Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
Chembiochem ; 25(1): e202300593, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37934005

ABSTRACT

Researchers have established that (+)-7-iso-jasmonic acid ((+)-7-iso-JA) is an intermediate in the production of cis-jasmone (CJ); however, the biosynthetic pathway of CJ has not been fully described. Previous reports stated that CJ, a substructure of pyrethrin II produced by pyrethrum (Tanacetum cinerariifolium), is not biosynthesized through this biosynthetic pathway. To clarify the ambiguity, stable isotope-labelled jasmonates were synthesized, and compounds were applied to apple mint (Mentha suaveolens) via air propagation. The results showed that cis-jasmone is not generated from intermediate (+)-7-iso-JA, and (+)-7-iso-JA is not produced from 3,7-dideydro-JA (3,7-ddh-JA); however, 3,7-didehydro-JA and 4,5-didehydro-7-iso-JA were converted into CJ and JA, respectively.


Subject(s)
Biosynthetic Pathways , Chrysanthemum cinerariifolium , Oxylipins/chemistry , Chrysanthemum cinerariifolium/metabolism , Cyclopentanes/chemistry
2.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513251

ABSTRACT

The present study is based on a multidisciplinary approach carried out for the first time on Anacyclus pyrethrum var. pyrethrum and Anacyclus pyrethrum var. depressus, two varieties from the endemic and endangered medicinal species listed in the IUCN red list, Anacyclus pyrethrum (L.) Link. Therefore, morphological, phytochemical, and genetic characterisations were carried out in the present work. Morphological characterisation was established based on 23 qualitative and quantitative characters describing the vegetative and floral parts. The phytochemical compounds were determined by UHPLC. Genetic characterisation of extracted DNA was subjected to PCR using two sets of universal primers, rbcL a-f/rbcL a-R and rpocL1-2/rpocL1-4, followed by sequencing analysis using the Sanger method. The results revealed a significant difference between the two varieties studied. Furthermore, phytochemical analysis of the studied extracts revealed a quantitative and qualitative variation in the chemical profile, as well as the presence of interesting compounds, including new compounds that have never been reported in A. pyrethrum. The phylogenetic analysis of the DNA sequences indicated a similarity percentage of 91%. Based on the morphological characterisation and congruence with the phytochemical characterisation and molecular data, we can confirm that A. pyrethrum var. pyrethrum and A. pyrethrum var. depressus represent two different taxa.


Subject(s)
Asteraceae , Chrysanthemum cinerariifolium , Chrysanthemum cinerariifolium/genetics , Phylogeny , Plant Extracts/chemistry , Asteraceae/chemistry , Phytochemicals
3.
J Med Chem ; 66(12): 7959-7968, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37309671

ABSTRACT

Pyrethrins from Tanacetum cinerariifolium are natural pesticides that exhibit high knockdown and killing activities against flying insects such as disease-spreading mosquitoes. Despite the increasing demand for pyrethrins, the mechanism of pyrethrin biosynthesis remains elusive. To elucidate it, we for the first time created pyrethrin mimetic phosphonates targeting the GDSL esterase/lipase (GELP or TcGLIP) underpinning pyrethrin biosynthesis. The compounds were synthesized by reacting mono-alkyl or mono-benzyl-substituted phosphonic dichloride with pyrethrolone, the alcohol moiety of pyrethrin I and II, and then p-nitrophenol. n-Pentyl (C5) and n-octyl (C8)-substituted compounds were the most potent of the (S)p,(S)c, and (R)p,(S)c diastereomers, respectively. The (S)-pyrethrolonyl group is more effective than the (R)-pyrethrolonyl group in blocking TcGLIP, consistent with the features predicted by TcGLIP models complexed with the (S)p,(S)c-C5 and (R)p,(S)c-C8 probes. The (S)p,(S)c-C5 compound suppressed pyrethrin production in T. cinerariifolium, demonstrating potential as a chemical tool for unravelling pyrethrin biosynthesis.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Esterases , Lipase , Insecticides/chemistry , Pyrethrins/pharmacology , Pyrethrins/chemistry , Chrysanthemum cinerariifolium/chemistry
4.
Plant Physiol ; 193(1): 356-370, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37325893

ABSTRACT

Flowers are critical for angiosperm reproduction and the production of food, fiber, and pharmaceuticals, yet for unknown reasons, they appear particularly sensitive to combined heat and drought stress. A possible explanation for this may be the co-occurrence of leaky cuticles in flower petals and a vascular system that has a low capacity to supply water and is prone to failure under water stress. These characteristics may render reproductive structures more susceptible than leaves to runaway cavitation-an uncontrolled feedback cycle between rising water stress and declining water transport efficiency that can rapidly lead to lethal tissue desiccation. We provide modeling and empirical evidence to demonstrate that flower damage in the perennial crop pyrethrum (Tanacetum cinerariifolium), in the form of irreversible desiccation, corresponds with runaway cavitation in the flowering stem after a combination of heat and water stress. We show that tissue damage is linked to greater evaporative demand during high temperatures rather than direct thermal stress. High floral transpiration dramatically reduced the soil water deficit at which runaway cavitation was triggered in pyrethrum flowering stems. Identifying runaway cavitation as a mechanism leading to heat damage and reproductive losses in pyrethrum provides different avenues for process-based modeling to understand the impact of climate change on cultivated and natural plant systems. This framework allows future investigation of the relative susceptibility of diverse plant species to reproductive failure under hot and dry conditions.


Subject(s)
Chrysanthemum cinerariifolium , Pyrethrins , Dehydration , Hot Temperature , Flowers , Plant Leaves , Xylem , Plant Transpiration
5.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240429

ABSTRACT

The use of illicit substances continues to pose a substantial threat to global health, affecting millions of individuals annually. Evidence suggests the existence of a 'brain-gut axis' as the involving connection between the central nervous system and gut microbiome (GM). Dysbiosis of the GM has been associated with the pathogenesis of various chronic diseases, including metabolic, malignant, and inflammatory conditions. However, little is currently known about the involvement of this axis in modulating the GM in response to psychoactive substances. In this study, we investigated the effect of MDMA (3,4-methylenedioxymethamphetamine, "Ecstasy")-dependence on the behavioral and biochemical responses, and the diversity and abundance of the gut microbiome in rats post-treated (or not) with aqueous extract of Anacyclus pyrethrum (AEAP), which has been reported to exhibit anticonvulsant activity. The dependency was validated using the conditioned place preference (CPP) paradigm, behavioral, and biochemical tests, while the gut microbiota was identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The CPP and behavioral tests confirmed the presence of MDMA withdrawal syndrome. Interestingly, treatment with AEAP led to a compositional shift in the GM compared to the MDMA-treated rats. Specifically, the AEAP group yielded a higher relative abundance of Lactobacillus and Bifidobacter, while animals receiving MDMA had higher levels of E. coli. These findings suggest that A. pyrethrum therapy may directly modulate the gut microbiome, highlighting a potential target for regulating and treating substance use disorders.


Subject(s)
Chrysanthemum cinerariifolium , Gastrointestinal Microbiome , N-Methyl-3,4-methylenedioxyamphetamine , Rats , Animals , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Escherichia coli , Affect
6.
Phytopathology ; 113(10): 1946-1958, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37129263

ABSTRACT

Emergence of pathogens with decreased sensitivity to succinate dehydrogenase inhibitor fungicides is a global agronomical issue. Analysis of Didymella tanaceti isolates (n = 173), which cause tan spot of pyrethrum (Tanacetum cinerariifolium), collected prior to (2004 to 2005) and after (2009, 2010, 2012, and 2014) the commercial implementation of boscalid in Tasmanian pyrethrum fields identified that insensitivity developed over time and has become widespread. To evaluate temporal change, isolates were characterized for frequency of mutations in the succinate dehydrogenase (Sdh) B, C, and D subunits associated with boscalid resistance, mating type, and SSR genotype. All isolates from 2004 and 2005 exhibited wild-type (WT) Sdh alleles. Seven known Sdh substitutions were identified in isolates collected from 2009 to 2014. In 2009, 60.7% had Sdh substitutions associated with boscalid resistance in D. tanaceti. The frequency of WT isolates decreased over time, with no WT isolates identified in 2014. The frequency of the SdhB-H277Y genotype increased from 10.7 to 77.8% between 2009 and 2014. Genotypic evidence suggested that a shift in the population structure occurred between 2005 and 2009, with decreases in gene diversity (uh; 0.51 to 0.34), genotypic evenness (E5; 0.96 to 0.67), genotypic diversity (G; 9.3 to 6.8), and allele frequencies. No evidence was obtained to support the rapid spread of Sdh genotypes by clonal expansion of the population. Thus, insensitivity to boscalid has developed and become widespread within a diverse population within 4 years of usage. These results suggest that D. tanaceti can disperse insensitivity through repeated frequent mutation, sexual recombination, or a combination of both.


Subject(s)
Chrysanthemum cinerariifolium , Fungicides, Industrial , Succinic Acid , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Plant Diseases , Fungicides, Industrial/pharmacology , Succinates , Genetic Structures , Drug Resistance, Fungal/genetics
7.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108541

ABSTRACT

Natural pyrethrins have high application value, and are widely used as a green pesticide in crop pest prevention and control. Pyrethrins are mainly extracted from the flower heads of Tanacetum cinerariifolium; however, the natural content is low. Therefore, it is essential to understand the regulatory mechanisms underlying the synthesis of pyrethrins through identification of key transcription factors. We identified a gene encoding a MYC2-like transcription factor named TcbHLH14 from T. cinerariifolium transcriptome, which is induced by methyl jasmonate. In the present study, we evaluated the regulatory effects and mechanisms of TcbHLH14 using expression analysis, a yeast one-hybrid assay, electrophoretic mobility shift assay, and overexpression/virus-induced gene silencing experiments. We found that TcbHLH14 can directly bind to the cis-elements of the pyrethrins synthesis genes TcAOC and TcGLIP to activate their expression. The transient overexpression of TcbHLH14 enhanced expression of the TcAOC and TcGLIP genes. Conversely, transient silencing of TcbHLH14 downregulated the expression of TcAOC and TcGLIP and reduced the content of pyrethrins. In summary, these results indicate that the potential application of TcbHLH14 in improving the germplasm resources and provide a new insight into the regulatory network of pyrethrins biosynthesis of T. cinerariifolium to further inform the development of engineering strategies for increasing pyrethrins contents.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Pyrethrins/metabolism , Chrysanthemum cinerariifolium/genetics , Insecticides/metabolism , Transcription Factors/metabolism
8.
Environ Toxicol Pharmacol ; 99: 104114, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37001686

ABSTRACT

Biopesticides are natural compounds considered more safe and sustainable for the environment. However, it is also important to evaluate the potential risk in non-target organisms. Pyrethrum extract (PE) is a biopesticide, widely used for agriculture, veterinary, and aquaculture. This work aimed to evaluate acute (0.6 - 40.0 µg/L; 96 h; E(L)C50 toxicity) and sub-chronic (0.7 - 1.1 µg/L; 10 d; life-history parameters) effects of PE on Daphnia magna. Moreover, a biomarkers approach using antioxidant and biotransformation capacity, lipid peroxidation (LPO), neurotoxicity, and energy reserves content were evaluated. Acute effects (mortality, changes in swimming behavior, oxidative stress, lipid peroxidation, neurotoxicity) were recorded with the increase in PE concentration. Sub-chronic assay showed an increase in energy reserves content, antioxidant parameters, and LPO demonstrating that PE unbalances oxidative metabolism. This study can conclude that PE potentiates toxic effects in D. magna and demonstrates the vulnerability of a non-target organism to PE that is considered environmentally safe.


Subject(s)
Chrysanthemum cinerariifolium , Pyrethrins , Water Pollutants, Chemical , Animals , Antioxidants/pharmacology , Biological Control Agents/metabolism , Biological Control Agents/pharmacology , Daphnia , Chrysanthemum cinerariifolium/metabolism , Oxidative Stress , Pyrethrins/toxicity , Pyrethrins/metabolism , Water Pollutants, Chemical/metabolism
9.
Immunobiology ; 228(3): 152379, 2023 05.
Article in English | MEDLINE | ID: mdl-36990039

ABSTRACT

Type 2 T helper (Th2) cells-mediated immune response plays a pivotal role in the pathogenesis of cough variant asthma (CVA), and this study aims to determine the effect and mechanism of ethanol extract of Anacyclus pyrethrum root (EEAP) on regulating Th2 response in CVA. Peripheral blood mononuclear cells (PBMCs) collected from patients with CVA, and naive CD4+T cells induced by Th2-polarizing medium were administrated with EEAP. Interestingly, through conducting flow cytometry and enzyme linked immunosorbent assay method, we found that EEAP significantly alleviated Th2 skewing and increased Th1 response in these two kinds of cells. Results of western blot assay and quantitative reverse transcription PCR displayed that EEAP suppressed the expression of TLR4, total NF-κB p65, nuclear NF-κB p65 and the downstream genes. Subsequently, we proved that TLR4 antagonist E5564 played a similar improvement role to EEAP in Th1/Th2 imbalance, while combination of TLR4 agonist LPS and EEAP abolished the inhibitory effect of EEAP on Th2 polarization in Th2-induced CD4+T cells. Finally, CVA models induced by ovalbumin and capsaicin were established in cavies, and data showed that EEAP also improved Th1/Th2 imbalance in CVA in vivo, manifested in the increase of IL4+CD4+T cell ratio, Th2 cytokines (IL-4, IL-5, IL-6 and IL-13) and the decrease of Th1 cytokines (IL-2 and IFN-γ). Co-treatment of LPS and EEAP counteracted the inhibition of EEAP on Th2 response in CVA model cavies. Moreover, we found that EEAP mitigated airway inflammation and hyper-responsiveness in vivo, which was abolished by the combined application of LPS. In a word, EEAP restores Th1/Th2 balance in CVA through restraining the TLR4/NF-кB signaling pathway. This study may contribute to the clinical application of EEAP in CVA-related disease.


Subject(s)
Asthma , Chrysanthemum cinerariifolium , Humans , Animals , Guinea Pigs , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Chrysanthemum cinerariifolium/metabolism , Th1 Cells , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Cough/metabolism , Th2 Cells , Cytokines/metabolism , Signal Transduction
10.
Open Vet J ; 13(1): 99-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36777434

ABSTRACT

Background: Oral squamous cell carcinoma (OSCC) is a malignant tumor that can rapidly infiltrate the oral epithelial tissue and cause high mortality worldwide because the available therapies are less effective. Chrysanthemum cinerariifolium leaf contains secondary metabolites as anti-inflammatory, antioxidant, anticancer, and antimutagenic. Aims: The study aimed to analyze the ethanolic extract of C. cinerariifolium leaf in reducing proliferation (Ki-67) and the degree of dysplasia in OSCC rats. Methods: This study used male Sprague Dawley induced by 7,12-dimethylbenz(a)anthracene (DMBA) 0.5% and divided into five treatment groups, namely positive control/C+ (sick), negative control/C- (healthy), and treatment group induced with DMBA and given extract C. cinerariifolium leaf with successive doses of T1, T2, and T3 (50, 100, and 200 mg/kg bw). The oral epithelium was stained with hematoxylin and eosin and immunohistochemically stained with a Ki-67 monoclonal antibody. The statistical analysis utilizes the one-way analysis of variance test. Results: The results showed that T1 at a dose of 200 mg/kg bw could significantly reduce Ki-67 expression and the degree of oral epithelial dysplasia (OED; p < 0.05) close to healthy controls. Conclusion: The conclusion shows that C. cinerariifolium leaf extract can be a therapy against OSCC by decreasing cell proliferation and the degree of OED.


Subject(s)
Chrysanthemum cinerariifolium , Mouth Neoplasms , Plant Extracts , Squamous Cell Carcinoma of Head and Neck , Animals , Male , Rats , Cell Proliferation , Chrysanthemum cinerariifolium/chemistry , Ki-67 Antigen , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Rats, Sprague-Dawley , Squamous Cell Carcinoma of Head and Neck/chemically induced , Squamous Cell Carcinoma of Head and Neck/drug therapy , Plant Extracts/pharmacology , Disease Models, Animal
11.
Comb Chem High Throughput Screen ; 26(10): 1822-1835, 2023.
Article in English | MEDLINE | ID: mdl-36366841

ABSTRACT

BACKGROUND: Pyrethrum tatsienense (Bureau & Franch.) Ling ex C. Shih (PTLCS) belongs to the family Compositae, which is a perennial medicinal plant mainly distributed in the Qinghai-Tibet Plateau of China. This review provides a comprehensive summary of the ethnopharmacology, phytochemistry, and pharmacology of PTLCS. This review offers valuable references and guidance for researching PTLCS in depth. METHODS: The related references of PTLCS were retrieved from an online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on. RESULTS: PTLCS is widely reported for treating headaches, head injuries, traumatic injuries, anabrosis, impetigo, hepatitis, and other diseases in the medical field. Phytochemical research revealed that this plant contained flavonoid aglycones, flavonoid glycosides, xanthones, triterpenoids, coumarins, polyacetylenes, volatile oils, and other compounds. Meanwhile, PTLCS exhibited extensive pharmacological activities including anti-cardiac ischemia, anti-hypoxia, hepatoprotective, anti- inflammatory and analgesic, and antioxidant activities. CONCLUSIONS: PTLCS is widely used as a Tibetan medicine, which has a variety of chemicals with diverse bioactivities. Therefore, further studies are necessary to perform on the PTLCS to assay biological activities, discover their bioactive constituents, and reveal pharmacological mechanisms. This review may supply an important theoretical basis and valuable reference for in-depth research and exploitations of PTLCS.


Subject(s)
Chrysanthemum cinerariifolium , Chrysanthemum , Ethnopharmacology , Plant Extracts/chemistry , China , Phytochemicals/pharmacology , Phytotherapy
12.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293043

ABSTRACT

Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.


Subject(s)
Chrysanthemum cinerariifolium , Pyrethrins , Chrysanthemum cinerariifolium/genetics , Chrysanthemum cinerariifolium/metabolism , Pyrethrins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Abscisic Acid/metabolism , Terpenes/metabolism , Salicylic Acid/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
13.
J Cosmet Dermatol ; 21(12): 7116-7130, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36136047

ABSTRACT

BACKGROUND: Plants containing high phenolic and flavonoids contents used widely as antioxidant agent by reducing skin photo damaging effects and play important role in skin rejuvenating. AIMS: This study was performed to explore the cosmetic effects of Anacyclus Pyrethrum extract and to develop stable oil in water (O/W) emulsion base gel loaded with Anacyclus Pyrethrum 10% extract. OBJECTIVE: To explore and quantify phenols and flavonoids present in Anacyclus Pyrethrum extract and determine its cosmetic effects on human skin. METHOD: Emulgel formulation were developed by mixing o/w emulsion with carbopol gelling agent loaded with Anacyclus Pyrethrum (AP) extract and base gel without AP extract. In vitro study was done for the evaluation of color change, liquefaction, hardness, and pH change at different storage condition for the duration of 12 weeks. For in vivo study, emulgel applied on 13 healthy human volunteer's cheeks to evaluate its cosmetics effects and compared with placebo (base). Facial parameters including skin melanin, redness, sebum, moisture content, and skin elasticity were determined by using mexameter, sebumeter, corneometer, elastometer for the study duration of 12 weeks. RESULTS: Total phenolic content in Anacyclus Pyrethrum extract was 80.04 ± 0.0043 mg GAE/g, and flavonoids were 54.64 ± 0.0076 mg QE/g. Anacyclus Pyrethrum extract found significantly effective in reducing skin photo-damage effects (p ≤ 0.05) as compared base gel. CONCLUSION: Anacyclus Pyrethrum extract being rich source of flavonoid and phenolic content, acts as strong antioxidant to protect skin against photo-damaging effect and improve skin conditions.


Subject(s)
Asteraceae , Chrysanthemum cinerariifolium , Cosmeceuticals , Cosmetics , Humans , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Emulsions , Asteraceae/chemistry , Flavonoids/pharmacology , Phenols/pharmacology
14.
Transgenic Res ; 31(6): 625-635, 2022 12.
Article in English | MEDLINE | ID: mdl-36006545

ABSTRACT

Pyrethrins are widely accepted as natural insecticides and offers several advantages of synthetic compounds, i.e., rapidity of action, bioactivity against a wide range of insects, comparatively lesser costs and the like. A significant source of pyrethrin is Chrysanthemum cinerariaefolium; cultivated in restricted areas, as a result; natural pyrethrins are not produced in a large amount that would meet the ongoing global market demand. However, increasing its content and harnessing the desired molecule did not attract much attention. To enhance the production of pyrethrins in Tagetes erecta, the Chrysanthemyl diphosphate synthase (CDS) gene was overexpressed under the promoter CaMV35S. Hypocotyls were used as explant for transformation, and direct regeneration was achieved on MS medium with 1.5 mg L-1 BAP and 5.0 mg L-1 GA3. Putative transgenics were screened on 10 mgL-1 hygromycin. After successful regeneration, screening and rooting process, the transgenic plants were raised inside the glass house and PCR amplification of CDS and HYG-II was used to confirm the transformation. Biochemical analysis using HPLC demonstrated the expression levels of the pyrethrin, which was approx. twenty-six fold higher than the non-transformed Tagetes plant.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Tagetes , Pyrethrins/chemistry , Pyrethrins/metabolism , Tagetes/genetics , Tagetes/metabolism , Diphosphates/metabolism , Chrysanthemum cinerariifolium/genetics , Chrysanthemum cinerariifolium/metabolism , Insecticides/metabolism
15.
J Agric Food Chem ; 70(28): 8645-8652, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35793553

ABSTRACT

Natural pesticides pyrethrins biosynthesized by Tanacetum cinrerariifolium are biodegradable and safer insecticides for pest insect control. TcGLIP, a GDSL lipase underpinning the ester bond formation in pyrethrins, exhibits high stereo-specificity for acyl-CoA and alcohol substrates. However, it is unknown how the enzyme recognizes the other structural features of the substrates and whether such specificity affects the product amount and composition in T. cinrerariifolium. We report here that the cysteamine moiety in (1R,3R)-chrysanthemoyl CoA and the conjugated diene moiety in (S)-pyrethrolone play key roles in the interactions with TcGLIP. CoA released from chrysanthemoyl CoA in the pyrethrin-forming reaction reduces the substrate affinity for TcGLIP by feedback inhibition. (S)-Pyrethrolone shows the highest catalytic efficiency for TcGLIP, followed by (S)-cinerolone and (S)-jasmololone, contributing, at least in part, to determine the pyrethrin compositions in T. cinerariifolium.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Chrysanthemum cinerariifolium/chemistry , Coenzyme A , Insecticides/chemistry , Lipase/metabolism , Pyrethrins/chemistry , Substrate Specificity
16.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806039

ABSTRACT

The plant Tanacetum coccineum (painted daisy) is closely related to Tanacetum cinerariifolium (pyrethrum daisy). However, T. cinerariifolium produces large amounts of pyrethrins, a class of natural insecticides, whereas T. coccineum produces much smaller amounts of these compounds. Thus, comparative genomic analysis is expected to contribute a great deal to investigating the differences in biological defense systems, including pyrethrin biosynthesis. Here, we elucidated the 9.4 Gb draft genome of T. coccineum, consisting of 2,836,647 scaffolds and 103,680 genes. Comparative analyses of the draft genome of T. coccineum and that of T. cinerariifolium, generated in our previous study, revealed distinct features of T. coccineum genes. While the T. coccineum genome contains more numerous ribosome-inactivating protein (RIP)-encoding genes, the number of higher-toxicity type-II RIP-encoding genes is larger in T. cinerariifolium. Furthermore, the number of histidine kinases encoded by the T. coccineum genome is smaller than that of T. cinerariifolium, suggesting a biological correlation with pyrethrin biosynthesis. Moreover, the flanking regions of pyrethrin biosynthesis-related genes are also distinct between these two plants. These results provide clues to the elucidation of species-specific biodefense systems, including the regulatory mechanisms underlying pyrethrin production.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Tanacetum , Chrysanthemum cinerariifolium/genetics , Chrysanthemum cinerariifolium/metabolism , Genomics , Insecticides/metabolism , Pyrethrins/metabolism , Tanacetum/metabolism
17.
Metab Eng ; 72: 188-199, 2022 07.
Article in English | MEDLINE | ID: mdl-35339691

ABSTRACT

Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of ß-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of ß-phellandrene and the representative sesquiterpene ß-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.


Subject(s)
Chrysanthemum cinerariifolium , Insecticides , Pyrethrins , Solanum lycopersicum , Animals , Chrysanthemum cinerariifolium/genetics , Insecticides/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Mammals/metabolism , Monoterpenes/metabolism , Plant Leaves/metabolism , Pyrethrins/metabolism , Trichomes/genetics , Trichomes/metabolism
18.
Toxicol Mech Methods ; 32(5): 373-384, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35321623

ABSTRACT

Pyrethrum extract (PE), an important natural bioinsecticide, is extensively used across the world to control pest insects in homes and farms. The aim of this study was to evaluate the potential cytotoxic effect of PE using MTT assay and genotoxic effect using micronucleus (MN) assay. The changes in the expressions of the apoptosis genes in mRNA levels were also investigated using Real-Time qPCR analysis as well as the ratio of apoptotic/necrotic cells with AnnexinV-FITC/Propidium iodide (PI) assay in HepG2 cells. PE markedly suppressed the cell proliferation on HepG2 cells. It significantly increased the frequency of micronucleus (MN) at 500 and 1000 µg/mL. PE also induced the percentage of the cell population of late apoptotic/necrotic cells (FITC + PI+) and necrotic cells (FITC- PI+), especially at 4000 µg/mL analyzed by flow cytometry. PE caused significant fold changes in the expression of several apoptotic genes including APAF1, BIK, BAX, BAD, BID, MCL-1, CASP3, CASP1, CASP2, FAS, FADD and TNFRSF1A. In particular, the pro-apoptotic gene Hrk (Harakiri) remarkably and dose-dependently was overexpressed of the mRNA level. As a result, PE may exhibit cyto-genotoxic effects, especially at higher concentrations and lead to significant changes in the expression of mRNA levels in several apoptotic genes.HighlightsNatural bioinsecticide PE exhibited a cytotoxic effect in HepG2 cells.PE significantly induced the micronucleus (MN) frequency at 500 and 1000 µg/mL.This bioinsecticide induced cell death and it lead to significant fold changes in the expression of mRNA levels in several apoptotic genes in HepG2 cells.The highest increase of the expression of mRNA levels was determined in Hrk (Harakiri) at 4000 µg/mL.


Subject(s)
Antineoplastic Agents , Carcinoma , Chrysanthemum cinerariifolium , Antineoplastic Agents/pharmacology , Apoptosis , Fluorescein-5-isothiocyanate/pharmacology , Hep G2 Cells , Humans , Necrosis , Plant Extracts/toxicity , RNA, Messenger/genetics
19.
Acta Biochim Pol ; 69(1): 123-129, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35225498

ABSTRACT

The active ingredients of the Pyretrin-D trichological cosmetic series, namely benzyl benzoate, Dalmatian pyrethrum daisy, Cistus incanus, tea tree oil and geranium oil, almond acid and arginine were tested in respect to the treatment of seborrheic dermatitis. The paper describes the application of Dalmatian pyrethrum daisy and the excipient. Methods and devices used to confirm the effectiveness of the tested formulations included the TrichoScope Polarizer Dino-Lite (MEDL4HM) and the scanning electron microscope (SEM).


Subject(s)
Chrysanthemum cinerariifolium/chemistry , Dermatitis, Seborrheic/drug therapy , Excipients/therapeutic use , Plant Extracts/therapeutic use , Administration, Cutaneous , Adolescent , Adult , Arginine/therapeutic use , Benzoates/therapeutic use , Cistus/chemistry , Cosmetics/therapeutic use , Female , Geranium/chemistry , Humans , Microscopy, Electron, Scanning/methods , Middle Aged , Prunus dulcis/chemistry , Tea Tree Oil/therapeutic use , Young Adult
20.
Planta Med ; 88(5): 380-388, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34352920

ABSTRACT

Pyrethrum pulchrum is a rare Mongolian plant species that has been traditionally used as an ingredient in various remedies. Bioactivity-guided fractionation performed on the methanol extract of its aerial parts led to the isolation of 2 previously undescribed guaianolide-type sesquiterpene lactones, namely 1ß,10ß-epoxy-8α-hydroxyguaia-3,11(13)-dien-6,12-olide (1: ) and 1,8,10-trihydroxyguaia-3,11(13)-dien-6,12-olide (2: ), along with the isolation or chromatographic identification of 11 compounds, arglabin (3: ), 3ß-hydroxycostunolide (4: ), isocostic acid (5: ), (E)-9-(2-thienyl)-6-nonen-8-yn-3-ol (6: ), (Z)-9-(2-thienyl)-6-nonen-8-yn-3-ol (7: ), N 1,N 5,N 10,N 14-tetra-p-coumaroyl spermine (8: ), chlorogenic acid (9: ), 3,5-di-O-caffeoylquinic acid (10: ), 3,5-di-O-caffeoylquinic acid methyl ester (11: ), 3,4-di-O-caffeoylquinic acid (12: ), and tryptophan (13: ). Their structures were assigned based on spectroscopic and spectrometric data. The antimicrobial, antiproliferative and cytotoxic activities of selected compounds were evaluated. The new compounds showed weak to moderate antimicrobial activity. Arglabin (3: ), the major sesquiterpene lactone found in the methanol extract of P. pulchrum, exhibited the highest activity against human cancer lines, while compound 1: also possesses significant antiproliferative activity against leukemia cells.


Subject(s)
Asteraceae , Chrysanthemum cinerariifolium , Sesquiterpenes , Asteraceae/chemistry , Lactones/chemistry , Methanol , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...