Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 631
Filter
1.
Mol Cancer ; 23(1): 87, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702773

ABSTRACT

BACKGROUND: Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of treatment-naïve primary PDAC samples with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC evolution and its clinical associations. RESULTS: scRNA-seq analysis revealed that even a small proportion (22%) of basal-like malignant ductal cells could lead to poor chemotherapy response and patient survival and that epithelial-mesenchymal transition programs were largely subtype-specific. The clonal homogeneity significantly increased with more prevalent and pronounced copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal-like ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively correlated with that of immunosuppressive cell populations, such as Tregs. CONCLUSION: We uncover that the proportion of basal-like subtype is a key determinant for chemotherapy response and patient outcome, and that PDAC clonally evolves with subtype-specific dosage changes of cancer-associated genes by forming immunosuppressive microenvironments in its progression and metastasis.


Subject(s)
Clonal Evolution , Liver Neoplasms , Pancreatic Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Clonal Evolution/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Transcriptome , Epithelial-Mesenchymal Transition/genetics , Biomarkers, Tumor/genetics , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Male , Female , Single-Cell Gene Expression Analysis
2.
Nat Commun ; 15(1): 4074, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744814

ABSTRACT

Esophageal adenocarcinoma is a prominent example of cancer characterized by frequent amplifications in oncogenes. However, the mechanisms leading to amplicons that involve breakage-fusion-bridge cycles and extrachromosomal DNA are poorly understood. Here, we use 710 esophageal adenocarcinoma cases with matched samples and patient-derived organoids to disentangle complex amplicons and their associated mechanisms. Short-read sequencing identifies ERBB2, MYC, MDM2, and HMGA2 as the most frequent oncogenes amplified in extrachromosomal DNAs. We resolve complex extrachromosomal DNA and breakage-fusion-bridge cycles amplicons by integrating of de-novo assemblies and DNA methylation in nine long-read sequenced cases. Complex amplicons shared between precancerous biopsy and late-stage tumor, an enrichment of putative enhancer elements and mobile element insertions are potential drivers of complex amplicons' origin. We find that patient-derived organoids recapitulate extrachromosomal DNA observed in the primary tumors and single-cell DNA sequencing capture extrachromosomal DNA-driven clonal dynamics across passages. Prospectively, long-read and single-cell DNA sequencing technologies can lead to better prediction of clonal evolution in esophageal adenocarcinoma.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Organoids/pathology , Gene Amplification , DNA Methylation , Oncogenes/genetics , Male , Sequence Analysis, DNA/methods , Clonal Evolution/genetics , Female
3.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651690

ABSTRACT

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Subject(s)
Clonal Evolution , Clonal Hematopoiesis , Mutation , Clonal Evolution/genetics , Humans , Clonal Hematopoiesis/genetics , Bone Marrow , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology
4.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667272

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.


Subject(s)
Clonal Hematopoiesis , Multiple Myeloma , Mutation , Single-Cell Analysis , Humans , Multiple Myeloma/genetics , Single-Cell Analysis/methods , Mutation/genetics , Male , Middle Aged , Female , Clonal Hematopoiesis/genetics , Aged , Hematopoietic Stem Cell Transplantation , Sequence Analysis, DNA/methods , Adult , Clonal Evolution/genetics
5.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589411

ABSTRACT

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , Hepatoblastoma/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Plasticity/genetics , Multiomics , Clonal Evolution/genetics
8.
Hematol Oncol Clin North Am ; 38(2): 461-476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195308

ABSTRACT

Multiple myeloma is characterized by a highly heterogeneous disease distribution within the bone marrow-containing skeletal system. In this review, we introduce the molecular mechanisms underlying clonal heterogeneity and the spatio-temporal evolution of myeloma. We discuss the clinical impact of clonal heterogeneity, which is thought to be one of the biggest obstacles to overcome therapy resistance and to achieve cure.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Bone Marrow , Clonal Evolution/genetics
9.
Leukemia ; 38(3): 557-569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38017105

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a B-cell neoplasm with a heterogeneous clinical behavior. In 5-10% of patients the disease transforms into a diffuse large-B cell lymphoma known as Richter transformation (RT), which is associated with dismal prognosis. Here, we aimed to establish patient-derived xenograft (PDX) models to study the molecular features and evolution of CLL and RT. We generated two PDXs by injecting CLL (PDX12) and RT (PDX19) cells into immunocompromised NSG mice. Both PDXs were morphologically and phenotypically similar to RT. Whole-genome sequencing analysis at different time points of the PDX evolution revealed a genomic landscape similar to RT tumors from both patients and uncovered an unprecedented RT subclonal heterogeneity and clonal evolution during PDX generation. In PDX12, the transformed cells expanded from a very small subclone already present at the CLL stage. Transcriptomic analysis of PDXs showed a high oxidative phosphorylation (OXPHOS) and low B-cell receptor (BCR) signaling similar to the RT in the patients. IACS-010759, an OXPHOS inhibitor, reduced proliferation, and circumvented resistance to venetoclax. In summary, we have generated new RT-PDX models, one of them from CLL cells that mimicked the evolution of CLL to RT uncovering intrinsic features of RT cells of therapeutical value.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Heterografts , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Clonal Evolution/genetics , Prognosis , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology
10.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37801708

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Recurrence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism
11.
Hematology Am Soc Hematol Educ Program ; 2023(1): 125-134, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066914

ABSTRACT

Progression to myelodysplastic syndromes (MDS) and acute myeloid leukemia is one of the most serious complications of the inherited bone marrow failure and MDS-predisposition syndromes. Given the lack of predictive markers, this risk can also be a source of great uncertainty and anxiety to patients and their providers alike. Recent data show that some acquired mutations may provide a window into this risk. While maladaptive mechanisms, such as monosomy 7, are associated with a high risk of leukemogenesis, mutations that offset the inherited defect (known as somatic genetic rescue) may attenuate this risk. Somatic mutations that are shared with age-acquired clonal hematopoiesis mutations also show syndrome-specific patterns that may provide additional data as to disease risk. This review focuses on recent progress in this area with an emphasis on the biological underpinnings and interpretation of these patterns for patient care decisions.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Bone Marrow , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Clonal Evolution/genetics , Mutation , Disease Progression
13.
Front Immunol ; 14: 1243997, 2023.
Article in English | MEDLINE | ID: mdl-37744361

ABSTRACT

Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Plasma Cells/metabolism , Bone Marrow/metabolism , Clonal Evolution/genetics , Tumor Microenvironment/genetics
14.
Oral Oncol ; 146: 106571, 2023 11.
Article in English | MEDLINE | ID: mdl-37741019

ABSTRACT

OBJECTIVES: In biobanking based on patient-derived organoids (PDO), the genetic stability of organoid lines is critical for the clinical relevance of PDO with parental tumors. However, data on mutational heterogeneity and clonal evolution of PDO and their effects on treatment response are insufficient. METHODS: To investigate whether head and neck cancer organoids (HNCOs) could maintain the genetic characteristics of their original tumors and elucidate the clonal evolution process during a long-term passage, we performed targeted sequencing, covering 377 cancer-related genes and adopted a sub-clonal fraction model. To explore therapeutic response variability between an early and late passage (>passage 6), we generated dose-response curves for drugs and radiation using two HNCO lines. RESULTS: Using 3D ex vivo organoid culture protocol, we successfully established 27 HNCOs from 39 patients with an overall success rate of 70% (27/39). Their mutational profiles were highly concordant, with three of the HNCOs analyzed showing greater than 70% concordance. Only one HNCO displayed less than 50% concordance. However, many of these organoid lines displayed clonal evolution during serial passaging, although major cancer driver genes and VAF distributions were shared between early and later passages. We also found that all late passages of HNCOs tended to be more sensitive to radiation than early passages, similar to drug response results. CONCLUSIONS: We report the establishment of HNCO lines derived from 27 patients and demonstrate their genetic concordance with corresponding parental tumors. Furthermore, we show serial changes in mutational profiles of HNCO along with long passage culture and the impact of these clonal evolutions on response to radiotherapy.


Subject(s)
Biological Specimen Banks , Head and Neck Neoplasms , Humans , Early Detection of Cancer , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Clonal Evolution/genetics , Organoids
15.
J Transl Med ; 21(1): 641, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726835

ABSTRACT

BACKGROUND: Nowadays, the incidence rate of advanced and metastatic prostate cancer at the first time of diagnosis grows higher in China yearly. At present, androgen deprivation therapy (ADT) is the primary treatment of advanced prostate cancer. However, after several years of ADT, most patients will ultimately progress to castration-resistant prostate cancer (CRPC). Previous studies mainly focus on Caucasian and very few on East Asian patients. METHODS: In this study, the pre- and post-ADT tumor samples were collected from five Chinese patients with advanced prostate cancer. The whole-exome sequencing, tumor heterogeneity, and clonal evolution pattern were analyzed. RESULTS: The results showed that the gene mutation pattern and heterogeneity changed significantly after androgen deprivation therapy. Tumor Mutational Burden (TMB) and Copy Number Alteration (CNA) were substantially reduced in the post-treatment group, but the Mutant-allele tumor heterogeneity (MATH), Socio-Demographic Index (SDI), Intratumor heterogeneity (ITH), and weighted Genome Instability Index (wGII) had no significant difference. According to the clone types and characteristics, the presence of main clones in five pre-and post-treatment samples, the clonal evolution pattern can be further classified into two sub-groups (the Homogeneous origin clonal model or the Heterogeneous origin clonal model). The Progression-free survival (PFS) of the patients with the "Homogeneous origin clonal model" was shorter than the "Heterogeneous origin clonal model". The longer PFS might relate to MUC7 and MUC5B mutations repaired. ZNF91 mutation might be responsible for resistance to ADT resistance. CONCLUSION: Our findings revealed potential genetic regulators to predict the castration resistance and provide insights into the castration resistance processes in advanced prostate cancer. The crosstalk between clonal evolution patterns and tumor microenvironment may also play a role in castration resistance. A multicenter-research including larger populations with different background are needed to confirm our conclusion in the future.


Subject(s)
Clonal Evolution , Prostatic Neoplasms , Humans , Male , Androgen Antagonists , Androgens , Clonal Evolution/genetics , Prostatic Neoplasms/genetics , Tumor Microenvironment , East Asian People , Prostatic Neoplasms, Castration-Resistant
16.
Virchows Arch ; 483(6): 835-845, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37610626

ABSTRACT

Differential diagnosis of clonal versus reactive cytopenia and monocytosis, respectively, frequently presents a diagnostic challenge. With the two recent classifications of myeloid disorders, mutational analysis has gained importance as a diagnostic tool. However, reports on its utility on trephine bone marrow biopsies (BMB) are sparse. The aim of our proof of principle study was to determine the suitability of targeted sequencing for the longitudinal evaluation of cytopenia and monocytosis and demonstration of clonal evolution on sequential BMB. Seventy-seven EDTA-decalcified BMB of 33 patients with peripheral cytopenia and/or monocytosis, including at least one follow-up biopsy/patient, were included. Initial morphological diagnoses were idiopathic cytopenia of undetermined significance (ICUS, 8 cases), MDS (without blast increase, 7 cases), MDS with increased blasts/excess blasts (MDS-IB/EB) (11 cases), and CMML (7 cases). Thirty-one genes relevant for myeloid disorders were examined using two custom AmpliSeq NGS panels. Mutations were found in the initial BMB of 5/8 cases of ICUS, thus changing the diagnosis to clonal cytopenia of unknown significance (CCUS), 5/7 MDS, 10/11 MDS-IB/EB, and 7/7 CMML. Clonal evolution was observed in 14/33 (42%) cases, mostly associated with disease progression. None of the wild-type patients acquired mutations during follow-up. NGS-based mutation profiling is a robust diagnostic tool for BMB and provides valuable additional information, especially for cases with no/minimal dysplasia, and for better risk stratification of MDS. Tracking variant allele frequency and appearance of mutations over time allows for observing clonal evolution or relapse.


Subject(s)
Bone Marrow , Myelodysplastic Syndromes , Humans , Bone Marrow/pathology , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Mutation , Clonal Evolution/genetics , Biopsy
17.
Am J Hematol ; 98(10): 1627-1636, 2023 10.
Article in English | MEDLINE | ID: mdl-37605345

ABSTRACT

Our knowledge of genetic aberrations, that is, variants and copy number variations (CNVs), associated with mantle cell lymphoma (MCL) relapse remains limited. A cohort of 25 patients with MCL at diagnosis and the first relapse after the failure of standard immunochemotherapy was analyzed using whole-exome sequencing. The most frequent variants at diagnosis and at relapse comprised six genes: TP53, ATM, KMT2D, CCND1, SP140, and LRP1B. The most frequent CNVs at diagnosis and at relapse included TP53 and CDKN2A/B deletions, and PIK3CA amplifications. The mean count of mutations per patient significantly increased at relapse (n = 34) compared to diagnosis (n = 27). The most frequent newly detected variants at relapse, LRP1B gene mutations, correlated with a higher mutational burden. Variant allele frequencies of TP53 variants increased from 0.35 to 0.76 at relapse. The frequency and length of predicted CNVs significantly increased at relapse with CDKN2A/B deletions being the most frequent. Our data suggest, that the resistant MCL clones detected at relapse were already present at diagnosis and were selected by therapy. We observed enrichment of genetic aberrations of DNA damage response pathway (TP53 and CDKN2A/B), and a significant increase in MCL heterogeneity. We identified LRP1B inactivation as a new potential driver of MCL relapse.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/diagnosis , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , DNA Copy Number Variations , Neoplasm Recurrence, Local , Genes, p16 , Clonal Evolution/genetics
18.
Am J Hematol ; 98(10): 1520-1531, 2023 10.
Article in English | MEDLINE | ID: mdl-37399248

ABSTRACT

Transformation from chronic (CP) to blast phase (BP) in myeloproliferative neoplasm (MPN) remains poorly characterized, and no specific mutation pattern has been highlighted. BP-MPN represents an unmet need, due to its refractoriness to treatment and dismal outcome. Taking advantage of the granularity provided by single-cell sequencing (SCS), we analyzed paired samples of CP and BP in 10 patients to map clonal trajectories and interrogate target copy number variants (CNVs). Already at diagnosis, MPN present as oligoclonal diseases with varying ratio of mutated and wild-type cells, including cases where normal hematopoiesis was entirely surmised by mutated clones. BP originated from increasing clonal complexity, either on top or independent of a driver mutation, through acquisition of novel mutations as well as accumulation of clones harboring multiple mutations, that were detected at CP by SCS but were missed by bulk sequencing. There were progressive copy-number imbalances from CP to BP, that configured distinct clonal profiles and identified recurrences in genes including NF1, TET2, and BCOR, suggesting an additional level of complexity and contribution to leukemic transformation. EZH2 emerged as the gene most frequently affected by single nucleotide and CNVs, that might result in EZH2/PRC2-mediated transcriptional deregulation, as supported by combined scATAC-seq and snRNA-seq analysis of the leukemic clone in a representative case. Overall, findings provided insights into the pathogenesis of MPN-BP, identified CNVs as a hitherto poorly characterized mechanism and point to EZH2 dysregulation as target. Serial assessment of clonal dynamics might potentially allow early detection of impending disease transformation, with therapeutic implications.


Subject(s)
DNA Copy Number Variations , Myeloproliferative Disorders , Humans , Myeloproliferative Disorders/pathology , Mutation , Blast Crisis/genetics , Single-Cell Analysis , Clonal Evolution/genetics
19.
Leuk Lymphoma ; 64(10): 1681-1688, 2023 10.
Article in English | MEDLINE | ID: mdl-37424322

ABSTRACT

The pathogenesis of donor cell leukemia (DCL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear and likely multifactorial. Leukemic transformation of healthy donor HSCs in recipient's bone marrow microenvironment provides a useful in vivo model for investigating the mechanisms involved in leukemogenesis. Here, we report a rare case of late-onset DCL developing in a recipient. Whole-genome sequencing indicates that donor-derived cells harboring clonal hematopoiesis of indeterminate potential (CHIP)-associated genetic alterations expand and eventually transform to full-blown AML via acquisition of additional somatic mutations within the recipient's bone marrow microenvironment. The 10× single-cell RNA sequencing reveals the abundance of GMP-like cells with a specific transcriptional signature in DCL. Moreover, impaired immune surveillance, including dysfunction of cytotoxic T lymphocytes (CTLs) and decreased number of canonical NK cells, is discovered in DCL. Our data add valuable information to the current understanding of the mechanisms of DCL.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia/genetics , Genomics , Clonal Evolution/genetics , Gene Expression Profiling , Tumor Microenvironment
20.
Hepatol Int ; 17(6): 1429-1443, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37273168

ABSTRACT

BACKGROUND: Multifocal hepatocellular carcinoma (MF-HCC) accounts for > 40% of HCCs, exhibiting a poor prognosis than single primary HCCs. Characterizing molecular features including dynamic changes of mutational signature along with clonal evolution, intrahepatic metastatic timing, and genetic footprint in the preneoplastic stage underlying different subtypes of MF-HCC are important for understanding their molecular evolution and developing a precision management strategy. METHODS: We conducted whole-exome sequencing in 74 tumor samples from spatially distinct regions in 35 resected lesions and adjacent noncancerous tissues from 11 patients, 15 histologically confirmed preneoplastic lesions, and six samples from peripheral blood mononuclear cells. A previously published MF-HCC cohort (n = 9) was included as an independent validation dataset. We combined well-established approaches to investigate tumor heterogeneity, intrahepatic metastatic timing, and molecular footprints in different subtypes of MF-HCCs. RESULTS: We classified MF-HCCs patients into three subtypes, including intrahepatic metastasis, multicentric occurrence, and mixed intrahepatic metastasis and multicentric occurrence. The dynamic changes in mutational signatures between tumor subclonal expansions demonstrated varied etiologies (e.g., aristolochic acid exposure) underlying the clonal progression in different MF-HCC subtypes. Furthermore, the clonal evolution in intrahepatic metastasis exhibited an early metastatic seeding at 10-4-0.01 cm3 in primary tumor volume (below the limits of clinical detection), further validated in an independent cohort. In addition, mutational footprints in the preneoplastic lesions for multicentric occurrence patients revealed common preneoplastic arising clones, evidently being ancestors of different tumor lesions. CONCLUSION: Our study comprehensively characterized the varied tumor clonal evolutionary history underlying different subtypes of MF-HCC and provided important implications for optimizing personalized clinical management for MF-HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Leukocytes, Mononuclear , Clonal Evolution/genetics , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...