Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 904
Filter
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731638

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Subject(s)
Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
2.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753503

ABSTRACT

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Subject(s)
Antiviral Agents , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Influenza, Human/drug therapy , Influenza, Human/virology , Crystallography, X-Ray/methods , Click Chemistry/methods , Animals , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry , Dogs
3.
Carbohydr Res ; 538: 109101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574410

ABSTRACT

To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.


Subject(s)
Click Chemistry , Saccharin , Click Chemistry/methods , Glycoconjugates/chemistry , Triazoles/chemistry , Molecular Docking Simulation
4.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38591457

ABSTRACT

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Subject(s)
Click Chemistry , Cycloaddition Reaction , Polymers , Urate Oxidase , Urate Oxidase/chemistry , Click Chemistry/methods , Polymers/chemistry , Cyclooctanes/chemistry , Humans , Azides/chemistry , Alkynes/chemistry
5.
J Pharm Biomed Anal ; 245: 116147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640847

ABSTRACT

In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction.


Subject(s)
Click Chemistry , Electrochemical Techniques , Tyrosine , Tyrosine/chemistry , Electrochemical Techniques/methods , Click Chemistry/methods , Chromatography, High Pressure Liquid/methods , Kinetics , Triazoles/chemistry , Triazoles/analysis , Spectrometry, Mass, Electrospray Ionization/methods
6.
Biomacromolecules ; 25(5): 2780-2791, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38613487

ABSTRACT

Linear-dendritic block copolymers assemble in solution due to differences in the solubility or charge properties of the blocks. The monodispersity and multivalency of the dendritic block provide unparalleled control for the design of drug delivery systems when incorporating poly(ethylene glycol) (PEG) as a linear block. An accelerated synthesis of PEG-dendritic block copolymers based on the click and green chemistry pillars is described. The tandem composed of the thermal azide-alkyne cycloaddition with internal alkynes and azide substitution is revealed as a flexible, reliable, atom-economical, and user-friendly strategy for the synthesis and functionalization of biodegradable (polyester) PEG-dendritic block copolymers. The high orthogonality of the sequence has been exploited for the preparation of heterolayered copolymers with terminal alkenes and alkynes, which are amenable for subsequent functionalization by thiol-ene and thiol-yne click reactions. Copolymers with tunable solubility and charge were so obtained for the preparation of various types of nanoassemblies with promising applications in drug delivery.


Subject(s)
Alkynes , Azides , Click Chemistry , Cycloaddition Reaction , Drug Delivery Systems , Polyethylene Glycols , Alkynes/chemistry , Polyethylene Glycols/chemistry , Azides/chemistry , Drug Delivery Systems/methods , Click Chemistry/methods , Dendrimers/chemistry , Dendrimers/chemical synthesis , Polymers/chemistry
7.
Mol Pharm ; 21(5): 2327-2339, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38576375

ABSTRACT

In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.


Subject(s)
Camptothecin , Lipids , Liposomes , Camptothecin/chemistry , Camptothecin/administration & dosage , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Liposomes/chemistry , Animals , Mice , Lipids/chemistry , Humans , Drug Liberation , Drug Delivery Systems/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Female , Click Chemistry/methods , Mice, Inbred BALB C
8.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667298

ABSTRACT

STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution.


Subject(s)
Click Chemistry , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Click Chemistry/methods , HeLa Cells , Microscopy, Fluorescence/methods , Color , Nanotechnology/methods , Biomarkers/metabolism , Staining and Labeling/methods
9.
J Oleo Sci ; 73(4): 573-581, 2024.
Article in English | MEDLINE | ID: mdl-38556290

ABSTRACT

We present a CuAAC (Copper-Catalyzed Azide-Alkyne Cycloaddition) reaction protocol designed for the visualization of mRNA. To achieve this, we synthesized stable mRNA molecules incorporating the modified nucleoside analog, EU, a crucial element for fluorophore attachment. Leveraging this modified mRNA, we successfully executed the CuAAC reaction, wherein the pro-fluorophore, coumarin, was conjugated to EU on the mRNA through our meticulously designed CuAAC process. This innovative approach resulted in the emission of fluorescence, enabling both precise quantification and visual observation of mRNA. Furthermore, we demonstrated the feasibility of concurrent mRNA synthesis and visualization by seamlessly integrating the CuAAC reaction mix into the mRNA transcription process. Additionally, our novel methodology opens avenues for prospective real-time monitoring of mRNA transcription within artificial cells. These advancements hold significant promise for expanding our comprehension of fundamental cellular processes and finding applications across diverse biological contexts in the future.


Subject(s)
Azides , Click Chemistry , Click Chemistry/methods , Prospective Studies , Azides/chemistry , Copper/chemistry , Cycloaddition Reaction , Catalysis
10.
Talanta ; 273: 125931, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38518716

ABSTRACT

Tyrosinase (TYR) is an essential oxidase that is responsible for the regulation of multiple physiological processes and diseases. Achieving the trace and reliable detection of TYR in complex biological samples is of great significance for the diagnosis of TYR-related diseases, but which faces a great challenge. In this study, we developed an ingenious and powerful method for the ultrasensitive detection of TYR by click reaction-combined dark-field microscopy. This method begins with the formation of cuprous ions (Cu+) based on the reduction of copper ions (Cu2+) by ascorbic acid (AA). Subsequently, the formed Cu+ can catalyze the crosslinking between azide- and alkyne-functionalized gold nanoparticles, causing a significant red-shift in the scattering spectrum. However, AA can chelate with TYR, which inhibits the generation of Cu+ and subsequent click reaction, thus achieving TYR-controlled scattering spectral shift. The proposed sensing platform shows a good linear detection range of 0.01-0.8 U/L with a low detection limit of 0.003 U/L, which is three orders of magnitude lower than the best performance of TYR sensing probes reported to date. Most importantly, the strategy has the ability to reliably and accurately detect TYR in serum sample, suggesting its potential clinical application in diagnosing TYR-related diseases. This visual sensing platform offers promising prospects for future research in enzymatic analysis and biomedical diagnostics.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Monophenol Monooxygenase , Copper/analysis , Gold , Biosensing Techniques/methods , Ascorbic Acid , Ions , Click Chemistry/methods
11.
Angew Chem Int Ed Engl ; 63(15): e202318534, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38343199

ABSTRACT

Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.


Subject(s)
Click Chemistry , Selenium , Click Chemistry/methods , Chemistry, Pharmaceutical/methods , Proteins/chemistry , Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction
12.
Biotechnol J ; 19(1): e2300339, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178719

ABSTRACT

Cell-mediated drug delivery by conjugating nanomedicine to the surface of living cells is a promising strategy for enhancing the efficacy of both drug delivery and cell therapy. It exploits the tissue homing properties of the specific cell types to overcome in vivo barriers and forms a drug depot by directly putting the therapeutic payload in target cells. An important concern of developing this system is the method to conjugate nanoparticles on cells. Herein, we developed a bioorthogonal T cell conjugation strategy using SPAAC click chemistry, which allows controllable and highly efficient conjugation without affecting the viability and functions of the cytotoxic T lymphocytes. Azide groups were incorporated on the surface of T cells through metabolic glycoengineering, followed by reacting with dibenzylcyclooctyne (DBCO) modified lipid nanoparticles (LNPs). LNPs can be conjugated to T cells, allowing for the loading of different drug molecules on the cells. The metabolic engineering and click reaction approach provides a simple and versatile strategy to conjugate NPs to living cells and enable the development of sophisticated therapeutic cell products.


Subject(s)
Click Chemistry , Nanoparticles , Click Chemistry/methods , Nanoparticles/chemistry , Liposomes , Drug Delivery Systems
13.
Org Lett ; 26(4): 819-823, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38236576

ABSTRACT

The stimulator of interferon genes (STING) protein plays a crucial role in the activation of the innate immune response. Activation of STING is initiated by cyclic dinucleotides (CDNs) which prompted the community to synthesize structural analogues to enhance their biological properties. We present here the synthesis and biological evaluation of four novel CDN analogues composed of an N-acylsulfonamide linkage. These CDNs were obtained in high overall yields via the sulfo-click reaction as a key step.


Subject(s)
Nucleotides, Cyclic , Nucleotides, Cyclic/chemistry , Nucleotides, Cyclic/metabolism , Membrane Proteins/agonists , Membrane Proteins/chemistry , Click Chemistry/methods
14.
Expert Opin Drug Discov ; 19(3): 267-280, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214914

ABSTRACT

INTRODUCTION: The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED: The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION: Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.


Subject(s)
Click Chemistry , Drug Discovery , Humans , Click Chemistry/methods , Drug Discovery/methods , Copper/chemistry , Alkynes/chemistry , Azides/chemistry , Triazoles/chemistry
15.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005315

ABSTRACT

Alkaloids found in multiple species, known as 'driver species', are more likely to be included in early-stage drug development due to their high biodiversity compared to rare alkaloids. Many synthetic approaches have been employed to hybridize the natural alkaloids in drug development. Click chemistry is a highly efficient and versatile reaction targeting specific areas, making it a valuable tool for creating complex natural products and diverse molecular structures. It has been used to create hybrid alkaloids that address their limitations and serve as potential drugs that mimic natural products. In this review, we highlight the recent advancements made in modifying alkaloids using click chemistry and their potential medicinal applications. We discuss the significance, current trends, and prospects of click chemistry in natural product-based medicine. Furthermore, we have employed computational methods to evaluate the ADMET properties and drug-like qualities of hybrid molecules.


Subject(s)
Alkaloids , Biological Products , Click Chemistry/methods , Triazoles/chemistry , Molecular Structure
16.
Methods Mol Biol ; 2709: 105-115, 2023.
Article in English | MEDLINE | ID: mdl-37572275

ABSTRACT

In the field of nucleic acid nanotechnology and therapeutics, there is an imperative need to improve the oligodeoxynucleotides' (ODNs) properties by either chemical modification of the oligonucleotides' structure or to covalently link them to a reporter or therapeutic moieties that possess biologically relevant properties. The chemical conjugation can thus significantly improve the intrinsic properties not only of ODNs but also reporter/therapeutic molecules. Bioconjugation of nucleic acids to small molecules also serves as a nano-delivery facility to transport various functionalities to specific targets. Herein, we describe a generalized methodology that deploys azide-alkyne cycloaddition, a click reaction to conjugate a cyanine-3 alkyne moiety to an azide-functionalized ODN 12-mer, as well as 3-azido 7-hydroxycoumarin to an alkyne functionalized ODN 12-mer.


Subject(s)
Azides , Nucleic Acids , Azides/chemistry , Oligodeoxyribonucleotides/genetics , Click Chemistry/methods , Oligonucleotides/chemistry , Alkynes/chemistry , Cycloaddition Reaction
17.
Acta Biomater ; 168: 22-41, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37482146

ABSTRACT

A myriad of pH-sensitive scaffolds has been reported in recent decades. Information on their behaviour in vitro under conditions that mimic the pH changes that occur during tissue regeneration is abundant. Differently, the in vivo demonstration of the advantages of pH-responsive systems in comparison with non-responders is more limited. The in vivo scenario is very complex and the intricate relationship between the host response, the overall pathological conditions of the patient, and the risk of colonization by microorganisms is very difficult to imitate in in vitro tests. This review aims to shed light on how the changes in pH between healthy and damaged states and also during the healing process have been exploited so far to develop polymer-based scaffolds that actively contribute in vivo to the healing process avoiding chronification. The main strategies so far tested to prepare pH-responsive scaffolds rely on (i) changes in ionization of natural polymers, ionizable monomers and clays, (ii) reversible cross-linkers, (iii) coatings, and (iv) production of CO2 gas. These strategies are analysed in detail in this review with the description of relevant examples of their performance on specific animal models. The versatility of the techniques used to prepare biocompatible and environment-friendly pH-responsive scaffolds that have been implemented in the last decade may pave the way for a successful translation to the clinic. STATEMENT OF SIGNIFICANCE: We report here on the most recent advances in pH-responsive polymer-based scaffolds that have been demonstrated in vivo to be suitable for wound and bone healing. pH is a critical variable in the tissue regeneration process, and small changes can speed up or completely stop the process. Although there is still a paucity of information on the performance in the complex in vivo environment, recently reported achievements using scaffolds endowed with pH-responsiveness through ionic natural polymers, ionizable monomers and clays, reversible cross-linkers, coatings, or formation of CO2 ensure a promising future towards clinical translation.


Subject(s)
Tissue Engineering , Hydrogen-Ion Concentration , Humans , Animals , Polymers/chemistry , Cross-Linking Reagents/chemistry , Tissue Engineering/methods , Clay , Click Chemistry/methods
18.
STAR Protoc ; 4(3): 102418, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37432857

ABSTRACT

Bioorthogonal labeling and click chemistry techniques allow the detailed examination of cellular physiology through tagging and visualizing newly synthesized proteins. Here, we describe three methods applying bioorthogonal non-canonical amino acid tagging and fluorescent non-canonical amino acid tagging to quantify protein synthesis in microglia. We describe steps for cell seeding and labeling. We then detail microscopy, flow cytometry, and Western blotting techniques. These methods can be easily adapted for other cell types to explore cellular physiology in health and disease. For complete details on the use and execution of this protocol, please refer to Evans et al. (2021).1.


Subject(s)
Click Chemistry , Proteome , Proteome/chemistry , Click Chemistry/methods , Microglia/metabolism , Amino Acids/metabolism , Protein Biosynthesis
19.
Sci Rep ; 13(1): 8961, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268718

ABSTRACT

A widely used approach for protein conjugation is through the lysine residues reacting with NHS- or other active esters. However, it is a challenge to precisely control the degree of labeling (DoL) due to the instability of active ester and variability of reaction efficiencies. Here, we provide a protocol for better control of aDoL using existing Copper-free Click Chemistry reagents. It is a two-step reaction with one purification in between. Briefly, proteins of interest were first activated with azide-NHS. After removing unreacted azide-NHS, the protein-N3 is then reacted with a limited amount of complementary click tag. Our studies have shown the click tag will fully react with the protein-N3 after 24 h' incubation, and therefore does not require additional purification steps. As such, the aDoL is equal to the input molar ratio of the click tag and the protein. Furthermore, this approach offers a much simpler and more economical way to perform parallel microscale labeling. Once a protein is pre-activated with N3-NHS, any fluorophore or molecule with the complementary click tag can be attached to the protein by mixing the two ingredients. Quantities of the protein used in the click reaction can be at any desired amount. In one example, we labeled an antibody in parallel with 9 different fluorophores using a total of 0.5 mg of antibody. In another example, we labeled Ab with targeted aDoL value from 2 to 8. In a stability comparison study, we have found the conjugated fluorophore using the suggested click protocol stayed attached to the protein longer than with standard NHS-fluorophore labeling.


Subject(s)
Azides , Proteins , Azides/chemistry , Proteins/chemistry , Click Chemistry/methods
20.
Drug Dev Ind Pharm ; 49(7): 439-447, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37310383

ABSTRACT

OBJECTIVE: To develop N-(levodopa) chitosan derivatives through click chemistry to study their effect in brain cells.Significance: This study presents a proof-of-concept that macromolecules such as N-(Levodopa) chitosan derivatives traverse brain cell membranes and induce biomedical functionalities. METHODS: Through click chemistry, we developed N-(levodopa) chitosan derivatives. They were physically and chemically characterized by FT-IR, 1H-NMR, TGA and Dynamic Light Scattering analyses. Solution and nanoparticles of N-(levodopa) chitosan derivatives were tested in primary cell cultures from the postnatal rat olfactory bulb, substantia nigra and corpus callosum. Ca2+ imaging and UPLC experiments were used to investigate if the biomaterial modulated the brain cell physiology. RESULTS: N-(levodopa) chitosan derivatives induced intracellular Ca2+ responses in primary cell cultures of the rat brain. UPLC experiments indicated that levodopa attached to chitosan was converted into dopamine by brain cells. CONCLUSION: The present study shows that N-(levodopa) chitosan may be useful to develop new treatment strategies, which could serve as molecular reservoirs of biomedical drugs to treat degenerative disorders of the nervous system.


Subject(s)
Chitosan , Levodopa , Rats , Animals , Levodopa/pharmacology , Chitosan/chemistry , Click Chemistry/methods , Spectroscopy, Fourier Transform Infrared , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...