Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 969
Filter
1.
Bull Environ Contam Toxicol ; 113(2): 24, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126490

ABSTRACT

Microplastics merit attention as they can be ingested by lower trophic organisms, transferred to the food web, and pose potential risks to higher trophic levels. This study investigated the accumulation and effects of polyethylene microbeads (PEMBs, 63-75 µm) on adult water flea Moina macrocopa (600-800 µm), an order-magnitude difference in size, as a result of acute exposure. The organisms were exposed to PEMBs in four treatments of 0 (the Control), 5, 50, and 500 mg PEMB/L for examining PEMB accumulation, survival and reproduction of the organisms after the 24- and 48-h exposures. In general, M. macrocopa ingested PEMBs within 24-h exposure and reached the cumulative PEMB accumulation value of 0.17 ± 0.21 beads/adult after 48-h exposure in the 500 mg PEMB/L treatment. Exposure to PEMBs resulted in a statistically significant decrease of the cumulative survival rates, from 93 ± 12% in the Control to 37 ± 21% in the 500 mg/L treatment. Nevertheless, exposure to PEMBs did not significantly reduce the cumulative reproduction (p > 0.05), although a decrease was observed. This study suggests that the relatively large-size PEMBs could be ingested by the relatively small-size M. macrocopa and pose potential risks to these organisms.


Subject(s)
Polyethylene , Water Pollutants, Chemical , Animals , Polyethylene/toxicity , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Microspheres , Cladocera/drug effects , Cladocera/physiology , Reproduction/drug effects
2.
Huan Jing Ke Xue ; 45(7): 3983-3994, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022946

ABSTRACT

In order to understand the stability of the zooplankton and phytoplankton communities in the Guizhou plateau reservoir environment, the process of reservoir water quality change affecting the stability of plankton was studied. The changes in the plankton community and water quality in three different nutrient reservoirs (Huaxi Reservoir, Goupitan Reservoir, and Hailong Reservoir) were studied from October 2020 to August 2021. The stability of the zooplankton and phytoplankton communities was studied using time-lag analysis (TLA). Variance decomposition analysis (VPA) was used to explore the response of the two communities to environmental changes. The driving factors of plankton community changes in reservoirs were also revealed. The results showed that Huaxi Reservoir and Goupitan Reservoir were mesotrophic reservoirs, and Hailong Reservoir was a eutrophic reservoir. The average comprehensive nutrition indices of the three reservoirs were 44.07, 44.68, and 50.25. A total of 51 species of zooplankton rotifers, 39 species of rotifers, three species of copepods, and nine species of cladocera were identified. Among them, the abundance of rotifers was the highest, accounting for 85.96%. A total of seven phyla and 73 species of phytoplankton were identified, including 16 species in the phylum Cyanophyta, 32 species in the phylum Chlorophyta, 16 species in the phylum Diatoma, three species in the phylum Chlorophyta, four species in the phylum Euglenophyta, and one species each in the phyla Cryptophyta and Chrysophyta. Among them, the abundance of cyanobacteria and diatoms was the highest, accounting for 66.2% and 27.35%, respectively. The median absolute deviation (MAD) of the Bray-Curtis distance of zooplankton and phytoplankton community in the three reservoirs were 0.67 and 0.65 in Huaxi Reservoir, 0.80 and 0.69 in Goupitan Reservoir, and 0.85 and 0.47 in Hailong Reservoir, respectively. The larger the value, the greater the variation in the community. The absolute value of the slope of zooplankton was greater than that of phytoplankton in the TLA results, and the absolute values of the slopes were 0.018 and 0.004, respectively. The larger the absolute value of the slope, the faster the community variability. The zooplankton community in the three reservoirs was less stable than the phytoplankton community and more sensitive to environmental changes, and the degree of variation was greater. The higher the degree of eutrophication of the reservoir, the more obvious this phenomenon. VPA showed that the changes in plankton communities in Huaxi Reservoir and Hailong Reservoir were mainly influenced by water temperature and eutrophication factors. The changes in planktonic community in Goupitan Reservoir were mainly influenced by water temperature and chemical factors. The driving factors of Huaxi Reservoir were water temperature, TP, permanganate index, and SD. The driving factors of Goupitan Reservoir were water temperature, NO3-- N, and pH. The driving factors of Hailong Reservoir were water temperature and TP. Nutrients and water temperature were the main factors affecting the stability of plankton communities in reservoirs.


Subject(s)
Environmental Monitoring , Phytoplankton , Zooplankton , Phytoplankton/growth & development , Phytoplankton/classification , Zooplankton/classification , China , Animals , Rotifera/growth & development , Water Quality , Eutrophication , Copepoda/growth & development , Cladocera/growth & development , Plankton/classification , Cyanobacteria/growth & development , Population Dynamics
3.
Sci Total Environ ; 948: 175018, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39059665

ABSTRACT

The widespread occurrence and accumulation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite, 6PPD quinone (6PPD-Q), have been globally recognized as a critical environmental issue. However, knowledge on the adverse effects of 6PPD and 6PPD-Q on freshwater invertebrates is limited. This study investigated the effects of 6PPD and its oxidative byproduct, 6PPD-Q, on the growth and reproduction of Daphnia pulex. Through 21-day exposure experiments, we measured the uptake of 0.1, 1, and 10 µg/L 6PPD and 6PPD-Q by D. pulex and assessed the effects on growth and fecundity of D. pulex. While 6PPD and 6PPD-Q did not affect the mortality rate of D. pulex, 6PPD-Q exposure inhibited the growth of D. pulex, indicating potential ecological risks. In particular, the reproductive capacity of D. pulex remained unaffected across the tested concentrations of 6PPD and 6PPD-Q, suggesting specific toxicological pathways that warrant further investigation. This study underscored the importance of evaluating the sublethal effects of emerging contaminants such as 6PPD and 6PPD-Q on aquatic invertebrates, and highlighted the need for comprehensive risk assessments to better understand their environmental impacts.


Subject(s)
Daphnia , Reproduction , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Daphnia/drug effects , Daphnia/physiology , Phenylenediamines/toxicity , Quinones/metabolism , Quinones/toxicity , Fresh Water , Cladocera/drug effects , Cladocera/physiology
4.
Sci Total Environ ; 944: 173747, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38838999

ABSTRACT

The escalating production and improper disposal of petrochemical-based plastics have led to a global pollution issue with microplastics (MPs), which pose a significant ecological threat. Biobased and biodegradable plastics are believed to mitigate plastic pollution. However, their environmental fate and toxicity remain poorly understood. This study compares the in vivo effects of different types of MPs, poly(butylene adipate-co-terephthalate) as a biodegradable plastic, polylactic acid (PLA) as a biobased plastic, ß-cyclodextrin-grafted PLA as a modified biobased plastic, and low density polyethylene as the reference petrochemical-based plastic, on the key aquatic primary consumer Diaphanosoma celebensis. Exposure to MPs resulted in significant reproductive decline, with comparable effects observed irrespective of MP type or concentration. Exposure to MPs induced distinct responses in redox stress, with transcriptional profiling revealing differential gene expression patterns that indicate varied cellular responses to different types of MPs. ATP-binding cassette transporter activity assays demonstrated altered efflux activity, mainly in response to modified biobased and biodegradable MPs. Overall, this study highlights the comparable in vivo and in vitro effects of biobased, biodegradable, and petrochemical-based MPs on aquatic primary consumers, highlighting their potential ecological implications.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biodegradable Plastics , Cladocera/drug effects , Polyesters
5.
Mar Pollut Bull ; 205: 116633, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936003

ABSTRACT

In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.


Subject(s)
Oxidative Stress , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Cladocera/drug effects , Cladocera/physiology , Hypoxia , Superoxide Dismutase/metabolism , Catalase/metabolism , Oxygen/metabolism , Saline Waters
6.
Ecotoxicol Environ Saf ; 278: 116437, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718728

ABSTRACT

This study explores the eco-geno-toxic impact of Acyclovir (ACV), a widely used antiviral drug, on various freshwater organisms, given its increasing detection in surface waters. The research focused on non-target organisms, including the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia, and the benthic ostracod Heterocypris incongruens, exposed to ACV to assess both acute and chronic toxicity. The results indicate that while acute toxicity occurs at environmentally not-relevant concentrations, a significant chronic toxicity for C. dubia (EC50 = 0.03 µg/L, NOEC = 0.02·10-2 µg/L), highlighted substantial environmental concern. Furthermore, DNA strand breaks and reactive oxygen species detected in C. dubia indicate significant increase at concentrations exceeding 200 µg/L. Regarding environmental risk, the authors identified chronic exposures to acyclovir causing inhibitory effects on reproduction in B. calyciflorus at hundreds of µg/L and hundredths of µg/L for C. dubia as environmentally relevant environmental concentrations. The study concludes by quantifying the toxic and genotoxic risks of ACV showing a chronic risk quotient higher than the critical value of 1and a genotoxic risk quotient reaching this threshold, highlighting the urgent need for a broader risk assessment of ACV for its significant implications for aquatic ecosystems.


Subject(s)
Acyclovir , Antiviral Agents , Fresh Water , Rotifera , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Antiviral Agents/toxicity , Acyclovir/toxicity , Rotifera/drug effects , Reactive Oxygen Species/metabolism , Cladocera/drug effects , Aquatic Organisms/drug effects , Toxicity Tests, Acute , DNA Damage , Reproduction/drug effects , Toxicity Tests, Chronic , Mutagens/toxicity , Chlorophyta/drug effects
7.
Ecotoxicology ; 33(6): 642-652, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776006

ABSTRACT

The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 µg L-1 and 0.062 µg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 µg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.


Subject(s)
Cadmium , Chlorpyrifos , Cladocera , Toxicity Tests, Acute , Water Pollutants, Chemical , Animals , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Cladocera/drug effects , Cadmium/toxicity , Insecticides/toxicity , Risk Assessment
8.
Sci Total Environ ; 928: 172538, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636863

ABSTRACT

With the advancement of cementitious material technologies, ultra-high performance concretes incorporating nano- and(or) micro-sized particle materials have been developed; however, their environmental risks are still poorly understood. This study investigates the ecotoxicological effects of ultra-high performance concrete (UC) leachate by comparing with that of the conventional concrete (CC) leachate. For this purpose, a dynamic leaching test and a battery test with algae, water flea, and zebrafish were performed using standardized protocols. The conductivity, concentration of inorganic elements (Al, K, Na, and Fe), and total organic concentration were lower in the UC leachate than in the CC leachate. The EC50 values of the CC and UC leachates were 44.9 % and >100 % in algae, and 8.0 % and 63.1 % in water flea, respectively. All zebrafish exposed to the CC and UC leachates survived. A comprehensive evaluation of the ecotoxicity of the CC and UC leachate based on the toxicity classification system (TCS) showed that their toxicity classification was "highly acute toxicity" and "acute toxicity", respectively. Based on the hazard quotient and principal component analysis, Al and(or) K could be significant factors determining the ecotoxicity of concrete leachate. Furthermore, the ecotoxicity of UC could not be attributed to the use of silica-based materials or multi-wall carbon nanotubes. This study is the first of its kind on the ecotoxicity of UC leachate in aquatic environments, and the results of this study can be used to develop environment-friendly UC.


Subject(s)
Aquatic Organisms , Construction Materials , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Ecotoxicology , Cladocera/drug effects , Toxicity Tests
9.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604362

ABSTRACT

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Zooplankton , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Zooplankton/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Copepoda/drug effects , Fresh Water , Cladocera/drug effects
10.
Environ Toxicol Chem ; 43(6): 1378-1389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661477

ABSTRACT

Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;43:1378-1389. © 2024 SETAC.


Subject(s)
Naphthalenes , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Risk Assessment , Naphthalenes/toxicity , Naphthalenes/chemistry , Daphnia/drug effects , Perfume/toxicity , Toxicity Tests, Chronic , Chironomidae/drug effects , Zebrafish , Cladocera/drug effects
11.
Chemosphere ; 353: 141577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430937

ABSTRACT

Pollution in aquatic ecosystems has been increasing drastically worldwide changing their water quality. Therefore, species must be adapted to these new scenarios. In Aguascalientes City, four representative urban reservoirs contain lead in the water column and extremely high concentrations of sediments. Therefore, an analysis was conducted to evaluate the resilience of zooplankton species to lead exposure in each reservoir using dormant and organisms. Results demonstrated a decrease range from 57.5 to 22.5% in overall diapausing egg hatching rate, while survivorship rate also decreased from 98 to 54% when organisms were exposed to the water of the four reservoirs and increasing lead concentrations. When Pb exposure increased, results showed a global negative effect on both hatching rate (decreasing from 58 to 30% at 0.09 mg L-1) and survivorship levels (decreasing from 100% to 0.07% at 0.09 mg L-1). We provide Species Sensitivity Distribution for both water reservoir dilutions and lead concentration to analyze diapausing eggs hatching and survivorship of offspring in the presence of same polluted conditions or lead of the autochthonous species found in reservoirs. Furthermore, specific analysis with two populations of the cladoceran Moina macrocopa showed clear dissimilar hatching patterns that suggested a different adaptive mechanism. Niagara population shows a hatching rate of approximately 25% in the first two days of reservoir water exposure, while UAA population drastically increased hatching rate to 75% on exposure at day seven. We provide the first record of bioaccumulation in ephippia of M. macrocopa.


Subject(s)
Cladocera , Resilience, Psychological , Rotifera , Water Pollutants, Chemical , Animals , Lead/toxicity , Ecosystem , Mexico , Water Pollutants, Chemical/toxicity , Eutrophication , Zooplankton
12.
Mar Pollut Bull ; 201: 116205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452629

ABSTRACT

To mitigate marine pollution, we improved the photo-Fenton reaction of modified nanoscale CuO/BiVO4 photocatalysts to resolve the challenge of efficient microplastic degradation in wastewater treatment. Material property analysis and computational results revealed that deposition of CuO onto BiVO4 nanocomposites improved photocatalytic activity by promoting an excess of electrons in CuO and surface charge transfer, resulting in an increased production of e--h+ for ROS generation via H2O2 activation. 1O2 was dominated and identified through quenching experiments, XPS analysis, and EPR. ROS generation increased via H2O2 activation, causing major surface abrasion and increased carbonyl and vinyl indices in microplastics. Treated water had minimal impact on Lycopersicon esculentum Mill. seedling growth but caused considerable mortality in cell lines and Moina macrocopa mortality at greater dosages due to their sensitivity to ions and H2O2 residuals. Overall, this treatment can effectively degrade microplastics, but the dilution of treated water is still needed before being discharged.


Subject(s)
Bismuth , Cladocera , Microplastics , Plastics , Vanadates , Hydrogen Peroxide , Reactive Oxygen Species , Copper , Water , Environment
13.
Sci Total Environ ; 923: 171450, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38438028

ABSTRACT

Delafloxacin (DFX), one of the latest additions to the fluoroquinolone antibiotics, is gaining heightened recognition in human therapy due to its potential antibacterial efficacy in a wide range of applications. Concerns have arisen regarding its presence in the environment and its potential interactions with multivalent metals, such as calcium (Ca). The present study investigated the trans- and multigenerational effects of environmentally projected concentrations of DFX (100-400 µg DFX L-1) on individual- and population-level responses of parental S. vetulus (F0) and its descendants (F1) under normal (26 mg L-1) and high (78 mg L-1) Ca conditions. Exposure of the F0 generation to DFX under the normal Ca condition resulted in reduced juvenile body length (JBL), increased age-specific survival rate (lx), indicating prolonged developmental time, reduced age-specific fecundity rate (mx), and decreased population growth rate (rm). Under the high Ca condition, JBL, mx, and rm were adversely affected. Transgenerational effects of DFX existed, as F1 individuals exhibited persistent suppressions in at least one endpoint under both Ca conditions even after being transferred to a clear medium. Continuous exposure of the F1 generation to DFX had negative impacts on JBL, mx, and rm under the normal Ca condition, and on JBL and rm under the high Ca condition. However, cumulative effects were not observed, suggesting the potential development of tolerance to DFX in the F1 organisms. These findings suggest that DFX is a harmful compound for the non-target model organism S. vetulus and reveal a potential antagonism between DFX and Ca. Nevertheless, the interaction between other (fluoro)quinolones and Ca remains unclear, necessitating further research to establish this phenomenon more comprehensively, including understanding the interaction mechanism in ecotoxicological contexts.


Subject(s)
Cladocera , Water Pollutants, Chemical , Humans , Animals , Calcium , Fluoroquinolones/toxicity , Anti-Bacterial Agents/toxicity , Water Pollutants, Chemical/toxicity
14.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433333

ABSTRACT

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Subject(s)
Calcium , Cladocera , Animals , Lakes , Zooplankton , Water
15.
Zootaxa ; 5424(3): 308-322, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480283

ABSTRACT

A number of species of Chydorus Leach, 1816 (Crustacea: Cladocera) need improvements in their taxonomy much more than any other genus within the family Chydoridae Dybowsky & Grochowski, 1894 emend. Frey, 1967, which makes the systematics of the genus still a puzzle that lacks several pieces. Here, we redescribe the African species Chydorus tilhoi Rey & Saint-Jeans, 1969 and compare its morphology with that of Chydorus sphaericus (O.F. Mller, 1776). The two taxa might be easily differentiated because C. tilhoi has a single and relatively large major head pore with a wide rim, labral keel elongated with a large spine, and postabdomen with postanal part elongated, narrowing distally and with denticles near its anal margin, organized in groups. These morphological traits are absent in C. sphaericus. Chydorus tilhoi and C. sphaericus also differ in the morphology of the first (Inner Distal Lobe setae), third (exopodite proportion), and fifth (exopodite shape) limbs. Based on the literature and our observations, the limb morphology of C. tilhoi has important similarities with that of C. breviceps, C. nitidulus and C. dentifer, and their translocation to a new genus seems to be a fundamental piece in the puzzle of Chydorus.


Subject(s)
Cladocera , Animals , Animal Distribution
16.
Sci Total Environ ; 922: 171426, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432363

ABSTRACT

Climate warming influences the biological activities of aquatic organisms, including feeding, growth, and reproduction, thereby affecting predator-prey interactions. This study explored the variation in thermal sensitivity of anti-predator responses in two cladoceran species with varying body sizes, Daphnia pulex and Ceriodaphnia cornuta. These species were cultured with or without the fish (Rhodeus ocellatus) kairomone at temperatures of 15, 20, 25, and 30 °C for 15 days. Results revealed that cladocerans of different body sizes exhibited varying responses to fish kairomones in aspects such as individual size, first-brood neonate size, total offspring number, average brood size, growth rate, and reproductive effort. Notably, low temperature differently affected defense responses in cladocerans of different body sizes. Both high and low temperatures moderated the intensity of the kairomone-induced response on body size at maturity. Additionally, low temperature reversed the reducing effect of fish kairomone on the total offspring number, average brood size, and reproductive effort in D. pulex. Conversely, it enhanced the increasing effect of fish kairomone on these parameters in C. cornuta. These results suggest that inducible anti-predator responses in cladocerans are modifiable by temperature. The differential effects of fish kairomones on various cladocerans under temperature influence offer crucial insights for predicting changes in predator-prey interactions within freshwater ecosystems under future climate conditions.


Subject(s)
Cladocera , Cypriniformes , Animals , Cladocera/physiology , Daphnia , Ecosystem , Pheromones/pharmacology , Body Size , Predatory Behavior
17.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432389

ABSTRACT

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Subject(s)
Cladocera , Copepoda , Permafrost , Rotifera , Animals , Seasons , Siberia , Zooplankton/physiology , Lakes/chemistry , Rotifera/physiology , Phytoplankton/physiology , Copepoda/physiology , Carbon , Water
18.
Harmful Algae ; 133: 102588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485443

ABSTRACT

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Subject(s)
Cladocera , Microcystis , Animals , Microcystis/physiology , Ecosystem , Gene Expression Profiling , Saline Waters
19.
Sci Total Environ ; 914: 169825, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199353

ABSTRACT

Recent climate warming and atmospheric reactive nitrogen (Nr) deposition are affecting a broad spectrum of physical, ecological and human systems that may be irreversible on a century time scale and have the potential to cause regime shifts in ecological systems. These changes may alter the limnological conditions with important but still unclear effects on lake ecosystems. We present changes in cladoceran with comparisons to diatom assemblages over the past ~200 years from high-resolution, well-dated sediment cores retrieved from six high mountain lakes in the southeastern (SE) margin of the Tibetan Plateau. Our findings suggest that warming and the exponential increase of atmospheric Nr deposition are the major drivers of ecological regime changes. Shifts in cladoceran and diatom communities in high alpine lakes began over a century ago and intensified since 1950 CE, indicating a regional-scale response to anthropogenic climate warming. Zooplankton in the forest lakes showed asynchronous trajectories, with increased Nr deposition as a significant explanatory factor. Forest lakes with higher dissolved organic carbon (DOC) concentrations partially buffered the impacts of Nr deposition with little structural change, while lakes with low DOC display symptoms of resilience loss related to Nr deposition. Biological community compositional turnover in subalpine lakes has shown marked shifts, equivalent to those of low-elevation lakes strongly affected by direct human impacts. This suggests that local effects override climatic forcing and that lake basin features modified by anthropogenic activity act as basin-specific filters of common forcing. Our results indicate that snow and glacial meltwaters along with nutrient enrichment related to climate warming and atmospheric Nr deposition, represent major threats for lake ecosystems, even in remote areas. We reveal that climate and atmospheric contaminants will further impact ecological conditions and alter aquatic food webs in higher altitude biomes if climate and anthropogenic forcing continue.


Subject(s)
Cladocera , Diatoms , Animals , Humans , Lakes/chemistry , Ecosystem , Tibet , Climate Change , Cladocera/physiology , Nitrogen/analysis
20.
J Hazard Mater ; 465: 133512, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38232552

ABSTRACT

Parabens, a group of alkyl esters of p-hydroxybenzoic acid, have been found in aquatic systems in particular, leading to concerns about their potential impact on ecosystems. This study investigated the effects of three commonly used parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP), on the brackish water flea Diaphanosoma celebensis. The results showed that PrP had the most adverse impact on survival rates, followed by EtP and MeP, while MeP and EtP induced significant adverse effects on reproductive performance. A transcriptome analysis revealed significant differential gene expression patterns in response to paraben exposure, with MeP associated with the most significant effects. MeP and EtP exposure produced greater disruption in the microbiota of D. celebensis than did PrP compared with control groups, and we identified eight key microbiota, including Ruegeria and Roseovarius. Correlation analysis between transcriptome and microbiome data revealed key interactions between specific microbiota and host gene expression. Certain microbial taxa were associated with specific genes (e.g. cuticle related genes) and toxicological pathways, shedding light on the complex molecular response and in vivo toxicity effects of parabens. These findings contribute to a deeper understanding of the molecular mechanisms underlying paraben toxicity and highlight the importance of considering the ecological impact of chemical contaminants in aquatic ecosystems.


Subject(s)
Cladocera , Parabens , Animals , Parabens/analysis , Transcriptome , Ecosystem , Saline Waters
SELECTION OF CITATIONS
SEARCH DETAIL