Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 461
Filter
1.
J Environ Manage ; 359: 121063, 2024 May.
Article in English | MEDLINE | ID: mdl-38704955

ABSTRACT

Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants. Hydrophilic polymers, viz., poly(ethylene glycol) (PEG), improve the dispersion of particles, flocculation processes, and surface properties. In this study, PEG grafted with attapulgite, thereby providing a high-specific surface-area, mesoporous materials for the adsorption of micro-pollutants like ciprofloxacin (CIP) and 17α-ethinylestradiol (EE2) at high rates. A gentle washing process regenerates the clay-polymer material several times with no performance loss, and the natural water implications show fair applicability of solid in decontaminating the CIP and EE2 in an aqueous medium. Further, greenly synthesized silver nanoparticles in situ disperse with the clay polymer efficiently remove the gram-positive and gram-negative bacterium viz., Bacillus subtilis, and Pseudomonas aeruginosa, which are commonly persistent in aquatic environments. The clay polymer outperformed a modified clay composite to eliminate microorganisms and organic micro-pollutants in significant quantities quickly. These results clearly show the importance of fibrous clay-polymer composite for water purification technologies.


Subject(s)
Clay , Polymers , Silver , Water Purification , Water Purification/methods , Polymers/chemistry , Clay/chemistry , Silver/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Bacteria
2.
Bull Environ Contam Toxicol ; 112(5): 68, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722367

ABSTRACT

An investigation of the impact of adding plant-based organic compost to clay soil from a Moringa oleifera farm focusing on the metal content, bioavailability, and accumulation of nutrients in M. oleifera leaves was conducted. Clay soil was mixed with 15%, 30%, 45% and 60% plant-based organic compost (by volume) in 20 cm wide, 2 L pots. Moringa oleifera plants were planted in four replicates of each treatment and control group. Results revealed that the addition of compost significantly (P < 0.05) altered the concentration of metals in the soil. Correspondingly, accumulation of nutrients in M. oleifera leaves increased with the addition of compost to the soil, except for cobalt and chromium. Trace elements had minimal bioavailability in the amended soils, and their presence in the leaves was lower than the permissible trace metal levels in food. The 30% combination had the highest concentration of calcium (45 042.5 mg/kg), magnesium (17430.0 mg/kg) and phosphorous (8802. 5 mg/kg) in M. oleifera leaves. The study concluded the addition of compost improved bioavailability of nutrients in the soil and their concentration in M. oleifera leaves. The target hazard quotients for heavy metals was less than one, indicating that M. oleifera leaf biomass harvested from soil amended with plant-based compost is safe for human consumption. These results serve as guidelines for recommended organic certification requiremets where plant-based compost is often used in the fast-growing herbal industry.


Subject(s)
Clay , Composting , Metals, Heavy , Moringa oleifera , Plant Leaves , Soil Pollutants , Soil , Moringa oleifera/chemistry , Soil Pollutants/analysis , Plant Leaves/chemistry , Humans , Clay/chemistry , Risk Assessment , Soil/chemistry , Metals, Heavy/analysis , Biomass
3.
Harmful Algae ; 134: 102609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705612

ABSTRACT

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Subject(s)
Aluminum Hydroxide , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Animals , Dinoflagellida/drug effects , Dinoflagellida/physiology , Dinoflagellida/chemistry , Clay/chemistry , Bivalvia/physiology , Bivalvia/drug effects , Sea Urchins/physiology , Sea Urchins/drug effects , Florida , Brachyura/physiology , Brachyura/drug effects , Mercenaria/drug effects , Mercenaria/physiology , Aluminum Silicates/pharmacology , Aluminum Silicates/chemistry
4.
PLoS One ; 19(5): e0301581, 2024.
Article in English | MEDLINE | ID: mdl-38768168

ABSTRACT

Research is ongoing to find solutions to the problem of Consolidation and seepage in saturated clay in enclosure space. Firstly, the boundary of non-zero-constant values is established, considering the seepage boundary of the clay is affected by pumping water or lowering boundary pressure on the site. Secondly, the differential equation is established to reflect the spatial and temporal variations of excess pore water pressure dissipation in the clay in enclosure space, and the solution is derived using variable separation methods. Finally, based on results of the solution derived, contour maps of the water pressure are drawn corresponding with the different inhomogeneous boundary conditions.


Subject(s)
Clay , Clay/chemistry , Water/chemistry , Pressure , Models, Theoretical , Aluminum Silicates/chemistry , Solutions
5.
J Phys Chem Lett ; 15(19): 5295-5305, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722703

ABSTRACT

Coacervate microdroplets, a protocell model in exploring the origin of life, have gained significant attention. Clay minerals, catalysts during the origin of life, are crucial in the chemical evolution of small molecules into biopolymers. However, our understanding of the relationship between clay minerals and the formation and evolution of protocells on early Earth remains limited. In this work, the nanoclay montmorillonite nanosheet (MMT-Na) was employed to investigate its interaction with coacervate microdroplets formed by oligolysine (K10) and adenine nucleoside triphosphate (ATP). As an anionic component, MMT-Na was noted to promote the formation of coacervate microdroplets. Furthermore, the efficiency of ssDNA enrichment and the degree of ssDNA hybridization within these microdroplets were significantly improved. By combining inorganic nanoclay with organic biopolymers, our work provides an efficient way to enrich genetic biomolecules in the primitive Earth environment and builds a nanoclay-based coacervate microdroplets, shedding new light on life's origin and protocell evolution.


Subject(s)
Artificial Cells , Bentonite , Artificial Cells/chemistry , Bentonite/chemistry , DNA, Single-Stranded/chemistry , Clay/chemistry , Adenosine Triphosphate/chemistry , Nanostructures/chemistry , Origin of Life , Nucleic Acid Hybridization
6.
J Chromatogr A ; 1725: 464943, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38691924

ABSTRACT

In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic ß-lactam antibiotics and ß-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.


Subject(s)
Cefoperazone , Cefuroxime , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Nanotubes , Silicon Dioxide , Solid Phase Extraction , Sulbactam , Cefoperazone/blood , Cefoperazone/chemistry , Humans , Sulbactam/blood , Sulbactam/chemistry , Solid Phase Extraction/methods , Silicon Dioxide/chemistry , Nanotubes/chemistry , Cefuroxime/blood , Cefuroxime/chemistry , Clay/chemistry , Adsorption , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/chemistry , Polyethyleneimine/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
7.
Chemosphere ; 358: 142134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677609

ABSTRACT

Soil cracking can significantly alter the water and nutrient migration pathways in the soil, influencing plant growth and development. While biochar usage has effectively addressed soil cracking, the feasibility of using less energy-intensive hydrochars in desiccating soils remains unexplored. This study investigates the impact of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soil. A series of controlled environmental laboratory incubations with regular imaging was conducted to determine crack development's dynamic in unamended and hydrochar-amended soils. The results reveal that the addition of wood hydrochar at 2% and 4% dosage reduced the crack intensity factor (CIF) by 22% and 43%, respectively, compared to the unamended control soil. Similarly, the inclusion of peanut shell hydrochar at 2% and 4% lowered the CIF by 22% and 51%, respectively. The presence of hydrophilic groups on the surface of hydrochars, such as O-H, CH, and C-O-C, enhanced the water retention capacity, as confirmed by Fourier-transform infrared analysis. The CIF decrease is attributed to mitigated water evaporation rates, enabled by enhanced water retention within the hydrochar pore spaces. These findings are supported by scanning electron microscopy analyses of the hydrochar morphology. Despite CIF reduction with hydrochar incorporation, the crack length density (CLD) increased across all hydrochar-amended series. In contrast to unamended soil which exhibited pronounced widening of large cracks and extensive inter-pore voids, the incorporation of hydrochar resulted in higher CLD due to the formation of finer interconnecting crack meshes. Consequently, the unamended control soil suffered greater water loss due to heightened evaporation rates. This study sheds new light on the potential of hydrochars in addressing desiccation-induced soil cracking and its implications for water conservation.


Subject(s)
Arachis , Clay , Desiccation , Soil , Wood , Wood/chemistry , Soil/chemistry , Clay/chemistry , Water/chemistry , Charcoal/chemistry
8.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588505

ABSTRACT

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Subject(s)
Clay , Metals, Rare Earth , Minerals , Adsorption , Metals, Rare Earth/chemistry , Clay/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Aluminum Silicates/chemistry
9.
Int J Pharm ; 656: 124073, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569977

ABSTRACT

Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach. These dressings hold significant potential as polymer scaffolds, allowing them to mimic the properties of the extracellular matrix (ECM). So, the objective of this study was to develop a nanocomposite film using dialdehyde-xanthan gum/soy protein isolate incorporated with propolis (PP) and halloysite nanotubes (HNTs) (DXG-SPI/PP/HNTs). In this protein-polysaccharide hybrid system, the self-healing capability was demonstrated through Schiff bonds, providing a favorable environment for cell encapsulation in the field of tissue engineering. To improve the properties of the DXG-SPI film, the incorporation of polyphenols found in PP, particularly flavonoids, is proposed. The synthesized films were subjected to investigations regarding degradation, degree of swelling, and mechanical characteristics. Additionally, halloysite nanotubes (HNTs) were introduced into the DXG-SPI/PP nanocomposite films as a reinforcing filler with varying concentrations of 3 %, 5 %, and 7 % by weight. The scanning electron microscope (SEM) analysis confirmed the proper embedding and dispersion of HNTs onto the DXG-SPI/PP nanocomposite films, leading to functional interfacial interactions. The structure and crystallinity of the synthesized nanocomposite films were characterized using Fourier Transform Infrared Spectrometry (FTIR) and X-ray diffraction (XRD), respectively. Moreover, the developed DXG-SPI/PP/HNTs nanocomposite films significantly improved cell growth of NIH-3T3 fibroblast cells in the presence of PP and HNTs, indicating their cytocompatibility. The antibacterial activity of the nanocomposite was evaluated against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus), which are commonly associated with wound infections. Overall, our findings suggest that the synthesis of DXG-SPI/PP/HNTs nanocomposite scaffolds holds great promise as a clinically relevant biomaterial and exhibits strong potential for numerous challenging biomedical applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Clay , Nanocomposites , Nanotubes , Polysaccharides, Bacterial , Propolis , Soybean Proteins , Wound Healing , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Nanotubes/chemistry , Clay/chemistry , Wound Healing/drug effects , Animals , Propolis/chemistry , Propolis/pharmacology , Propolis/administration & dosage , Polysaccharides, Bacterial/chemistry , Mice , Soybean Proteins/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/administration & dosage , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
10.
Waste Manag ; 181: 176-187, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38614039

ABSTRACT

This study presented the influence of two types of clay: kaolin (Kao) and red clay (RC) on the chemical and physical properties of ceramic specimens when galvanic sludge (GS) is incorporated to encapsulate heavy metals. Samples were obtained of GS from the industrial district of Manaus - Amazonas State, Brazil, and kaolin (Kao), and red clay (RC) from the Central Amazon. A fourth sample was prepared by mixing GS, Kao, and RC in the ratio 1:1:8 (GS + Kao + RC). This mixture was ground, and ceramic specimens were prepared, and heat treated at 950 °C and 1200 °C for three hours for phase detection, compressive strength, leaching of Fe, Ni and Cr metals and life cycle assessment. Galvanic sludge, Kao, and RC were also, and heat treated to at 950 °C and 1200 °C for three hours, obtaining GS950, GS1200, Kao950, Kao1200, RC950, and RC1200. The samples were submitted to XRF, XRD, Rietveld refinement, Mössbauer spectroscopy, TG/DTG/DSC, and SEM. The results show that the formation of nickel oxide and a spinel solid solution of the type Fe3+{Fe1-y3+,Fe1-x2+,Nix2+,Cry3+}O4 (in which [] = tetrahedral site, {} octahedral site) occurs in GS1200, which is caused by sulfate decomposition to SO2. At 1200 °C, heavy metals are encapsulated, forming other phases such as nickel silicate and hematite. Life cycle assessment was used to verify the sustainability and value of GS in clay for making bricks, and it indicated that the production of ceramics is feasible, reduces the use of clays, and is sustainable.


Subject(s)
Ceramics , Clay , Kaolin , Metals, Heavy , Sewage , Kaolin/chemistry , Clay/chemistry , Metals, Heavy/chemistry , Metals, Heavy/analysis , Ceramics/chemistry , Sewage/chemistry , Brazil
11.
Int J Biol Macromol ; 267(Pt 2): 131375, 2024 May.
Article in English | MEDLINE | ID: mdl-38604424

ABSTRACT

Compostable zein-polycaprolactone (PZ) electrospun nanofiber integrated with different concentrations of Aster yomena extract loaded halloysite nanotubes (A. yomena-HNT) as bioactive nanofibrous food packaging is reported. SEM micrographs reveal heterogeneous nanofibers. A. yomena extract used in the study showed weak antioxidant activity with AAI and TEAC values of 0.229 and 0.346. In vitro, release profile over 7 days of A. yomena indicates a controlled, sustained, and prolonged release. The prepared nanofibers were effective against both gram-positive and gram-negative bacteria. The prepared composite nanofibers were rendered biocompatible and nontoxic when subjected to WST-1 and LDH assay after incubating with NIH 3T3 mouse fibroblast cell line. PZ-15 nanofiber packaging showed the best postharvest quality preservation in Black mulberry fruits after 4 days of storage at 25 °C and 85 % Rh. Moreover, the in vitro decomposition test reveals that the fabricated nanofibers decompose in the soil and do not pose as a threat to the environment.


Subject(s)
Clay , Food Packaging , Nanofibers , Nanotubes , Plant Extracts , Polyesters , Zein , Nanofibers/chemistry , Polyesters/chemistry , Zein/chemistry , Mice , Animals , Clay/chemistry , Food Packaging/methods , Nanotubes/chemistry , NIH 3T3 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
12.
Environ Pollut ; 349: 123903, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599272

ABSTRACT

To investigate watershed remediation within a Total Maximum Daily Load program, this study examined the field-scale filtration performance of two specialty absorbents. The goal was to simultaneously remove nutrients and biological pollutants along Canal 23 (C-23) in the St. Lucie River Basin, Florida. The filtration system installed in the C-23 river corridor was equipped with either clay-perlite with sand sorption media (CPS) or zero-valent iron and perlite green environmental media (ZIPGEM). Both media were formulated with varying combinations of sand, clay, perlite, and/or recycled iron based on distinct recipes. In comparison with CPS, ZIPGEM exhibited higher average removal percentages for nutrients. Findings indicated that ZIPGEM could remove total nitrogen up to 49.3%, total Kjeldahl nitrogen up to 67.1%, dissolved organic nitrogen (DON) up to 72.9%, total phosphorus up to 79.6%, and orthophosphate up to 73.2%. Both ZIPGEM and CPS demonstrated similar efficiency in eliminating biological pollutants, such as E. coli (both media exhibiting an 80% removal percentage) and chlorophyll a (both media achieving approximately 95% removal). Seasonality effects were also evident in nutrient removal efficiencies, particularly in the case of ammonia nitrogen; the negative removal efficiency of ammonia nitrogen from the fifth sampling event could be attributed to processes such as photochemical ammonification, microbial transformation, and mineralization of DON in wet seasons. Overall, ZIPGEM demonstrated a more stable nutrient removal efficiency than CPS in the phase of seasonal changes.


Subject(s)
Environmental Restoration and Remediation , Filtration , Nitrogen , Phosphorus , Silicon Dioxide , Water Pollutants, Chemical , Filtration/methods , Water Pollutants, Chemical/analysis , Environmental Restoration and Remediation/methods , Environmental Restoration and Remediation/instrumentation , Florida , Water Purification/methods , Rivers/chemistry , Aluminum Oxide/chemistry , Escherichia coli , Chlorophyll A , Clay/chemistry , Iron/chemistry
13.
Int J Biol Macromol ; 267(Pt 2): 131651, 2024 May.
Article in English | MEDLINE | ID: mdl-38636746

ABSTRACT

The plastics derived from fossil fuels for food packaging results in serious environmental problems. Developing environment-friendly materials for food packaging is urgent and essential. In this study, polylactic acid (PLA) composite nanofibers membranes were prepared with good biocompatibility and antibacterial property. Cu2+ loaded in the natural halloysite nanotubes (HNTs) was used for the antibacterial agent. Cu2+ was loaded in the HNTs and was confirmed by the X-ray photoelectron spectroscopy (XPS). PLA nanofibers with different HNTs-Cu content were continuous nanofibers with the nanoscale range. HNTs-Cu entered into the nanofiber successfully. Thermal analysis results showed composite nanofibers had good thermal stability. Composite nanofiber membranes had the good hydrophobic property. HNTs-Cu improved the mechanical property of composite nanofibers than pure PLA nanofibers. Tensile strength and elasticity modulus of composite nanofibers with 4 % HNTs-Cu content were the most outstanding. L929 cells were cultured on the nanofiber membranes for biocompatibility evaluation. Cell viability of nanofiber membranes was above the 90 %. Cell live/dead staining results showed L929 cells was seldom dead on the nanofiber membranes. PLA/HNTs-Cu nanofiber membranes exhibited excellent antibacterial effects on S. aureus and E. coli. The inhibitory rates against S. aureus and E. coli were 98.31 % and 97.80 % respectively. The fresh-keeping effects of nanofiber membranes were evaluated by the strawberry preservation. Strawberries covered by nanofiber membranes exhibited better appearance, lower weight loss and higher firmness than control, PLA and PLA/HNTs groups. It promised that PLA/HNTs-Cu composite nanofiber membranes have the significant potential application for active food packaging.


Subject(s)
Anti-Bacterial Agents , Clay , Copper , Food Packaging , Nanofibers , Nanotubes , Polyesters , Staphylococcus aureus , Copper/chemistry , Copper/pharmacology , Nanofibers/chemistry , Polyesters/chemistry , Nanotubes/chemistry , Food Packaging/methods , Clay/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Mice , Membranes, Artificial , Animals , Cell Line , Tensile Strength , Cell Survival/drug effects
14.
Int J Biol Macromol ; 268(Pt 2): 131762, 2024 May.
Article in English | MEDLINE | ID: mdl-38657925

ABSTRACT

The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applications. The fabricated scaffold was characterized using analytical techniques. FT-IR measurement exhibited the existence of relevant functional groups and XRD implies scaffolds' amorphous nature. The scaffold's morphology and pore diameter were assessed using TEM and SEM. The pore diameter of the as-prepared scaffold was approximately 125 nm. The antimicrobial assay of the scaffold was evaluated against selected pathogens which demonstrated higher antimicrobial efficacy. The scavenging activity tested using the DPPH assay showed remarkable scavenging capability. The wound healing properties were tested through the Cytotoxicity assay conducted on the L929 assay which proved the scaffold to be a suitable material for cell proliferation. Also, a Molecular docking investigation was carried out for CS/PVA/MMT ligand using human neutrophil elastase (HNE) 1H1B protein as a receptor in the CB-Dock server. Studies conducted in silico revealed strong interaction and high binding energy ratings of CS/PVA/MMT ligand with key residues of human neutrophil elastase (HNE) 1H1B proteins that help in tissue regeneration activity.


Subject(s)
Bentonite , Cell Proliferation , Chitosan , Molecular Docking Simulation , Polyvinyl Alcohol , Tissue Scaffolds , Polyvinyl Alcohol/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Bentonite/chemistry , Bentonite/pharmacology , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Cell Line , Mice , Animals , Humans , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Regeneration/drug effects , Wound Healing/drug effects , Clay/chemistry , Tissue Engineering/methods
15.
Biomed Mater ; 19(3)2024 May 03.
Article in English | MEDLINE | ID: mdl-38636501

ABSTRACT

Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.


Subject(s)
Blood Coagulation , Hemostatics , Magnesium Compounds , Oxalic Acid , Silicon Compounds , Magnesium Compounds/chemistry , Oxalic Acid/chemistry , Animals , Silicon Compounds/chemistry , Blood Coagulation/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Biocompatible Materials/chemistry , Hemostasis/drug effects , Materials Testing , Humans , Surface Properties , Clay/chemistry , Magnesium/chemistry , Rats
16.
Environ Sci Pollut Res Int ; 31(20): 29357-29373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573574

ABSTRACT

In this study, Tunisian raw clay (RC) was utilized as a cheap source of silicium and aluminum for the preparation of faujasite zeolite (FAUsyn) using the alkaline fusion technique. The zeolite's structural analysis was carried out using the XRD, nitrogen adsorption-desorption, and SEM-EDX techniques. The data collected demonstrate that the produced zeolite only included one homogeneous faujasite phase. Textural analysis shows that the FAUsyn prepared from RC has a hierarchical porosity (micro-, meso-, and macropores). The total porosity was found to be 0.33 cm3/g as well as the BET area was equal to 360 m2/g. Adsorption experiments for propene capture were performed using the FAUsyn as adsorbent material. The performance of the column was examined in relation to various parameter impacts, including flow rate (50, 100, and 150 mL/min), input concentration (4, 8, and 12 mg/L), and bed depth (10, 14, and 18 cm). Finally, experimental and theoretical studies were investigated to predict adsorption capacities and kinetics parameters. To clarify and estimate column inputs, a model that incorporates axial dispersion, Langmuir equation, and migration within the adsorbent's pore was improved. COMSOL Multiphysics software was used to execute the model and resolve it computationally. The results of the experiments and the expected breakthrough curves were very well agreed. Modeling obtained results can be extrapolated to industrial level.


Subject(s)
Clay , Zeolites , Zeolites/chemistry , Adsorption , Clay/chemistry , Tunisia , Kinetics , Porosity
17.
Environ Sci Pollut Res Int ; 31(20): 29719-29729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584232

ABSTRACT

The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt) with enhanced efficiency for Cr(VI) removal. CNC@Bt exhibited an increased specific surface area and a porous structure, while maintaining the original crystal structure of Bt. This was achieved through a synergistic function of ion exchange, hydrogen bonding, electrostatic interactions, and steric hindrance. The adsorption of Cr(VI) by CNC@Bt followed the pseudo-second-order kinetic and Langmuir isotherm adsorption model. Moreover, the process was endothermic and spontaneous. At an initial Cr(VI) concentration of 20 mg/L and pH = 4.0, 10 g/L CNC@Bt achieved a removal rate of 92.7%, and the adsorption capacity was 1.85 mg/g, significantly higher than bare Bt (37.9% and 0.76 mg/g). The removal efficiency remained consistently above 80% over a wide pH range, indicating the potential practical applicability of CNC@Bt. With its fast adsorption rate, pH adaptability, and stable performance, CNC@Bt presents promising prospects for the rapid treatment of Cr-contaminated wastewater.


Subject(s)
Cellulose , Chromium , Nanoparticles , Water Pollutants, Chemical , Cellulose/chemistry , Nanoparticles/chemistry , Adsorption , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Clay/chemistry , Bentonite/chemistry , Hydrogen-Ion Concentration
18.
Biomed Mater ; 19(3)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537375

ABSTRACT

The development of new three-dimensional biomaterials with advanced versatile properties is critical to the success of tissue engineering (TE) applications. Here, (a) bioactive decellularized tendon extracellular matrix (dECM) with a sol-gel transition feature at physiological temperature, (b) halloysite nanotubes (HNT) with known mechanical properties and bioactivity, and (c) magnetic nanoparticles (MNP) with superparamagnetic and osteogenic properties were combined to develop a new scaffold that could be used in prospective bone TE applications. Deposition of MNPs on HNTs resulted in magnetic nanostructures without agglomeration of MNPs. A completely cell-free, collagen- and glycosaminoglycan- rich dECM was obtained and characterized. dECM-based scaffolds incorporated with 1%, 2% and 4% MNP-HNT were analysed for their physical, chemical, andin vitrobiological properties. Fourier-transform infrared spectroscopy, x-ray powder diffractometry and vibrating sample magnetometry analyses confirmed the presence of dECM, HNT and MNP in all scaffold types. The capacity to form apatite layer upon incubation in simulated body fluid revealed that dECM-MNP-HNT is a bioactive material. Combining dECM with MNP-HNT improved the thermal stability and compressive strength of the macroporous scaffolds upto 2% MNP-HNT.In vitrocytotoxicity and hemolysis experiments showed that the scaffolds were essentially biocompatible. Human bone marrow mesenchymal stem cells adhered and proliferated well on the macroporous constructs containing 1% and 2% MNP-HNT; and remained metabolically active for at least 21 din vitro. Collectively, the findings support the idea that magnetic nanocomposite dECM scaffolds containing MNP-HNT could be a potential template for TE applications.


Subject(s)
Nanotubes , Tissue Scaffolds , Humans , Clay/chemistry , Tissue Scaffolds/chemistry , Prospective Studies , Tissue Engineering/methods , Magnetic Phenomena , Nanotubes/chemistry , Extracellular Matrix/chemistry
19.
Environ Sci Pollut Res Int ; 31(17): 24724-24744, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503955

ABSTRACT

Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.


Subject(s)
Environmental Pollutants , Groundwater , Humans , Clay/chemistry , Minerals/chemistry , Soil/chemistry , Adsorption
20.
Int J Biol Macromol ; 266(Pt 1): 130963, 2024 May.
Article in English | MEDLINE | ID: mdl-38508561

ABSTRACT

The effects of various hydrocolloids (guar gum, xanthan gum, and carboxymethyl cellulose) on the texture, rheology, and microstructural properties of modeling clay prepared with cassava starch were investigated. Notably, incorporation of 3 % guar gum and 4 % xanthan gum into starch-based modeling clay resulted in enhancements of 94.12 % and 77.47 % in cohesiveness, and 64.70 % and 66.20 % in extensibility, respectively. For starch-based modeling clay with added guar gum and xanthan gum, compared to formulations without hydrocolloids, the linear viscoelastic range exceeded 0.04 %, and the frequency dependence of both maximum creep compliance (Jmax) and storage modulus (G') was significantly reduced. This indicates a more stable network structure and enhanced resistance to deformation. Results from Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that the physical interactions between starch and various hydrocolloids, along with the addition of these hydrocolloids, inhibited the degradation effect of thermomechanical processing on the crystalline structure of starch. With the addition of guar gum, it is observed that a continuous and dense network structure forms within the starch-based modeling clay, and starch particles are distributed uniformly. In conclusion, hydrocolloids enhances the properties of starch-based modeling clay, introducing an innovative solution to the modeling clay sector.


Subject(s)
Clay , Colloids , Elasticity , Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Starch , Starch/chemistry , Colloids/chemistry , Clay/chemistry , Plant Gums/chemistry , Viscosity , Galactans/chemistry , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Rheology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Aluminum Silicates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...