Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.993
Filter
1.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716731

ABSTRACT

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Uganda , Adult , Male , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Female , Tuberculosis/immunology , Tuberculosis/microbiology , T-Lymphocytes/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Clone Cells/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Young Adult , Histocompatibility Antigens Class I
2.
Nat Immunol ; 25(5): 916-924, 2024 May.
Article in English | MEDLINE | ID: mdl-38698238

ABSTRACT

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Subject(s)
B-Lymphocytes , Breast Neoplasms , Immunologic Surveillance , Humans , Female , Breast Neoplasms/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Monitoring, Immunologic , Exome Sequencing , Antigens, Neoplasm/immunology , Neoplasm Metastasis , Clone Cells
3.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709934

ABSTRACT

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Subject(s)
AIRE Protein , Insulin , Receptors, Antigen, T-Cell , Thymus Gland , Transcription Factors , Animals , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , Insulin/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Immune Tolerance , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Mice, Transgenic , Mice, Knockout , Clone Cells , Mice, Inbred C57BL
4.
Ann Hematol ; 103(6): 1897-1907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616191

ABSTRACT

Glycosylphosphatidylinositol-anchored protein-deficient hematopoietic stem and progenitor cell development caused by PIGA mutations cannot fully explain the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Herein, patients newly diagnosed with PNH at our hospital between April 2019 and April 2021 were recruited. The human leukocyte antigen (HLA) class I and II loci were analyzed, and patients were stratified by PNH clone sizes: small (< 50%) and large (≥ 50%). In 40 patients (29 males; 72.5%), the median PNH clone size was 72%. Thirteen (32.5%) and twenty-seven (67.5%) patients harbored small and large PNH clones, respectively. DRB1*15:01 and DQB1*06:02 had higher frequencies in patients with PNH than in healthy controls (adjusted P-value = 4.10 × 10-4 and 4.10 × 10-4, respectively). Whole HLA class I and II allele contributions differed (P = 0.046 and 0.065, not significant difference) when comparing patients with small and large PNH clones. B*13:01 and C*04:01 allelic frequencies were significantly higher in patients with small clones (P = 0.032 and P = 0.032, respectively). Patients with small clones had higher class II HLA evolutionary divergence (HED) (P = 0.041) and global class I and II HED (P = 0.019). In the entire cohort, 17 HLA aberrations were found in 11 (27.5%) patients. No significant differences in HLA aberrations were found between patients with small or large clones. In conclusion, patients with small clones tended to have a higher frequency of immune attack-associated alleles. A higher HED in patients with small clones may reflect a propensity for T cell-mediated autoimmunity. HLA aberrations were similar between patients with small and large clones.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/immunology , Male , Female , Middle Aged , Adult , Aged , Gene Frequency , HLA Antigens/genetics , Young Adult , Adolescent , Clone Cells
5.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
6.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612443

ABSTRACT

Acute myeloid leukemia (AML) is a complex hematologic malignancy with high morbidity and mortality. Nucleophosmin 1 (NPM1) mutations occur in approximately 30% of AML cases, and NPM1-mutated AML is classified as a distinct entity. NPM1-mutated AML patients without additional genetic abnormalities have a favorable prognosis. Despite this, 30-50% of them experience relapse. This study aimed to investigate the potential of total RNAseq in improving the characterization of NPM1-mutated AML patients. We explored genetic variations independently of myeloid stratification, revealing a complex molecular scenario. We showed that total RNAseq enables the uncovering of different genetic alterations and clonal subtypes, allowing for a comprehensive evaluation of the real expression of exome transcripts in leukemic clones and the identification of aberrant fusion transcripts. This characterization may enhance understanding and guide improved treatment strategies for NPM1mut AML patients, contributing to better outcomes. Our findings underscore the complexity of NPM1-mutated AML, supporting the incorporation of advanced technologies for precise risk stratification and personalized therapeutic strategies. The study provides a foundation for future investigations into the clinical implications of identified genetic variations and highlights the importance of evolving diagnostic approaches in leukemia management.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Clone Cells , Exome , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics
7.
Front Immunol ; 15: 1321603, 2024.
Article in English | MEDLINE | ID: mdl-38633256

ABSTRACT

An individual's T-cell repertoire constantly changes under the influence of external and internal factors. Cells that do not receive a stimulatory signal die, while those that encounter and recognize a pathogen or receive a co-stimulatory signal divide, resulting in clonal expansions. T-cell clones can be traced by monitoring the presence of their unique T-cell receptor (TCR) sequence, which is assembled de novo through a process known as V(D)J rearrangement. Tracking T cells can provide valuable insights into the survival of cells after hematopoietic stem cell transplantation (HSCT) or cancer treatment response and can indicate the induction of protective immunity by vaccination. In this study, we report a bioinformatic method for quantifying the T-cell repertoire dynamics from TCR sequencing data. We demonstrate its utility by measuring the T-cell repertoire stability in healthy donors, by quantifying the effect of donor lymphocyte infusion (DLI), and by tracking the fate of the different T-cell subsets in HSCT patients and the expansion of pathogen-specific clones in vaccinated individuals.


Subject(s)
Hematopoietic Stem Cell Transplantation , Receptors, Antigen, T-Cell , Humans , T-Lymphocyte Subsets , Clone Cells
8.
Elife ; 122024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622998

ABSTRACT

Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.


Subject(s)
Escherichia coli Infections , Meningitis , Infant, Newborn , Humans , Escherichia coli/genetics , Virulence/genetics , Clone Cells
9.
Elife ; 122024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591522

ABSTRACT

Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRß chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.


Subject(s)
CD4-Positive T-Lymphocytes , T-Lymphocytes, Regulatory , Mice , Animals , Receptors, Antigen, T-Cell/genetics , Peptides , Clone Cells
10.
Mol Med ; 30(1): 48, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594612

ABSTRACT

BACKGROUND: Immune-mediated arthritis is a group of autoinflammatory diseases, where the patient's own immune system attacks and destroys synovial joints. Sustained remission is not always achieved with available immunosuppressive treatments, warranting more detailed studies of T cell responses that perpetuate synovial inflammation in treatment-refractory patients. METHODS: In this study, we investigated CD4 + and CD8 + T lymphocytes from the synovial tissue and peripheral blood of patients with treatment-resistant immune-mediated arthritis using paired single-cell RNA and TCR-sequencing. To gain insights into the trafficking of clonal families, we compared the phenotypes of clones with the exact same TCRß amino acid sequence between the two tissues. RESULTS: Our results show that both CD4 + and CD8 + T cells display a more activated and inflamed phenotype in the synovial tissue compared to peripheral blood both at the population level and within individual T cell families. Furthermore, we found that both cell subtypes exhibited clonal expansion in the synovial tissue. CONCLUSIONS: Our findings suggest that the local environment in the synovium drives the proliferation of activated cytotoxic T cells, and both CD4 + and CD8 + T cells may contribute to tissue destruction and disease pathogenesis.


Subject(s)
Arthritis , CD8-Positive T-Lymphocytes , Humans , CD8-Positive T-Lymphocytes/metabolism , Arthritis/metabolism , Arthritis/pathology , Synovial Membrane , Clone Cells , Amino Acid Sequence , CD4-Positive T-Lymphocytes/metabolism
11.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623671

ABSTRACT

BACKGROUND: Chronic eosinophilic leukemia (CEL) is a rare invasive disease characterized by non-specific cytogenetic abnormalities or elevated mother cells, poor prognosis, and a high risk of conversion to acute leukemia. METHODS: We described the data of a patient with CEL-NOS. RESULTS: This case is a CEL-NOS with four mutations in CSF3R-T618I, DNMT3A Q816, ASXL1, and IDH2. CONCLUSIONS: The patient rapidly evolves into secondary acute myeloid leukemia (AML).


Subject(s)
Hypereosinophilic Syndrome , Leukemia, Myeloid, Acute , Leukemia , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Signal Transduction , Mutation , Clone Cells , Prognosis , Receptors, Colony-Stimulating Factor/genetics
12.
Methods Mol Biol ; 2797: 323-336, 2024.
Article in English | MEDLINE | ID: mdl-38570470

ABSTRACT

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Diploidy , Fibroblasts/pathology , Clone Cells , Cell Line , Neoplasms/pathology , Protein Isoforms
13.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658552

ABSTRACT

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , Single-Cell Analysis , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aneuploidy , Prostate/pathology , Prostate/metabolism , Clone Cells , Diploidy , Aged
14.
Cancer Med ; 13(7): e7182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591109

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is characterized by clonal heterogeneity, leading to frequent relapses and drug resistance despite intensive clinical therapy. Although AML's clonal architecture has been addressed in many studies, practical monitoring of dynamic changes in those subclones during relapse and treatment is still understudied. METHOD: Fifteen longitudinal bone marrow (BM) samples were collected from three relapsed and refractory (R/R) AML patients. Using droplet digital polymerase chain reaction (ddPCR), the frequencies of patient's leukemic variants were assessed in seven cell populations that were isolated from each BM sample based on cellular phenotypes. By quantifying mutant clones at the diagnosis, remission, and relapse stages, the distribution of AML subclones was sequentially monitored. RESULTS: Minimal residual (MR) leukemic subclones exhibit heterogeneous distribution among BM cell populations, including mature leukocyte populations. During AML progression, these subclones undergo active phenotypic transitions and repopulate into distinct cell population regardless of normal hematopoiesis hierarchic order. Of these, MR subclones in progenitor populations of patient BM predominantly carry MR leukemic properties, leading to more robust expansion and stubborn persistence than those in mature populations. Moreover, a minor subset of MR leukemic subclones could be sustained at an extremely low frequency without clonal expansion during relapse. CONCLUSIONS: In this study, we observed treatment persistent MR leukemic subclones and their phenotypic changes during the treatment process of R/R AML patients. This underscores the importance of preemptive inhibition of clonal promiscuity in R/R AML, proposing a practical method for monitoring AML MR subclones.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Clone Cells , Chronic Disease , Recurrence
15.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587074

ABSTRACT

The central nervous system HIV reservoir is incompletely understood and is a major barrier to HIV cure. We profiled people with HIV (PWH) and uninfected controls through single-cell transcriptomic and T cell receptor (TCR) sequencing to understand the dynamics of HIV persistence in the CNS. In PWH on ART, we found that most participants had single cells containing HIV-1 RNA, which was found predominantly in CD4 central memory T cells, in both cerebrospinal fluid (CSF) and blood. HIV-1 RNA-containing cells were found more frequently in CSF than blood, indicating a higher burden of reservoir cells in the CNS than blood for some PWH. Most CD4 T cell clones containing infected cells were compartment specific, while some (22%) - including rare clones with members of the clone containing detectable HIV RNA in both blood and CSF - were found in both CSF and blood. These results suggest that infected T cells trafficked between tissue compartments and that maintenance and expansion of infected T cell clones contributed to the CNS reservoir in PWH on ART.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Central Nervous System , RNA , Clone Cells
16.
Arkh Patol ; 86(2): 14-20, 2024.
Article in Russian | MEDLINE | ID: mdl-38591902

ABSTRACT

OBJECTIVE: A comparative study of detection of breast cancer markers (estrogen receptors, progesterone receptors, HER2/neu, Ki-67) by immunohistochemical method with antibodies produced by PrimeBioMed (Russia) and antibodies produced by Roche Ventana (USA). MATERIAL AND METHODS: Surgical specimens and biopsies from 37 patients with invasive breast cancer were used. Sections were stained with antibodies of clones ER SP1 and GM030, PR 1E2 and PBM-5B8, HER2/neu 4B5 and PBM-46A6, Ki-67 30-9 and GM010. RESULTS: There was a high positive and significant correlation between the immunohistochemistry results and antibodies of the clones ER-SP1 and GM030, PR1E2 and PBM-5B8, HER2/neu4B5 and PBM-46A6, Ki-67 30-9 and GM010. CONCLUSION: The study showed the possibility of using antibodies of clones GM030, HER2/neu 4B5, PBM-46A6, GM010 (PrimeBioMed) on the Ventana Bench Marck Ultra automatic immunostainer using the detection system UltraView Universal DAB Detection Kit.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Receptors, Progesterone , Receptors, Estrogen , Immunohistochemistry , Receptor, ErbB-2/genetics , Ki-67 Antigen/genetics , Clone Cells/pathology , Biomarkers, Tumor
17.
Virology ; 594: 110038, 2024 06.
Article in English | MEDLINE | ID: mdl-38471199

ABSTRACT

Our laboratory previously discovered a novel rhabdovirus in the Spodoptera frugiperda Sf9 insect cell line that was designated as Sf-rhabdovirus. Using limiting dilution, this cell line was found to be a mixed population of cells infected by Sf-rhabdovirus variants containing either the full length X accessory gene with a 3.7 kb internal duplication (designated as Sf-rhabdovirus X+3.7) or lacking the duplication and part of the X gene (designated as Sf-rhabdovirus X-), and cells that were negative for Sf-rhabdovirus. In this paper, we found that the Sf-rhabdovirus negative cell clones had sub-populations with different susceptibilities to the replication of Sf-rhabdovirus X+3.7 and X- variants: cell clone Sf9-13F12 was more sensitive to replication by both virus variants compared to Sf9-3003; moreover, Sf9-3003 showed more resistance to X+3.7 replication than to X- replication. RNA-Seq analysis indicated significant differentially expressed genes in the Sf9-13F12 and Sf9-3003 cell clones further supporting that distinct sub-populations of virus-negative cells co-exist in the parent Sf9 cell line.


Subject(s)
Rhabdoviridae , Viruses , Animals , Sf9 Cells , Rhabdoviridae/genetics , Rhabdoviridae/metabolism , Clone Cells , Cell Line , Spodoptera
18.
Glia ; 72(7): 1290-1303, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506330

ABSTRACT

Astrocytes represent a diverse and morphologically complex group of glial cells critical for shaping and maintaining nervous system homeostasis, as well as responding to injuries. Understanding the origins of astroglial heterogeneity, originated from a limited number of progenitors, has been the focus of many studies. Most of these investigations have centered on protoplasmic and pial astrocytes, while the clonal relationship of fibrous astrocytes or juxtavascular astrocytes has remained relatively unexplored. In this study, we sought to elucidate the morphological diversity and clonal distribution of astrocytes across adult cortical layers, with particular emphasis on their ontogenetic origins. Using the StarTrack lineage tracing tool, we explored the characteristics of adult astroglial clones derived from single and specific progenitors at various embryonic stages. Our results revealed a heterogeneous spatial distribution of astroglial clones, characterized by variations in location, clonal size, and rostro-caudal dispersion. While a considerable proportion of clones were confined within specific cortical layers, others displayed sibling cells crossing layer boundaries. Notably, we observed a correlation between clone location and developmental stage at earlier embryonic stages, although this relationship diminished in later stages. Fibrous astrocyte clones were exclusively confined to the corpus callosum. In contrast, protoplasmic or juxtavascular clones were located in either the upper or lower cortical layers, with certain clones displayed sibling cells distributed across both regions. Our findings underscore the developmental origins and spatial distribution of astroglial clones within cortical layers, providing new insights into the interplay between their morphology, clonal sizes, and progenitor heterogeneity.


Subject(s)
Astrocytes , Astrocytes/cytology , Astrocytes/physiology , Animals , Clone Cells , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Cerebral Cortex/embryology , Mice, Transgenic , Mice , Neural Stem Cells/cytology , Neural Stem Cells/physiology
19.
Acta Microbiol Immunol Hung ; 71(1): 43-51, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451279

ABSTRACT

Klebsiella pneumoniae is a major human pathogen, because it causes both community- and hospital-acquired infections. Several multidrug-resistant high-risk clones of K. pneumoniae have been reported worldwide, and these are responsible for high numbers of difficult-to-treat infections. In Greece, a K. pneumoniae ST39 high-risk clone was detected in 2019 in a survey of carbapenem- and/or colistin-resistant Enterobacteriacae. The present study included nine carbapenem-resistant K. pneumoniae (CRKP) isolates collected during a retrospective analysis from October 2020 to December 2020. They were isolated from nine different patients hospitalized in the intensive care unit (ICU) of a hospital in Volos, Greece, and they were selected for analysis due to their phenotypic profile. In this study, we analyzed A165 strain K. pneumoniae ST39 isolated from a blood culture in November 2020. Whole-genome sequencing (WGS) was performed using Ion Torrent Platform, and resistance genes, virulence determinants, capsular types, insertion sequences, phage regions, and clustered regularly interspaced palindromic repeats (CRISPR) regions were detected by bioinformatic analysis. The molecular characterization revealed antimicrobial resistance genes, including sul2 for sulfamethoxazole; dfrA1 for trimethoprim; blaVIM-1 and blaKPC-2 for carbapenems; aac(6')-II for aminoglycosides; fosA for fosfomycin and aad1 for streptomycin, blaSHV-40, blaSHV-85, blaSHV-79, blaSHV-56, and blaSHV-89 for beta-lactams. Point mutations were identified in ompK36, and ompK37 and in acrR, gyrA, parC. Several replicons were found, including CoIRNA, IncC, IncFIB(K), IncFIB(pQiL), and IncFII(K). The capsular typing revealed that the strain was KL23, O2afg. The genome sequence of A165 was submitted to NCBI under PRJNA1074377 and have been assigned to Genbank accession number JAZIBV000000000.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems/pharmacology , Clone Cells , Greece , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Retrospective Studies
20.
Zhonghua Xue Ye Xue Za Zhi ; 45(1): 1-7, 2024 Jan 14.
Article in Chinese | MEDLINE | ID: mdl-38527831

ABSTRACT

The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary or clonal) disorders with potential for end-organ damage. Based on new clinical data and increased understanding of disease molecular genetics, the World Health Organization (WHO) and the international consensus classification (ICC) has provided updated criteria and classifications for eosinophilic disorders in 2022. This guideline represents an update of Chinese expert consensus on the diagnosis and treatment of eosinophilia published in 2017 and aim to provide Chinese hematologist with clear guidance on management for eosinophilic disorders.


Subject(s)
Eosinophilia , Humans , Eosinophilia/diagnosis , Eosinophilia/therapy , World Health Organization , Clone Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...