Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
J Nat Med ; 75(1): 232-239, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33200287

ABSTRACT

Obesity is a risk factor for many diseases, including type 2 diabetes and cardiovascular disease, and is related to the rising morbidity and mortality. Discovery of agents targeting adipogenesis, especially from natural sources, is important for the treatment of obesity. Here, we aimed to identify anti-adipogenic substances in methanol extracts of Physalis peruviana and to investigate their effect, along with underlying mechanisms. Activity-guided fractionation of the extract revealed 4ß-hydroxywithanolide E (HWE) and withanolide E (WE) as the adipogenesis inhibitors. Both compounds suppressed mRNA expression of central adipogenic transcription factors, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer-binding protein α in the early stage of adipocyte differentiation. The inhibitory action of these two withanolides on adipogenesis was largely limited to this stage. The proliferation of preadipocytes was markedly suppressed by treatment with HWE and WE for 24 and 48 h in the differentiation medium, and cell-cycle arrest in the G0/G1 phase was observed. Therefore, our results suggested that withanolides from P. peruviana to be novel anti-adipogenic compounds that modulate mitotic clonal expansion.


Subject(s)
3T3-L1 Cells/metabolism , Clonal Hematopoiesis/drug effects , Physalis/chemistry , Plant Extracts/chemistry , Ribes/chemistry , Withanolides/metabolism , Adipocytes/metabolism , Animals , Cell Differentiation , Humans , Mice , Mitosis
4.
Nat Genet ; 52(11): 1219-1226, 2020 11.
Article in English | MEDLINE | ID: mdl-33106634

ABSTRACT

Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies.


Subject(s)
Clonal Hematopoiesis/genetics , Neoplasms, Second Primary/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/radiation effects , Child , Child, Preschool , Clonal Evolution , Clonal Hematopoiesis/drug effects , Cohort Studies , Female , Genetic Fitness , Humans , Infant , Infant, Newborn , Leukemia, Myeloid/genetics , Male , Middle Aged , Models, Biological , Mutation , Neoplasms/drug therapy , Neoplasms/radiotherapy , Selection, Genetic , Young Adult
5.
Blood ; 136(14): 1599-1605, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32736382

ABSTRACT

Clonal hematopoiesis (CH) is common in older persons and is associated with an increased risk of hematologic cancer. Here, we review studies establishing an association between CH and hematopoietic malignancy, discuss features of CH that are predictive of leukemic progression, and explore the role of hematopoietic stressors in the evolution of CH to acute myeloid leukemia or myelodysplastic syndrome. CH due to point mutations or structural variants such as copy-number alterations is associated with an ∼10-fold increased risk of hematopoietic malignancy. Although the absolute risk of hematopoietic malignancy is low, certain features of CH may confer a higher risk of transformation, including the presence of TP53 or spliceosome gene mutations, a variant allele fraction >10%, the presence of multiple mutations, and altered red blood indices. CH in the setting of peripheral blood cytopenias carries a very high risk of progression to a myeloid malignancy and merits close observation. There is emerging evidence suggesting that hematopoietic stressors contribute to both the development of CH and progression to hematopoietic malignancy. Specifically, there is evidence that genotoxic stress from chemotherapy or radiation therapy, ribosome biogenesis stress, and possibly inflammation may increase the risk of transformation from CH to a myeloid malignancy. Models that incorporate features of CH along with an assessment of hematopoietic stressors may eventually help predict and prevent the development of hematopoietic malignancies.


Subject(s)
Clonal Hematopoiesis , Disease Susceptibility , Hematologic Neoplasms/etiology , Hematopoiesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Biomarkers , Cell Transformation, Neoplastic/genetics , Clonal Evolution/drug effects , Clonal Evolution/genetics , Clonal Hematopoiesis/drug effects , Clonal Hematopoiesis/genetics , Genetic Predisposition to Disease , Hematopoiesis/drug effects , Hematopoiesis/genetics , Humans , Mutation , Neoplasms, Second Primary/etiology , Pancytopenia/etiology , Stress, Physiological
6.
Leukemia ; 34(12): 3256-3268, 2020 12.
Article in English | MEDLINE | ID: mdl-32203146

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is suspected of being a risk factor for patients with cancer. This study aimed to assess the clinical consequences of CHIP in patients with lymphoma intended for high-dose chemotherapy and autologous stem-cell transplantation (ASCT) in a population-based setting. We identified 892 lymphoma patients who had undergone stem cell harvest at all transplant centers in Denmark. A total of 565 patients had an available harvest sample, which was analysed for CHIP by next-generation sequencing, and the median follow-up was 9.1 years. Of the patients who were intended for immediate ASCT, 25.5% (112/440) carried at least one CHIP mutation. In contrast to previous single-center studies CHIP was not associated with inferior overall survival (OS) in multivariate analyses. However, patients with mutations in genes of the DNA repair pathway (PPM1D, TP53, RAD21, BRCC3) had a significant inferior OS (HR after 1 year of follow-up 2.79, 95% confidence interval 1.71-4.56; p < 0.0001), which also was evident in multivariate analysis (p = 0.00067). These patients had also increased rates of therapy-related leukemia and admission to intensive care. Furthermore, in patients who did not undergo immediate ASCT, a significant inferior OS of individuals with DNA repair mutations was also identified (p = 0.003).


Subject(s)
Clonal Hematopoiesis/physiology , Lymphoma/surgery , Lymphoma/therapy , Adult , Aged , Antineoplastic Agents/therapeutic use , Clonal Hematopoiesis/drug effects , DNA Repair/drug effects , DNA Repair/genetics , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Lymphoma/drug therapy , Male , Middle Aged , Retrospective Studies , Transplantation, Autologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...