Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31332076

ABSTRACT

Onychomycosis is a nail fungal infection, mostly caused by dermatophytes. The treatment efficacy is impaired by difficulties of reaching effective drug levels at the site of infection; frequent relapses occur after cessation of antifungal therapy. The aim of the study was to compare two commercial products containing ciclopirox or efinaconazole for antimycotic activity and antifungal drug resistance. A study of permeation and penetration through bovine hoof membranes, as a nail model, was performed to evaluate the antimycotic activity of permeates against clinical isolates of selected fungi, and the frequency of spontaneous in vitroTrichophyton rubrum-resistant strains was assessed by broth microdilution assays. The results suggest that ciclopirox creates a depot in the nail, leading to a gradual release of the drug over time with action on both the nail plate and bed. Conversely, efinaconazole, mildly interacting with nail keratin, mainly exerts its antifungal activity in the nail bed. However, in the case of T. rubrum, the antifungal activities of the drugs in the nail plate seem comparable. Finally, efinaconazole showed a potential for induction of resistance in T. rubrum, which may limit its efficacy over time. Ciclopirox did not show any potential to induce resistance in T. rubrum and appears endowed with a more complete activity than efinaconazole in the management of onychomycosis as the nail keratin is a substrate for the growth of fungal cells, and the availability of drug in large concentration just in the nail bed may not be sufficient to guarantee the complete eradication of pathogens.


Subject(s)
Antifungal Agents/pharmacology , Ciclopirox/pharmacology , Drug Resistance, Fungal/drug effects , Hoof and Claw/drug effects , Triazoles/pharmacology , Trichophyton/drug effects , Animals , Antifungal Agents/pharmacokinetics , Biological Transport , Cattle , Ciclopirox/pharmacokinetics , Drug Resistance, Fungal/genetics , Hoof and Claw/metabolism , Hoof and Claw/microbiology , Humans , Keratins/metabolism , Microbial Sensitivity Tests , Microtomy , Models, Biological , Mutation , Nails/drug effects , Nails/metabolism , Nails/microbiology , Permeability , Protein Binding , Tinea/microbiology , Triazoles/pharmacokinetics , Trichophyton/genetics , Trichophyton/growth & development , Trichophyton/isolation & purification
2.
Mycoses ; 62(6): 494-501, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30667544

ABSTRACT

BACKGROUND: Studies investigating the penetration of amorolfine through the nail have shown the highest concentration in the uppermost layer and measurable antifungal activity even in the lower layers of the nail. OBJECTIVES: This pilot, ex vivo study compared the penetration of antifungal concentrations of amorolfine 5% nail lacquer in different layers of healthy, human cadaver toenails with that of terbinafine 10% nail solution, ciclopirox 8% nail lacquer and naftifine 1% nail solution. Moreover, the effect of nail filing prior to application on the penetration of amorolfine 5% was assessed. METHODS: Unfiled (n = 3) and filed (n = 3) nails were used for each antimycotic agent and amorolfine 5% nail lacquer, respectively. Twenty-four hours after topical application, the nails were sliced (10 µm), solubilised and added to agar plates seeded with Trichophyton rubrum. Zones of growth inhibition were measured. RESULTS: Only amorolfine penetrated the nails at sufficient concentrations to inhibit growth of T rubrum at different nail depths. In contrast, the comparators did not show antifungal efficacy. Nail filing resulted in larger zones of inhibition for amorolfine compared with those of intact nails. CONCLUSIONS: Unlike its comparators, a single application of amorolfine 5% nail lacquer resulted in antifungal efficacy within the nail plate. Nail filing increased the antifungal efficacy of amorolfine 5% nail lacquer.


Subject(s)
Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Lacquer , Morpholines/administration & dosage , Morpholines/pharmacokinetics , Nails/chemistry , Administration, Topical , Allylamine/administration & dosage , Allylamine/analogs & derivatives , Allylamine/pharmacokinetics , Cadaver , Ciclopirox/administration & dosage , Ciclopirox/pharmacokinetics , Humans , Pilot Projects , Terbinafine/administration & dosage , Terbinafine/pharmacokinetics , Trichophyton/drug effects , Trichophyton/growth & development
3.
Sci Transl Med ; 10(459)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232228

ABSTRACT

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Subject(s)
Ciclopirox/therapeutic use , Drug Repositioning , Porphyria, Erythropoietic/drug therapy , Allosteric Site , Animals , Biophysical Phenomena , Cell Line , Ciclopirox/pharmacokinetics , Disease Models, Animal , Homeostasis , Mice , Phenotype , Porphyria, Erythropoietic/enzymology , Porphyria, Erythropoietic/pathology , Uroporphyrinogen III Synthetase/antagonists & inhibitors , Uroporphyrinogen III Synthetase/chemistry , Uroporphyrinogen III Synthetase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...