Co and 192Ir within contemporary treatment protocols for cancer patients allow achieving maximum dose distribution in the clinical target and with minimum radiation exposure of surrounding organs and tissues. For minimization and overcoming the early and late radiation complications, development of respective radiobiological criteria along with perfecting of physical and technical characteristics of the ionizing radiation sources are required. AIM: To study the effect of 192Ir radiation on the chromosomal aberrations and prooxidant/antioxidant status of blood lymphocytes in gynecological cancer patients. MATERIALS AND METHODS: The patients (n = 45) with endometrial, cervical and secondary cancer of vagina were enrolled in the study. For brachytherapy, the irradiation of vaginal mucosa was conducted using "GammaMed plus" device for contact radiation therapy with 192Ir source. Prior to irradiation and in 20-24 h after brachytherapy session, the venous blood samples were obtained and peripheral blood lymphocytes (PBL) were cultured for cytogenetic analysis. The prooxidant/antioxidant status was determined in hemolysates by the method of hydrogen peroxide-induced chemiluminescence. RESULTS: The average level of spontaneous chromosome aberrations in PBL of the patients was (7.8 ± 0.4) per 100 metaphases, which is more than twice higher than the upper limit of the average population values. The frequency of chromosome aberrations in PBL of patients after brachytherapy session was (15.3 ± 1.0) per 100 metaphases. An increased intensity of O2- generation by PBL after brachytherapy session was also noticed. CONCLUSION: Local irradiation at a dose of 6 Gy featuring the first dose fraction of brachytherapy induces extra chromosomal aberrations in PBL of gynecological cancer patients and intensifies prooxidant processes in the blood.


Subject(s)
Brachytherapy/adverse effects , Chromosome Aberrations/radiation effects , Genital Neoplasms, Female/pathology , Lymphocytes/pathology , Oxidative Stress , Cytogenetic Analysis , Female , Follow-Up Studies , Genital Neoplasms, Female/blood , Genital Neoplasms, Female/radiotherapy , Humans , Lymphocytes/radiation effects , Middle Aged , Prognosis , Radiation Dosage
14.
PLoS Genet ; 17(8): e1009735, 2021 08.
Article in English | MEDLINE | ID: mdl-34432802

ABSTRACT

Chromoanagenesis is a genomic catastrophe that results in chromosomal shattering and reassembly. These extreme single chromosome events were first identified in cancer, and have since been observed in other systems, but have so far only been formally documented in plants in the context of haploid induction crosses. The frequency, origins, consequences, and evolutionary impact of such major chromosomal remodeling in other situations remain obscure. Here, we demonstrate the occurrence of chromoanagenesis in poplar (Populus sp.) trees produced from gamma-irradiated pollen. Specifically, in this population of siblings carrying indel mutations, two individuals exhibited highly frequent copy number variation (CNV) clustered on a single chromosome, one of the hallmarks of chromoanagenesis. Using short-read sequencing, we confirmed the presence of clustered segmental rearrangement. Independently, we identified and validated novel DNA junctions and confirmed that they were clustered and corresponded to these rearrangements. Our reconstruction of the novel sequences suggests that the chromosomal segments have reorganized randomly to produce a novel rearranged chromosome but that two different mechanisms might be at play. Our results indicate that gamma irradiation can trigger chromoanagenesis, suggesting that this may also occur when natural or induced mutagens cause DNA breaks. We further demonstrate that such events can be tolerated in poplar, and even replicated clonally, providing an attractive system for more in-depth investigations of their consequences.


Subject(s)
Chromothripsis/radiation effects , Gene Rearrangement/radiation effects , Populus/genetics , Biological Evolution , Chromosome Aberrations/radiation effects , Chromosomes/radiation effects , DNA Copy Number Variations/genetics , Gamma Rays/adverse effects , Gene Rearrangement/genetics , Haploidy
15.
Mutat Res ; 823: 111757, 2021.
Article in English | MEDLINE | ID: mdl-34271440

ABSTRACT

High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M4 plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (40Ar18+), carbon (12C6+) and neon (20Ne10+) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.


Subject(s)
Chromosome Aberrations/radiation effects , Genome, Plant/radiation effects , Heavy Ions , Mutation , Oryza/radiation effects , Radiation, Ionizing , Argon/chemistry , Carbon/chemistry , DNA Transposable Elements , Heterozygote , Homologous Recombination , Homozygote , Mutagenesis , Neon/chemistry , Oryza/genetics , Pilot Projects , Tandem Repeat Sequences
16.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299125

ABSTRACT

Medical staff represent the largest group of workers occupationally exposed to ionizing radiation (IR). Chronic exposure to low-dose IR may result in DNA damage and genotoxicity associated with increased risk of cancer. This review aims to identify the genotoxicity biomarkers that are the most elevated in IR-exposed vs. unexposed health workers. A systematic review of the literature was performed to retrieve relevant studies with various biomarkers of genotoxicity. Subsequent meta-analyses produced a pooled effect size for several endpoints. The search procedure yielded 65 studies. Chromosome aberrations (CA) and micronuclei (MN) frequencies were significantly different between IR-exposed and unexposed workers (θpooled = 3.19, 95% CI 1.46-4.93; and θpooled = 1.41, 95% CI 0.97-1.86, for total aberrant cells and MN frequencies, respectively), which was not the case for ring chromosomes and nucleoplasmic bridges. Although less frequently used, stable translocations, sister chromatid exchanges (SCE) and comet assay endpoints were also statistically different between IR-exposed and unexposed workers. This review confirms the relevance of CA and MN as genotoxicity biomarkers that are consistently elevated in IR-exposed vs. unexposed workers. Other endpoints are strong candidates but require further studies to validate their usefulness. The integration of the identified biomarkers in future prospective epidemiological studies is encouraged.


Subject(s)
Biomarkers/analysis , Chromosome Aberrations/radiation effects , DNA Damage , Health Personnel/statistics & numerical data , Occupational Exposure/analysis , Radiation, Ionizing , Dose-Response Relationship, Radiation , Humans , Occupational Exposure/adverse effects
17.
Bull Exp Biol Med ; 171(3): 357-361, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34297287

ABSTRACT

We studied the effect of technogenic radiation on the degree of promoter methylation in genes involved in apoptosis in blood lymphocytes of workers exposed to long-term γ-radiation during their professional activities. Blood samples for the analysis were obtained from 11 conventionally healthy men aged from 54 to 71 years (mean 66 years), workers of the Siberian Group of Chemical Enterprises working experience from 27 to 40 years (mean 30 years); the external exposure dose was 175.88 mSv (158.20-207.81 mSv). In all examined subjects, the degree of methylation of the promoters of apoptosis-related genes ranged from 0.22 to 50.00%. A correlation was found between the degree of methylation of BCLAF1 promoters (p=0.035) with the age of workers, BAX promoters (p=0.0289) with high content of aberrant cells, and APAF1 promoters (p=0.0152) with increased number of dicentric chromosomes. A relationship was found between the dose of external irradiation and the degree of methylation of gene promoters of BAD (p=0.0388), BID (р=0.0426), and HRK (р=0.0101) genes.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Methylation , Epigenesis, Genetic , Lymphocytes/radiation effects , Occupational Exposure/adverse effects , Promoter Regions, Genetic , Radiation Exposure/adverse effects , Aged , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptotic Protease-Activating Factor 1/genetics , Apoptotic Protease-Activating Factor 1/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , BH3 Interacting Domain Death Agonist Protein/metabolism , Chromosome Aberrations/classification , Gamma Rays/adverse effects , Humans , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Radiometry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Siberia , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
18.
Article in English | MEDLINE | ID: mdl-34266630

ABSTRACT

In order to assess the health risk of low-dose radiation to radiation professionals, monitoring is performed through chromosomal aberration analysis and micronuclei (MN) analysis. MN formation has drawbacks for monitoring in the low-dose range. Nucleoplasmic bridge (NPB) analysis, with a lower background level, has good dose-response relationships at both high and relatively low dose ranges. Dicentric and ring chromosomes were analyzed in 199 medical radiation professionals, and NPB/MN yields were analyzed in 205 radiation professionals. The effects of sex, age of donor, types of work, and length of service on these cytogenetic endpoints were also analyzed. The yields of the three cytogenetic endpoints were significantly higher in radiation professionals versus controls. Frequencies of dicentric plus ring chromosomes were affected by length of service. NPB frequencies were influenced by type of work and length of service. MN yields were affected not only by types of work and length of service but also by donor sex and age. In conclusion, dicentric plus ring chromosomes, NPB, and MN can be induced by low-dose radiation in radiation professionals. NPB is a potential biomarker to assess the health risk of occupational low-dose radiation exposure.


Subject(s)
Gamma Rays/adverse effects , Lymphocytes/radiation effects , Occupational Exposure/adverse effects , Radiation Injuries/genetics , Adult , Aged , Cell Nucleus/radiation effects , Chromosome Aberrations/radiation effects , Cytogenetic Analysis/methods , Cytogenetics/methods , DNA Damage/radiation effects , Female , Humans , Male , Micronuclei, Chromosome-Defective/radiation effects , Micronucleus Tests/methods , Middle Aged , Radiation, Ionizing , Young Adult
19.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Article in English | MEDLINE | ID: mdl-34138666

ABSTRACT

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Subject(s)
Chromosomes, Human/genetics , Chromosomes, Human/radiation effects , Radiometry , Chromosome Aberrations/radiation effects , Humans , Radiation Exposure/analysis , Retrospective Studies
20.
Int J Radiat Biol ; 97(9): 1199-1205, 2021.
Article in English | MEDLINE | ID: mdl-34133255

ABSTRACT

PURPOSE: Mutual cooperation of biodosimetry laboratories is required for dose assessments of large numbers of people with potential radiation exposure, as in mass casualty accidents. We launched an intercomparison exercise to validate the performance of biodosimetry laboratories in South Korea. MATERIALS AND METHODS: Participating laboratories shared metaphase images from dicentric chromosome assays (DCAs) and fluorescence in situ hybridization (FISH)-based translocation assays, which were evaluated based on their own scoring protocols. RESULTS: Overall, the coefficient of variation among three laboratories was less than 10% for counting scorable metaphases and chromosomal aberrations. However, there was variation in the interpretation of the International Atomic Energy Agency guidelines for selecting scorable metaphases and identifying chromosomal aberrations. In a technical workshop, scoring discrepancies were extensively discussed in order to harmonize biodosimetry protocols in Korea. In addition, metaphase images with agreement among all participating laboratories were compiled into an image databank, which can be used for education and training of scorers. CONCLUSIONS: These findings and exercises may improve the accuracy of dose assessment, as well as increase the capacity for biodosimetry in South Korea.


Subject(s)
Databases, Factual , Radiometry , Chromosome Aberrations/radiation effects , In Situ Hybridization, Fluorescence , Radiation Dosage , Radiation Exposure , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...