Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Vet Res ; 19(1): 26, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717886

ABSTRACT

BACKGROUND: Porcine circovirus type 2 (PCV2) is one of the major pathogens commonly found in pigs, which causes immunosuppression and apoptosis. Vaccination and a single drug cannot totally prevent and treat PCV2 infection. Our previous in vitro study reported that the synergistic anti-PCV2 effect of Matrine and Osthole was better than that of Matrine or Osthole alone, This study was aimed to evaluate the synergistic anti-PCV2 effect as well as the underline molecular mechanism of Matrine and Osthole in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups namely control group, PCV2 infected, Matrine combined with Osthole high dose treatment (40 mg/kg + 12 mg/kg), medium dose treatment (20 mg/kg + 6 mg/kg), low dose treatment (10 mg/kg + 3 mg/kg), Matrine treatment (40 mg/kg), Osthole treatment (12 mg/kg) and Ribavirin positive control (40 mg/kg) groups. PCV2 was intraperitoneally (i.p.) injected in all mice except the control group. 5 days of post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for the next 5 consecutive days. RESULTS: The synergistic inhibitory effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly heigher than that of Matrine and Osthole alone. The expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax proteins were significantly reduced, while that of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological changes caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. CONCLUSIONS: The synergistic anti-apoptotic effect of Matrine and Osthole was better than their alone effect, Both Matrine and Osthole had directly inhibited the expression of PCV2 Cap and the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provided a new insight to control PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.


Subject(s)
Circoviridae Infections , Circovirus , Matrines , Animals , Mice , Apoptosis , Circoviridae Infections/drug therapy , Circoviridae Infections/pathology , Endoplasmic Reticulum Chaperone BiP , Matrines/pharmacology , Ribavirin/pharmacology , Spleen
2.
Res Vet Sci ; 152: 446-457, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36148714

ABSTRACT

Recently, outbreaks of duck circovirus (DuCV) are frequently occurring worldwide due to secondary infections caused by post infection-induced immunosuppression. Due to a lack of preventive drugs and vaccines, the waterfowl industry losses are ever increasing. In this study, we extracted Astragalus polysaccharides (APS), pine pollen polysaccharides (PPPS), Aloe vera polysaccharides (AVE), and Ficus carica polysaccharides (FCPS) from Astragalus, pine pollen, aloe, and F. carica leaves, respectively. We randomly divided 150 one-day-old Cherry Valley ducks into five groups, which were inoculated with the DuCV solution and orally administered APS, PPPS, AVE, FCPS, and phosphate buffer saline (PBS), respectively. We collected the duck immune organs and serum samples at 8, 16, 24, 32, 40, and 48 days post-infection (dpi). Using clinical symptom analysis, molecular biology experiments, and serological experiments, we proved that plant polysaccharides could (a) improve the duck immunity, (b) reduce the viral load, and (c) mitigate DuCV-induced damage to immune organs, with both APS and PPPS having significant effects. Moreover, we detected viral load and cytokines within the first 8 dpi. Since the body's innate immunity could inhibit viral replication within five days of virus infection, 1-5 dpi was the best treatment time. Among the four polysaccharides showing in vitro anti-apoptotic activity, APS and PPPS significantly inhibited the DuCV infection-induced apoptosis of peripheral blood lymphocytes. Overall, since our findings show APS and PPPS having significant anti-DuCV effects both in vivo and in vitro, they can be promising candidates for preventing DuCV infection in ducks.


Subject(s)
Circoviridae Infections , Circovirus , Poultry Diseases , Animals , Antiviral Agents , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/epidemiology , Circoviridae Infections/drug therapy , Circoviridae Infections/veterinary , Circoviridae Infections/epidemiology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
3.
Vet Med Sci ; 8(2): 700-709, 2022 03.
Article in English | MEDLINE | ID: mdl-34914190

ABSTRACT

Arctigenin (ACT) is a novel anti-inflammatory lignan extracted from Arctium lappa L, a herb commonly used in traditional Chinese herbal medicine. In this study, we investigated the molecular mechanism whereby ACT inhibits PCV2 infection-induced proinflammatory cytokine production in vitro and in vivo. We observed that in PCV2 infection+ACT treated PK-15 cells, proinflammatory cytokine production was significantly reduced, compared to the PCV2-infected cells. The transfection and luciferase reporter assay confirmed that ACT suppressed NF-κB signalling pathway activation following PCV2 infection in PK-15 cells. Furthermore, western blotting demonstrated that ACT suppressed the NF-κB signal pathway in PCV2 infection-stimulated PK-15 cells by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation. BALB/c mice were used as a model to evaluate the anti-inflammatory effect of ACT in vivo. We found that the BALB/c mice inoculated with PCV2 infection + ACT treated showed a significant reduction of proinflammatory cytokine production in serum, lung and spleen tissue, compared to the PCV2-infected mice. Western blotting confirmed that ACT suppressed the NF-κB signal pathway in PCV2-infected mice by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation in lung tissue. Our studies first demonstrate that ACT inhibits PCV2 infection-induced proinflammatory cytokine production by suppressing the phosphorylation and nuclear translocation of NF-κB in vitro and in vivo. These results will help further develop ACT as a Traditional Chinese herbal medicine remedy in the treatment of porcine circovirus-associated diseases.


Subject(s)
Circoviridae Infections , Drugs, Chinese Herbal , Furans , Lignans , NF-kappa B , Animals , Anti-Inflammatory Agents/pharmacology , Circoviridae Infections/drug therapy , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Furans/pharmacology , Lignans/pharmacology , Mice , Mice, Inbred BALB C , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Swine
4.
Int J Biol Macromol ; 191: 668-678, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34560152

ABSTRACT

Porcine circovirus type 2 (PCV2) has caused large economic losses in the swine industry worldwide; therefore, research on relevant therapeutic medicines is still urgently needed. To define the relationship between histone acetylation and inflammation induced by PCV2, we investigated whether traditional Chinese medicinal polysaccharides could alleviate viral infection by regulating histone acetylation. In this study, Sophora subprostrate polysaccharide (SSP)-treated PCV2-infected murine splenic lymphocytes in vitro and murine spleen in vivo were used to explore the regulatory effects of SSP on inflammation and histone acetylation caused by PCV2. SSP at different concentrations significantly reduced the secretion levels of the proinflammatory cytokines TNF-α and IL-6, the activity of COX-2, the mRNA expression levels of TNF-α, IL-6, iNOS and COX-2 and the protein expression levels of iNOS and COX-2 but promoted the secretion and mRNA expression levels of IL-10. Furthermore, the different concentrations of SSP significantly regulated the activity of histone acetylase (HAT) and the mRNA expression of HAT1, increased the activity of histone deacetylase (HDAC) and the mRNA expression of HDAC1 and reduced the protein expression levels of Ac-H3 and Ac-H4. Overall, SSP inhibited inflammation in PCV2-infected murine splenic lymphocytes by regulating histone acetylation in vitro and in vivo, thus playing an important role in PCV2 infection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Circoviridae Infections/drug therapy , Histone Code , Lymphocytes/drug effects , Polysaccharides/pharmacology , Sophora/chemistry , Acetylation , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Female , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Lymphocytes/metabolism , Male , Mice , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/chemistry , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Spleen/cytology , Spleen/drug effects , Spleen/metabolism
5.
BMC Vet Res ; 16(1): 345, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948186

ABSTRACT

BACKGROUND: Porcine circovirus type 2 (PCV2) is an immunosuppressive pathogen with high prevalence rate in pig farms. It has caused serious economic losses to the global pig industry. Due to the rapid mutation of PCV2 strain and co-infection of different genotypes, vaccination could not eradicate the infection of PCV2. It is necessary to screen and develop effective new compounds and explore their anti-apoptotic mechanism. The 13 natural compounds were purchased, with a clear plant origin, chemical structure and content and specific biological activities. RESULTS: The maximum no-cytotoxic concentration (MNTC) and 50% cytotoxic concentration (CC50) of 13 tested compounds were obtained by the cytopathologic effect (CPE) assay and (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in PK-15 cells. The results of qPCR and Western blot showed that, compared with the PCV2 infected group, the expression of Cap in Paeonol (0.4 mg/mL and 0.2 mg/mL), Cepharanthine (0.003 mg/mL, 0.0015 mg/mL and 0.00075 mg/mL) and Curcumin (0.02 mg/mL, 0.001 mg/mL and 0.005 mg/mL) treated groups were significantly lowered in a dose-dependent manner. The results of Annexin V-FITC/PI, JC-1, Western blot and ROS analysis showed that the expression of cleaved caspase-3 and Bax were up-regulated Bcl-2 was down-regulated in Cepharanthine or Curcumin treated groups, while ROS and MMP value were decreased at different degrees and the apoptosis rate was reduced. In this study, Ribavirin was used as a positive control. CONCLUSIONS: Paeonol, Cepharanthine and Curcumin have significant antiviral effect. And the PCV2-induced Mitochondrial apoptosis was mainly remitted by Cepharanthine and Curcumin.


Subject(s)
Apoptosis/drug effects , Benzylisoquinolines/pharmacology , Circovirus/drug effects , Curcumin/pharmacology , Acetophenones/pharmacology , Acetophenones/toxicity , Animals , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Benzylisoquinolines/toxicity , Cell Line , Circoviridae Infections/drug therapy , Curcumin/toxicity , Mitochondria/drug effects , Plant Extracts/pharmacology , Plant Extracts/toxicity , Swine
6.
Phytomedicine ; 77: 153289, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32771536

ABSTRACT

BACKGROUND: PRRSV and PCV2 co-infection is very common in swine industry which results in huge economic losses worldwide. Although vaccination is used to prevent viral diseases, immunosuppression induced by PRRSV and PCV2 leads to vaccine failure. PURPOSE: Our previous results have demonstrated that Matrine possess antiviral activities against PRRSV/PCV2 co-infection in vitro. This study aims to establish a PRRSV/PCV2 co-infected KM mouse model and evaluate the antiviral activities of Matrine against PRRSV/PCV2 co-infection. STUDY DESIGN: A total of 144 KM mice were randomly divided into six groups with 24 mice in each group, named as: normal control, PRRSV/PCV2 co-infected group (PRRSV/PCV2 group), Ribavirin treatment positive control (Ribavirin control) and Matrine treatment groups (Matrine 40 mg/kg, Matrine 20 mg/kg and Matrine 10 mg/kg). METHODS: Except normal control group, all mice in other five groups were inoculated with PRRSV, followed by PCV2 at 2 h later. At 7 days post-infection (dpi), mice in the treatment groups were intraperitoneally administered with various doses of Matrine and Ribavirin, twice a day for 5 consecutive days. RESULTS: PRRSV N and PCV2 CAP genes were detected by PCR in multiple tissues including heart, liver, spleen, lungs, kidneys, thymus and inguinal lymph nodes. The viral load of PCV2 was the highest in liver followed by thymus and spleen. Although PRRSV were detected in most of tissues, but the replication of PRRSV was not significantly increased, as shown by qPCR analysis. Comparing with PCV2 infection alone, PRRSV infection significantly elevated PCV2 replication and exacerbated PCV2 induced interstitial pneumonia. qPCR analysis demonstrated 40 mg/kg Matrine significantly attenuated PCV2 replication in liver and alleviated virus induced interstitial pneumonia, suggesting Matrine could directly inhibit virus replication. In addition, Matrine treatment enhanced peritoneal macrophages phagocytosis at 13 and 16 dpi, and 40 mg/kg of Matrine increased the proliferation activity of lymphocytes. Body weight gain was continuously promoted by administrating Matrine at 10 mg/kg. CONCLUSION: Matrine possessed antiviral activities via inhibiting virus replication and regulating immune functions in mice co-infected by PRRSV/PCV2. These data provide new insight into controlling PRRSV and PCV2 infection and support further research for developing Matrine as a new possible veterinary medicine.


Subject(s)
Alkaloids/pharmacology , Antiviral Agents/pharmacology , Circoviridae Infections/drug therapy , Porcine Reproductive and Respiratory Syndrome/drug therapy , Quinolizines/pharmacology , Animals , Circoviridae Infections/virology , Circovirus/physiology , Coinfection/drug therapy , Coinfection/virology , Disease Models, Animal , Lung/pathology , Lung/virology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/virology , Mice , Phagocytosis/drug effects , Porcine Reproductive and Respiratory Syndrome/pathology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/physiology , Swine , Virus Replication/drug effects , Matrines
7.
PLoS One ; 14(6): e0219175, 2019.
Article in English | MEDLINE | ID: mdl-31251772

ABSTRACT

Infections with immunosuppressive pigeon circovirus (PiCV) pose the most severe health problem to the global pigeon breeding. The vaccination with immunogenic PiCV recombinant capsid protein (PiCV rCP) is a potential tool for disease control. Because of the high prevalence of PiCV asymptomatic infections, the subclinically infected pigeons will be vaccinated in practice. The aim of this study was to answer a question if vaccination of asymptomatic, infected with PiCV pigeons induces a similar immune response to PiCV rCP as in uninfected birds. One hundred and twenty 6-week-old carrier pigeons were divided into 4 groups (2 groups of naturally infected and uninfected with PiCV individuals). Birds from groups V and V1 were vaccinated twice with PiCV rCP mixed with an adjuvant, whereas pigeons from groups C and C1 were immunized with an adjuvant only. The expression of genes encoding IFN-γ, CD4, and CD8 T lymphocyte receptors; the number of anti-PiCV rCP IgY-secreting B cells (SBC) and anti-PiCV rCP IgY were evaluated 2, 21, 39 and 46 days post vaccination (dpv). Study results showed that the expression of CD8 and IFN-γ genes was higher in both groups of infected pigeons than in the uninfected birds, irrespective of vaccination. In the uninfected birds, the expression of these genes was insignificantly higher in the vaccinated pigeons. The anti-PiCV rCP IgY-SBC were detected on 2 and 23 dpv and seroconversion was noted on 23 and 39 dpv in V and V1 groups, respectively. In the light of the results obtained, it could be concluded that pigeon circovirus recombinant capsid protein elicits the immune response in both naturally infected and uninfected pigeons, but its rate varies depending on PiCV infectious status. The infection with PiCV masks the potential cellular immune response to the vaccination with PiCV rCP and leads to the suppression of humoral immunity.


Subject(s)
Bird Diseases/drug therapy , Capsid Proteins/administration & dosage , Circoviridae Infections/veterinary , Circovirus/metabolism , Viral Vaccines/administration & dosage , Animals , Antibodies, Viral/metabolism , Bird Diseases/immunology , CD8 Antigens/genetics , Capsid Proteins/immunology , Circoviridae Infections/drug therapy , Circoviridae Infections/immunology , Circovirus/immunology , Columbidae , Interferon-gamma/genetics , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Treatment Outcome , Up-Regulation , Vaccination/veterinary , Viral Vaccines/immunology
8.
Biomed Pharmacother ; 112: 108741, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30970528

ABSTRACT

Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1ß, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.


Subject(s)
Antiviral Agents/therapeutic use , Circoviridae Infections/drug therapy , Histones/metabolism , Polysaccharides/therapeutic use , Sargassum/chemistry , Acetylation , Animals , Antiviral Agents/isolation & purification , Circoviridae Infections/immunology , Cytokines/blood , Female , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Inflammation , Male , Mice, Inbred Strains , Polysaccharides/isolation & purification , Spleen/immunology
9.
Microb Pathog ; 132: 51-58, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31028862

ABSTRACT

Porcine Circovirus Type 2 (PCV2) is a pathogen that has the ability to cause devastating disease manifestations in pig populations with major economic implications. Our previous research found that Hsp90 is required for PCV2 production in PK-15 and 3D4/31 cells. The aim of this study was to evaluate the effect of Hsp90 inhibitor regulating PCV2 replication and to explore its underlying mechanism. In PK-15 and 3D4/31 cells treated with 17-AAG after viral adsorption, replication of PCV2 was attenuated as assessed by quantitating the expression of viral protein. Following NF-κB activation it was observed that 24hpi with PCV2 was significantly inhibited in the presence of 17-AAG. The expression of Hsp90 associated client proteins in PCV2-infected cells were also reduced in the presence of 17-AAG. However, treatment with MG-132 failed to rescue 17-AAG mediated reduction of PCV2 production in host cells. Thus, Hsp90 regulates PCV2 by modulating cellular signaling proteins. These results highlight the importance of cellular proteins during PCV2 infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.


Subject(s)
Benzoquinones/antagonists & inhibitors , Circovirus/drug effects , HSP90 Heat-Shock Proteins/drug effects , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/antagonists & inhibitors , Virus Replication/drug effects , Animals , Benzoquinones/chemistry , Cell Line , Cell Survival/drug effects , Circoviridae Infections/drug therapy , Circoviridae Infections/virology , HSP90 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions/drug effects , Lactams, Macrocyclic/chemistry , Leupeptins/antagonists & inhibitors , NF-kappa B/drug effects , Swine , Swine Diseases/virology
10.
Virus Res ; 263: 80-86, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30658073

ABSTRACT

Porcine circovirus 2 (PCV2) capsid protein (Cap) has a nuclear localization signal (NLS) and can enter the nucleus. In this study, ivermectin, a small-molecule nuclear import inhibitor of proteins was used to determine the role of nuclear localization of Cap on PCV2 replication. Observation by fluorescence microscopy of the intracellular localization of Cap and Cap NLS in cells cultured with ivermectin (50 µg/mL) determined that Cap and Cap NLS were located in the cytoplasm; in contrast, for cells cultured without ivermectin, they accumulated in the cell nucleus. Ivermectin treatment also reduced nuclear transport of Cap derived from PCV2 infection as well as PCV2 replication in PK-15 cells. In addition, lower levels of PCV2 in tissues and sera of piglets treated with ivermectin were detected by qPCR. These results established for the first time that ivermectin has potent antiviral activity towards PCV2 both in vitro and vivo.


Subject(s)
Antiviral Agents/administration & dosage , Circoviridae Infections/veterinary , Circovirus/drug effects , Ivermectin/administration & dosage , Swine Diseases/drug therapy , Virus Replication/drug effects , Animal Structures/virology , Animals , Animals, Newborn , Antiviral Agents/pharmacology , Capsid Proteins/analysis , Cell Line , Circoviridae Infections/drug therapy , Circoviridae Infections/virology , Circovirus/physiology , Cytoplasm/virology , Ivermectin/pharmacology , Microscopy, Fluorescence , Serum/virology , Swine , Swine Diseases/virology , Treatment Outcome , Viral Load
11.
Sci Rep ; 7(1): 8676, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819143

ABSTRACT

Oxidative stress plays an important role in the pathogenesis of virus infection and antioxidants are becoming promising candidates as therapeutic agents. This study is designed to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on oxidative stress in mice induced by porcine circovirus type 2 (PCV2) infection. The PCV2 infection leads to significant decrease in thymus and spleen indices, elevation of xanthine oxidase (XOD) and myeloperoxidase (MPO) activities, reduction in GSH level and GSH to GSSG ratio and decline of superoxide dismutase (SOD) activity, indicating the formation of immunosuppression and oxidative stress. TFSD treatment recovered the alteration of viscera index, antioxidant content and activities of oxidative-associated enzymes to a level similar to control. Our findings suggested that PCV2 induced immunosuppression and oxidative stress in mice and TFSD might be able to protect animals from virus infection via regulation of immune function and inhibition of oxidative stress.


Subject(s)
Antioxidants/pharmacology , Fabaceae/chemistry , Flavonoids/pharmacology , Immunologic Factors/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Biomarkers , Chromatography, High Pressure Liquid , Circoviridae Infections/drug therapy , Circoviridae Infections/immunology , Circoviridae Infections/metabolism , Circoviridae Infections/virology , Circovirus/drug effects , Flavonoids/chemistry , Immunologic Factors/chemistry , Mice , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxidase/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Spleen/drug effects , Spleen/metabolism , Superoxide Dismutase/metabolism , Swine , Thymus Gland/drug effects , Thymus Gland/metabolism
12.
Microb Pathog ; 109: 248-252, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28602838

ABSTRACT

Although several factors affecting porcine circovirus type 2 (PCV2) infection have been reported, their precise roles are far from clear. The aim of this study was to determine whether 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an inhibitor of Hsp90, could significantly affect PCV2 infection and immune responses in BALB/c mice. Intraperitoneal injection of 17-DMAG significantly reduced viral loads in the blood and tissues of mice infected with PCV2, compared with control groups. The 17-DMAG treatment decreased serum interleukin (IL)-10 and tumor necrosis factor(TNF)-α levels, but it did not have a significant effect on the IL-1ß level. These data demonstrate that 17-DMAG is highly effective in suppressing PCV2 replication in BALB/c mice, indicating that it has potential value as an antiviral drug against PCV2 infection.


Subject(s)
Antiviral Agents/pharmacology , Benzoquinones/pharmacology , Circovirus/drug effects , HSP90 Heat-Shock Proteins/drug effects , Lactams, Macrocyclic/pharmacology , Animals , Antibodies, Viral/blood , Benzoquinones/administration & dosage , Body Weight , Circoviridae Infections/blood , Circoviridae Infections/drug therapy , Circoviridae Infections/immunology , Cytokines/blood , Disease Models, Animal , Female , Injections, Intraperitoneal , Interleukin-10/blood , Interleukin-1beta/blood , Lactams, Macrocyclic/administration & dosage , Mice , Mice, Inbred BALB C , Spleen/pathology , Tumor Necrosis Factor-alpha/blood , Viral Load/drug effects , Virus Replication/drug effects
13.
Benef Microbes ; 8(3): 367-378, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28504566

ABSTRACT

Probiotic bacteria are frequently used for prevention of bacterial infections of the gastrointestinal tract, but there are only limited studies on their efficacy against viral gut infections in animals. The aim of this study was to investigate the effect of probiotic Lactobacillus reuteri L26 BiocenolTM on the innate and adaptive immune responses in germ-free Balb/c mice, experimentally infected by porcine circovirus type 2 (PCV2), which confers immunosuppressive effect. A total of 30 six-week-old female mice were divided into 3 groups and animals in experimental group LPCV (n=10) were inoculated with L. reuteri L26, animals in the control group (C; n=10) and experimental group PCV (n=10) received sterile De Man-Rogosa-Sharpe broth for 7 days. Subsequently, mice from both experimental groups were infected with PCV2; however, mice in the control group received virus cultivation medium (mock). Virus load in faeces, ileum and mesenteric lymph nodes (MLN); as well as gene expression of selected cytokines, immunoglobulin A (IgA) and polymeric Ig receptor (PIgR) in the ileum, and percentage of CD8+, CD19+ and CD49b+CD8- cells in the MLN were evaluated. Our results showed that L. reuteri significantly decreased the amount of PCV2 in faeces and in the ileum, and up-regulated the gene expression of chemokines, interferon (IFN)-γ, IgA and PIgR in the ileum. Increased IFN-γ mRNA level was accompanied by higher proportion of natural killer cells and up-regulated IgA and PIgR gene expressions were in accordance with significantly higher percentage of CD19+ lymphocytes in the MLN. These findings indicate that probiotic L. reuteri has an antiviral effect on PCV2 in the intestine which is mediated by stimulation of local gut immune response.


Subject(s)
Adaptive Immunity/drug effects , Circoviridae Infections/drug therapy , Circovirus/immunology , Germ-Free Life/immunology , Immunity, Innate/drug effects , Limosilactobacillus reuteri/metabolism , Probiotics/pharmacology , Adaptive Immunity/immunology , Animals , Circoviridae Infections/virology , Cytokines/biosynthesis , Feces/virology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Germ-Free Life/drug effects , Ileum/virology , Immunity, Innate/immunology , Immunoglobulin A/biosynthesis , Lymph Nodes/virology , Mice , Mice, Inbred BALB C , Receptors, Polymeric Immunoglobulin/biosynthesis , Swine , Swine Diseases/virology , T-Lymphocytes/immunology
14.
BMC Vet Res ; 13(1): 59, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28222773

ABSTRACT

BACKGROUND: Nitric oxide (NO), an important signaling molecule with biological functions, has antimicrobial activity against a variety of pathogens including viruses. To our knowledge, little information is available about the regulatory effect of NO on porcine circovirus type 2 (PCV2) infection. This study was conducted to investigate the antiviral activity of NO generated from S-nitrosoglutathione (GSNO), during PCV2 infection of PK-15 cells and BALB/c mice. RESULTS: GSNO released considerable NO in the culture medium of PK-15 cells, and NO was scavenged by its scavenger hemoglobin (Hb) in a dose-dependent manner. NO strongly inhibited PCV2 replication in PK-15 cells, and the antiviral effect was reversed by Hb. An in vivo assay indicated that GSNO treatment reduced the progression of PCV2 infection in mice, evident as reductions in the percentages of PCV2-positive sera and tissue samples and in the viral DNA copies in serum samples. GSNO also improved the growth performance and immune organs (spleens and thymuses) of the PCV2-infected mice to some degree. CONCLUSIONS: Our data demonstrate that the NO-generating compound GSNO suppresses PCV2 infection in PK-15 cells and BALB/c mice, indicating that NO and its donor, GSNO, have potential value as antiviral drugs against PCV2 infection.


Subject(s)
Antiviral Agents/therapeutic use , Circoviridae Infections/veterinary , Circovirus , Nitric Oxide/metabolism , S-Nitrosoglutathione/therapeutic use , Animals , Antiviral Agents/metabolism , Cell Line , Circoviridae Infections/drug therapy , Mice , Mice, Inbred BALB C , S-Nitrosoglutathione/metabolism , Virus Replication/drug effects
15.
Sci Rep ; 7: 40440, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071725

ABSTRACT

This study explored the effects of Astragalus polysaccharide (APS) on porcine circovirus type 2 (PCV2) infections and its mechanism in vivo and vitro. First, fifty 2-week-old mice were randomly divided into five groups: a group without PCV2 infection and groups with PCV2 infections at 0, 100, 200 or 400 mg/kg APS treatments. The trial lasted for 28 days. The results showed that APS treatments at 200 and 400 mg/kg reduced the pathological injury of tissues, inhibited PCV2 infection and decreased glucose-regulated protein 78 (GRP78) and GADD153/CHOP gene mRNA and protein expression significantly (P < 0.05). Second, a study on endoplasmic reticulum stress mechanism was carried out in PK15 cells. APS treatments at 15 and 45 µg/mL significantly reduced PCV2 infection and GRP78 mRNA and protein expression (P < 0.05). Tunicamycin supplementation increased GRP78 mRNA and protein expression and significantly attenuated the APS-induced inhibition of PCV2 infection (P < 0.05). Tauroursodeoxycholic acid supplementation decreased GRP78 mRNA and protein expression and significantly inhibited PCV2 infection (P < 0.05). In addition, fifty 2-week-old mice were randomly divided into five groups: Con, PCV2, APS + PCV2, TM + PCV2 and TM + APS + PCV2. The results were similar to those in PK15 cells. Taken together, it could be concluded that APS suppresses PCV2 infection by inhibiting endoplasmic reticulum stress.


Subject(s)
Astragalus Plant/chemistry , Circoviridae Infections/drug therapy , Circoviridae Infections/virology , Circovirus/physiology , Endoplasmic Reticulum Stress/drug effects , Polysaccharides/therapeutic use , Animals , Cell Line , Circoviridae Infections/pathology , Circovirus/drug effects , Endoplasmic Reticulum Chaperone BiP , Mice , Oxidative Stress/drug effects , Phytotherapy , Polysaccharides/pharmacology , Swine , Taurochenodeoxycholic Acid/pharmacology , Tunicamycin/pharmacology , Virus Replication/drug effects
16.
J Immunotoxicol ; 13(2): 141-7, 2016.
Article in English | MEDLINE | ID: mdl-25721049

ABSTRACT

While T-lymphocytes are the major cell type responsible for host responses to a virus (including induction of inflammatory responses to aid in ultimate removal of virus), other cells, including macrophages, epithelial and dendritic cells also have key roles. Endothelial cells also play important roles in physiologic/pathologic processes, like inflammation, during viral infections. As endothelial cells can be activated to release various endogenous compounds, including some cytokines, ex vivo measures of cytokine formation by the cells can be used to indirectly assess any potential endothelial dysfunction in situ. The research presented here sought to investigate potential immunolomodulatory effects of five saponins on endothelial cells: Saikosaponins A (SSA) and D (SSD), Panax Notoginseng Saponin (PNS) and Notoginsenoside R1 (SR1) and Anemoside B4 (AB4). For this, cells (porcine iliac artery endothelial line) were challenged with a virus isolate PCV2-AH for 24 h and then treated with the test saponin (at 1, 5 or 10 µg/ml) for an additional 24 h at 37 °C. The culture supernatants were then collected and analyzed for interleukin (IL)-2, -4 and -10, as well as interferon (IFN)-γ by ELISA. The results revealed that PNS and SR1 inhibited the production of IL-4; PNS, SR1 and AB4 inhibited the secretion of IL-10; SSA, SSD and PNS up-regulated IL-2 expression; SSA and SSD increased the level of IFNγ. All these changes were significant. Taken together, the data suggested these saponins might potentially have a capacity to regulate immune responses in vivo via changes in production of these select cytokines by infected endothelial cells. Nevertheless, the impact of these agents on other key cell types involved in anti-viral responses, including T-lymphocytes, remains to be determined.


Subject(s)
Circoviridae Infections/drug therapy , Circovirus/immunology , Cytokines/immunology , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/immunology , Animals , Cells, Cultured , Circoviridae Infections/immunology , Circoviridae Infections/pathology , Endothelial Cells/pathology , Endothelial Cells/virology , Swine
17.
Clin Exp Pharmacol Physiol ; 42(8): 817-21, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26041431

ABSTRACT

The HMG-CoA reductase (HMGCR) pathway is an important metabolic route, which is not only present in almost every organism, but also involves virus infection. It has recently been shown that expression levels of IFN-responsive genes were significantly increased in HMGCR-downregulated cells and HMGCR inhibitor-treated cells. The aim of this study was to determine whether inhibition of HMGCR by atovastatin would significantly affect Porcine circovirus type 2 (PCV2) infection and immunological reaction in BALB/c mice. The results showed atovastatin significantly stimulated PCV2 replication in vivo. Immunological reaction in atovastatin-treated mice was also significantly enhanced during PCV2 infection. Atovastatin also enhanced PCV2-induced illness in mice. The results of this study will provide new insight into the role of atovastatin in PCV2 infection.


Subject(s)
Atorvastatin/pharmacology , Circoviridae Infections/drug therapy , Circovirus/drug effects , Circovirus/physiology , Animals , Atorvastatin/therapeutic use , Circoviridae Infections/immunology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Virus Replication/drug effects
18.
Vet Microbiol ; 176(3-4): 257-67, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25717015

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp and is a common contaminant of grains in North America. Among farm animals, swine are the most susceptible to DON because it markedly reduces feed intake and decreases weight gain. Porcine circovirus type 2 (PCV2) is the main causative agent of several syndromes in weaning piglets collectively known as porcine circovirus-associated disease (PCVAD). The objectives of this study were to investigate the impact of DON on PCV2 replication in NPTr permissive cell line, and to determine eventual potentiating effects of DON on PCV2 infection in pigs. Noninfected and infected cells with PCV2 were treated with increasing concentrations of DON (0, 70, 140, 280, 560, 1200 ng/mL) and cell survival and virus titer were evaluated 72 h postinfection. Thirty commercial piglets were randomly divided into 3 experimental groups of 10 animals based on DON content of served diets (0, 2.5 and 3.5 mg/kg DON). All groups were further divided into subgroups of 6 pigs and were inoculated with PCV2b virus. The remaining pigs (control) were sham-inoculated with PBS. In vitro results showed that low concentrations of DON could potentially increase PCV2 replication depending on virus genotype. In vivo results showed that even though viremia and lung viral load tend to be higher in animal ingesting DON contaminated diet at 2.5 mg/kg, DON had no significant effect on clinical manifestation of PCVAD in PCV2b infected animals. DON has neither in vitro nor in vivo clear potentiating effects in the development of porcine circovirus infection despite slight increases in viral replication.


Subject(s)
Circoviridae Infections/veterinary , Circovirus/drug effects , Swine Diseases/drug therapy , Trichothecenes/pharmacology , Virus Replication/drug effects , Animal Feed , Animals , Cell Survival/drug effects , Circoviridae Infections/drug therapy , Circovirus/physiology , Random Allocation , Swine , Swine Diseases/virology , Viral Load , Viremia , Weaning
19.
Prev Vet Med ; 113(2): 159-64, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24309129

ABSTRACT

The objective of this work was to describe trends in multiple-class antimicrobial resistance present in clinical isolates of Escherichia coli F4, Pasteurella multocida and Streptococcus suis from Ontario swine 1998-2010. Temporal changes in multiple-class resistance varied by the pathogens examined; significant yearly changes were apparent for the E. coli and P. multocida data. Although not present in the E. coli data, significant increases in multiple-class resistance within P. multocida isolates occurred from 2003 to 2005, coinciding with the expected increase in antimicrobials used to treat clinical signs of Porcine Circovirus Associated Disease (PCVAD) before it was confirmed. Prospective temporal scan statistics for multiple-class resistance suggest that significant clusters of increased resistance may have been found in the spring of 2004; months before the identification of the PCVAD outbreak in the fall of 2004.


Subject(s)
Circoviridae Infections/veterinary , Disease Outbreaks/veterinary , Escherichia coli Infections/veterinary , Escherichia coli/growth & development , Pasteurella Infections/veterinary , Pasteurella multocida/growth & development , Streptococcal Infections/veterinary , Streptococcus suis/growth & development , Swine Diseases/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Circoviridae Infections/drug therapy , Circoviridae Infections/microbiology , Circovirus/growth & development , Cluster Analysis , Drug Resistance, Multiple, Bacterial/physiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests/veterinary , Ontario/epidemiology , Pasteurella Infections/drug therapy , Pasteurella Infections/microbiology , Poisson Distribution , Prospective Studies , Seasons , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Swine , Swine Diseases/drug therapy , Swine Diseases/epidemiology
20.
Vet J ; 177(3): 388-93, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17851101

ABSTRACT

A number of commercially available disinfectants are commonly used on pig breeding farms and are authorised by the French Agricultural Ministry. However, the efficacy of these disinfectants is unknown with regard to the emergent porcine circovirus type 2 (PCV2). The virucidal efficacy of nine disinfectants was evaluated by testing a suspension of PCV2 isolated in France. The assays were performed at 20 degrees C and the efficacy determined after 30 min contact time between virus and disinfectant. After this time, the mixture was passed through a detoxification column and then diluted to remove compounds toxic to the virus and the porcine kidney cell line. The filtrate was serially diluted and inoculated onto cell culture. The infectivity of PCV2 was determined by an immunoperoxidase monolayer assay. No reduction in PCV2 titre was demonstrated with iodine and phenolic products. Significant PCV2 titre reductions (1.61 log(10)) were noted for the seven other products. For five disinfectants, namely a product composed of potassium monopersulfate, two products comprising a quaternary ammonium with one or three aldehyde(s), sodium hypochlorite, and sodium hydroxide, the concentration that significantly reduced the PCV2 titre was equal or 1.5-4 times lower than the authorised use concentration. Only two disinfectants, one composed of potassium monopersulfate, the other containing peracetic acid with hydrogen peroxide, reduced the PCV2 titre with a product concentration at best equal or two times higher than the authorised use concentration.


Subject(s)
Antiviral Agents/pharmacology , Circoviridae Infections/veterinary , Circovirus/drug effects , Disinfectants/pharmacology , Swine Diseases/drug therapy , Animals , Cell Line , Circoviridae Infections/drug therapy , Circoviridae Infections/prevention & control , Dose-Response Relationship, Drug , Microbial Sensitivity Tests/veterinary , Swine , Swine Diseases/prevention & control , Temperature , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...