Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.087
Filter
2.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758693

ABSTRACT

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , History, 20th Century , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
3.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652748

ABSTRACT

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Subject(s)
Escherichia coli , Plasmids , Plasmids/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Chromosome Segregation , DNA Primase/metabolism , DNA Primase/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
4.
Nat Commun ; 15(1): 3460, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658616

ABSTRACT

DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial species, driving the hypothesis that a physical linker may tether them together. However, replisome splitting has also been reported in many of the same species, leaving the principles behind replisome organization a long-standing puzzle. Here, by tracking the replisome ß-clamp subunit in live Caulobacter crescentus, we find that rapid DNA segregation can give rise to a second focus which resembles a replisome, but does not replicate DNA. Sister replisomes can remain colocalized, or split apart to travel along DNA separately upon disruption of chromosome inter-arm alignment. Furthermore, chromosome arm-specific replication-transcription conflicts differentially modify replication speed on the two arms, facilitate the decoupling of the two replisomes. With these observations, we conclude that the dynamic chromosome organization flexibly shapes the organization of sister replisomes, and we outline principles which can help to reconcile previously conflicting models of replisome architecture.


Subject(s)
Bacterial Proteins , Caulobacter crescentus , Chromosomes, Bacterial , DNA Replication , Caulobacter crescentus/metabolism , Caulobacter crescentus/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Chromosome Segregation
5.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548820

ABSTRACT

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Subject(s)
Bacillus subtilis , Chromosome Segregation , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chromosome Segregation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Origin Recognition Complex/metabolism , DNA Replication/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Replication Origin
6.
Curr Microbiol ; 81(5): 122, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530471

ABSTRACT

The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Transcriptome , Chromosomes, Bacterial/metabolism , Chromosome Structures/metabolism , Gene Expression Regulation, Bacterial
7.
J Bacteriol ; 206(3): e0021123, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38358278

ABSTRACT

Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.


Subject(s)
Escherichia coli , Ribosomes , Escherichia coli/genetics , Ribosomes/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA/metabolism , RNA, Messenger/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Biophys J ; 123(4): 502-508, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38243596

ABSTRACT

Cell dimensions of rod-shaped bacteria such as Escherichia coli are connected to mass growth and chromosome replication. During their interdivision cycle (τ min), cells enlarge by elongation only, but at faster growth in richer media, they are also wider. Changes in width W upon nutritional shift-up (shortening τ) occur during the division process. The elusive signal directing the mechanism for W determination is likely related to the tightly linked duplications of the nucleoid (DNA) and the sacculus (peptidoglycan), the only two structures (macromolecules) existing in a single copy that are coupled, temporally and spatially. Six known parameters related to the nucleoid structure and replication are reasonable candidates to convey such a signal, all simple functions of the key number of replication positions n(=C/τ), the ratio between the rates of growth (τ-1) and of replication (C-1). The current analysis of available literature-recorded data discovered that, of these, nucleoid complexity NC[=(2n-1)/(n×ln2)] is by far the most likely parameter affecting cell width W. The exceedingly high correlations found between these two seemingly unrelated measures (NC and W) indicate that coupling between them is of major importance to the species' survival. As an exciting corollary, to the best of our knowledge, a new, indirect approach to estimate DNA replication rate is revealed. Potential involvement of DNA topoisomerases in W determination is also proposed and discussed.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Cell Division , DNA Replication , Escherichia coli Proteins/metabolism , Bacteria/genetics , Chromosomes, Bacterial/metabolism , Bacterial Proteins/metabolism
9.
Cell Syst ; 15(1): 19-36.e5, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38157847

ABSTRACT

To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Bacterial Proteins , Escherichia coli , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Cell Cycle/genetics , Cell Division
10.
FEMS Microbiol Rev ; 48(1)2024 01 12.
Article in English | MEDLINE | ID: mdl-38142222

ABSTRACT

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.


Subject(s)
Bacterial Proteins , Chromosome Segregation , Receptors, Fc , DNA, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
11.
Nat Commun ; 14(1): 8339, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097584

ABSTRACT

Genome duplication is essential for the proliferation of cellular life and this process is generally initiated by dedicated replication proteins at chromosome origins. In bacteria, DNA replication is initiated by the ubiquitous DnaA protein, which assembles into an oligomeric complex at the chromosome origin (oriC) that engages both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) to promote DNA duplex opening. However, the mechanism of DnaA specifically opening a replication origin was unknown. Here we show that Bacillus subtilis DnaAATP assembles into a continuous oligomer at the site of DNA melting, extending from a dsDNA anchor to engage a single DNA strand. Within this complex, two nucleobases of each ssDNA binding motif (DnaA-trio) are captured within a dinucleotide binding pocket created by adjacent DnaA proteins. These results provide a molecular basis for DnaA specifically engaging the conserved sequence elements within the bacterial chromosome origin basal unwinding system (BUS).


Subject(s)
DNA Replication , DNA-Binding Proteins , DNA-Binding Proteins/metabolism , Bacterial Proteins/metabolism , Replication Origin , Bacteria/genetics , DNA , DNA, Single-Stranded/genetics , DNA, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
12.
Nucleic Acids Res ; 51(22): 12275-12287, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933842

ABSTRACT

Chromosomal maintenance is vital for the survival of bacteria. In Caulobacter crescentus, chromosome replication initiates at ori and segregation is delayed until the nearby centromere-like region parS is replicated. Our understanding of how this sequence of events is regulated remains limited. The segregation of parS has been shown to involve multiple steps including polar release from anchoring protein PopZ, slow movement and fast ParA-dependent movement to the opposite cell pole. In this study, we demonstrate that ParA's competing attractions from PopZ and from DNA are critical for segregation of parS. Interfering with this balance of attractions-by expressing a variant ParA-R195E unable to bind DNA and thus favoring interactions exclusively between ParA-PopZ-results in cell death. Our data revealed that ParA-R195E's sole interactions with PopZ obstruct PopZ's ability to release the polar anchoring of parS, resulting in cells with multiple parS loci fixed at one cell pole. We show that the inability to separate and segregate multiple parS loci from the pole is specifically dependent on the interaction between ParA and PopZ. Collectively, our results reveal that the initial steps in chromosome segregation are highly regulated.


Subject(s)
Caulobacter crescentus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caulobacter crescentus/metabolism , Centromere/genetics , Centromere/metabolism , Chromosome Segregation , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA/metabolism
13.
Nucleic Acids Res ; 51(21): 11856-11875, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37850647

ABSTRACT

In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex. Magnetic tweezer force spectroscopy on mutant ParB proteins demonstrates that CTP hydrolysis at the N-terminal domain is essential for DNA condensation. Finally, we show that transcribing RNA polymerases can steadily traverse the ParB-DNA partition complex. These findings uncover how ParB forms a stable yet dynamic partition complex for chromosome segregation that induces DNA condensation and segregation while enabling replication and transcription.


Subject(s)
Chromosomes, Bacterial , Bacteria/genetics , Bacterial Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism
14.
PLoS Genet ; 19(9): e1010951, 2023 09.
Article in English | MEDLINE | ID: mdl-37733798

ABSTRACT

The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.


Subject(s)
Bacterial Proteins , Chromosome Segregation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Division/genetics , Chromosome Segregation/genetics , Centromere/genetics , Centromere/metabolism , Bacteria/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
15.
J Photochem Photobiol B ; 245: 112733, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37311303

ABSTRACT

In cells that are exposed to terrestrial sunlight, the indole moiety in the side chain of tryptophan (Trp) can suffer photo/oxidative damage (POD) by reactive oxygen species (ROS) and/or ultraviolet light (UV-B). Trp is oxidized to produce N-formylkynurenine (NFK), a UV-A-responsive photosensitizer that further degenerates into photosensitizers capable of generating ROS through exposure to visible light. Thus, Trp-containing proteins function as both victims, and perpetrators, of POD if they are not rapidly replaced through protein turnover. The literature indicates that protein turnover and DNA repair occur poorly in chromosomal interiors. We contend, therefore, that basic chromosomal proteins (BCPs) that are enveloped by DNA should have evolved to lack Trp residues in their amino acid sequences, since these could otherwise function as 'Trojan horse-type' DNA-damaging agents. Our global analyses of protein sequences demonstrates that BCPs consistently lack Trp residues, although DNA-binding proteins in general do not display such a lack. We employ HU-B (a wild-type, Trp-lacking bacterial BCP) and HU-B F47W (a mutant, Trp-containing form of the same bacterial BCP) to demonstrate that the possession of Trp is deleterious to BCPs and associated chromosomal DNA. Basically, we show that UV-B and UV-A (a) cause no POD in HU-B, but cause extensive POD in HU-B F47W (in vitro), as well as (b) only nominal DNA damage in bacteria expressing HU-B, but extensive DNA damage in bacteria expressing F47W HU-B (in vivo). Our results suggest that Trp-lacking BCPs could have evolved to reduce scope for protein-facilitated, sunlight-mediated damage of DNA by UV-A and visible light, within chromosomal interiors that are poorly serviced by protein turnover and DNA repair machinery.


Subject(s)
Bacterial Proteins , Chromosomes , DNA Damage , Genome , Histones , Oxidative Stress , Sunlight , Tryptophan , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Chromosomes/chemistry , Chromosomes/metabolism , Chromosomes/radiation effects , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/radiation effects , Escherichia coli/genetics , Escherichia coli/radiation effects , Genome/genetics , Genome/radiation effects , Histones/chemistry , Histones/metabolism , Histones/radiation effects , Hydrogen-Ion Concentration , In Situ Nick-End Labeling , Integration Host Factors/chemistry , Oxidation-Reduction/radiation effects , Phenylalanine/genetics , Photosensitizing Agents/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/chemistry , Tryptophan/deficiency , Tryptophan/genetics , Tryptophan/metabolism , Ultraviolet Rays
16.
Nucleic Acids Res ; 51(11): 5603-5620, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37140034

ABSTRACT

Dynamic protein gradients are exploited for the spatial organization and segregation of replicated chromosomes. However, mechanisms of protein gradient formation and how that spatially organizes chromosomes remain poorly understood. Here, we have determined the kinetic principles of subcellular localizations of ParA2 ATPase, an essential spatial regulator of chromosome 2 segregation in the multichromosome bacterium, Vibrio cholerae. We found that ParA2 gradients self-organize in V. cholerae cells into dynamic pole-to-pole oscillations. We examined the ParA2 ATPase cycle and ParA2 interactions with ParB2 and DNA. In vitro, ParA2-ATP dimers undergo a rate-limiting conformational switch, catalysed by DNA to achieve DNA-binding competence. This active ParA2 state loads onto DNA cooperatively as higher order oligomers. Our results indicate that the midcell localization of ParB2-parS2 complexes stimulate ATP hydrolysis and ParA2 release from the nucleoid, generating an asymmetric ParA2 gradient with maximal concentration toward the poles. This rapid dissociation coupled with slow nucleotide exchange and conformational switch provides for a temporal lag that allows the redistribution of ParA2 to the opposite pole for nucleoid reattachment. Based on our data, we propose a 'Tug-of-war' model that uses dynamic oscillations of ParA2 to spatially regulate symmetric segregation and positioning of bacterial chromosomes.


Subject(s)
Adenosine Triphosphatases , Vibrio cholerae , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial/metabolism , DNA , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
17.
Nucleic Acids Res ; 51(9): 4322-4340, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37093985

ABSTRACT

Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.


Subject(s)
Bacillus subtilis , Bacterial Proteins , DNA-Binding Proteins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , Cryoelectron Microscopy , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Replication Origin
18.
Curr Opin Microbiol ; 73: 102289, 2023 06.
Article in English | MEDLINE | ID: mdl-36871427

ABSTRACT

Segregation of genetic material is a fundamental process in biology. In many bacterial species, segregation of chromosomes and low-copy plasmids is facilitated by the tripartite ParA-ParB-parS system. This system consists of a centromeric parS DNA site and interacting proteins ParA and ParB that are capable of hydrolyzing adenosine triphosphate and cytidine triphosphate (CTP), respectively. ParB first binds to parS before associating with adjacent DNA regions to spread outward from parS. These ParB-DNA complexes bind to ParA and, through repetitive cycles of ParA-ParB binding and unbinding, move the DNA cargo to each daughter cell. The recent discovery that ParB binds and hydrolyzes CTP as it cycles on and off the bacterial chromosome has dramatically changed our understanding of the molecular mechanism used by the ParABS system. Beyond bacterial chromosome segregation, CTP-dependent molecular switches are likely to be more widespread in biology than previously appreciated and represent an opportunity for new and unexpected avenues for future research and application.


Subject(s)
Bacterial Proteins , Chromosome Segregation , Bacterial Proteins/metabolism , Plasmids , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
19.
J Bacteriol ; 205(2): e0029622, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36692299

ABSTRACT

Maintaining proper chromosome inheritance after the completion of each cell cycle is paramount for bacterial survival. Mechanistic details remain incomplete for how bacteria manage to retain complete chromosomes after each cell cycle. In this study, we examined the potential roles of the partitioning protein ParA on chromosomal maintenance that go beyond triggering the onset of chromosome segregation in Caulobacter crescentus. Our data revealed that increasing the levels of ParA result in cells with multiple origins of replication in a DnaA-ATP-dependent manner. This ori supernumerary is retained even when expressing variants of ParA that are deficient in promoting chromosome segregation. Our data suggest that in Caulobacter ParA's impact on replication initiation is likely indirect, possibly through the effect of other cell cycle events. Overall, our data provide new insights into the highly interconnected network that drives the forward progression of the bacterial cell cycle. IMPORTANCE The successful generation of a daughter cell containing a complete copy of the chromosome requires the exquisite coordination of major cell cycle events. Any mistake in this coordination can be lethal, making these processes ideal targets for novel antibiotics. In this study, we focused on the coordination between the onset of chromosome replication, and the partitioning protein ParA. We demonstrate that altering the cellular levels of ParA causes cells to accumulate multiple origins of replication in Caulobacter crescentus. Our work provides important insights into the complex regulation involved in the coordination of the bacterial cell cycle.


Subject(s)
Caulobacter crescentus , Caulobacter crescentus/genetics , Chromosome Segregation , Bacterial Proteins/genetics , Chromosomes, Bacterial/metabolism , Cell Division , Cell Cycle/genetics , DNA Replication
20.
Mol Microbiol ; 119(2): 237-251, 2023 02.
Article in English | MEDLINE | ID: mdl-36527185

ABSTRACT

Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Bacterial Proteins/metabolism , Chromosomes, Bacterial/metabolism , Cell Division , Bacteria/metabolism , Escherichia coli/genetics , DNA , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...