Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 468
Filter
1.
Nature ; 618(7966): 834-841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286599

ABSTRACT

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Subject(s)
Cell Transformation, Neoplastic , Dendritic Cells , Leukemia, Myeloid, Acute , Skin Neoplasms , Skin , Ultraviolet Rays , Humans , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bone Marrow Cells/radiation effects , Cell Death/radiation effects , Cell Lineage/genetics , Cell Lineage/radiation effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/radiation effects , Clone Cells/metabolism , Clone Cells/pathology , Clone Cells/radiation effects , Dendritic Cells/metabolism , Dendritic Cells/pathology , Dendritic Cells/radiation effects , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/radiation effects , Organ Specificity , Single-Cell Gene Expression Analysis , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , Skin/pathology , Skin/radiation effects
2.
J Radiat Res ; 62(2): 198-205, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33372229

ABSTRACT

The biological effects of ionizing radiation, especially those of sparsely ionizing radiations like X-ray and γ-ray, are generally reduced as the dose rate is reduced. This phenomenon is known as 'the dose-rate effect'. The dose-rate effect is considered to be due to the repair of DNA damage during irradiation but the precise mechanisms for the dose-rate effect remain to be clarified. Ku70, Ku86 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are thought to comprise the sensor for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). In this study, we measured the clonogenic ability of Ku70-, Ku86- or DNA-PKcs-deficient rodent cells, in parallel with respective control cells, in response to high dose-rate (HDR) and low dose-rate (LDR) γ-ray radiation (~0.9 and ~1 mGy/min, respectively). Control cells and murine embryonic fibroblasts (MEF) from a severe combined immunodeficiency (scid) mouse, which is DNA-PKcs-deficient, showed higher cell survival after LDR irradiation than after HDR irradiation at the same dose. On the other hand, MEF from Ku70-/- mice exhibited lower clonogenic cell survival after LDR irradiation than after HDR irradiation. XR-V15B and xrs-5 cells, which are Ku86-deficient, exhibited mostly identical clonogenic cell survival after LDR and HDR irradiation. Thus, the dose-rate effect in terms of clonogenic cell survival is diminished or even inversed in Ku-deficient rodent cells. These observations indicate the involvement of Ku in the dose-rate effect.


Subject(s)
Clone Cells/radiation effects , Ku Autoantigen/metabolism , Animals , Cell Line , Cell Survival/radiation effects , Cesium Radioisotopes , Cobalt Radioisotopes , DNA End-Joining Repair/radiation effects , DNA-Activated Protein Kinase/metabolism , Dose-Response Relationship, Radiation , Gamma Rays , Mice, SCID
3.
Sci Rep ; 10(1): 686, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959787

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is highlighted by resistance to radiotherapy with the possible exception of hypofractionated irradiation. As single photon doses were reported to increase immunogenicity, we investigated dose-dependent irradiation effects on clonogenic survival, expression of immunologically relevant cell surface molecules and susceptibility to cytotoxic T cell (CTL) mediated killing using a murine PDA cell line. Clonogenicity decreased in a dose-responsive manner showing enhanced radioresistance at single photon doses below 5 Gy. Cell cycle analysis revealed a predominant G2/M arrest, being most pronounced 12 h after irradiation. Polyploidy increased in a dose- and time-dependent manner reaching a maximum frequency 60 h following irradiation with 10 Gy. Irradiation increased surface expression of MHC class I molecules and of immunological checkpoint molecules PDL-1 and CD73, especially at doses ≥ 5 Gy, but not of MHC class II molecules and CXCR4 receptors. Cytotoxicity assays revealed increased CTL lysis of PDA cells at doses ≥ 5 Gy. For the PDA cell line investigated, our data show for the first time that single photon doses ≥ 5 Gy effectively inhibit colony formation and induce a G2/M cell cycle arrest. Furthermore, expression levels of immunomodulatory cell surface molecules became altered possibly enhancing the susceptibility of tumour cells to CTL lysis.


Subject(s)
5'-Nucleotidase/metabolism , B7-H1 Antigen/metabolism , Carcinoma, Pancreatic Ductal/immunology , Pancreatic Neoplasms/immunology , Animals , Carcinoma, Pancreatic Ductal/radiotherapy , Cell Cycle/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/radiation effects , Dose-Response Relationship, Radiation , Mice , Pancreatic Neoplasms/radiotherapy , Radiation Tolerance , Time Factors
4.
Nat Commun ; 9(1): 455, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386642

ABSTRACT

Hematopoietic clones harboring specific mutations may expand over time. However, it remains unclear how different cellular stressors influence this expansion. Here we characterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted populations show that these clones are typically multilineage and myeloid-biased. Following autologous transplantation, most clones persist with stable chimerism. However, DNMT3A mutant clones often expand, while PPM1D mutant clones often decrease in size. To assess the leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples. Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite several being commonly identified after cytotoxic therapy. These data suggest that different hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific mutations, whose leukemic potential depends partially on the mutations they harbor.


Subject(s)
Antineoplastic Agents/pharmacology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Leukemia/etiology , Selection, Genetic , Adolescent , Adult , Aged , Case-Control Studies , Clone Cells/drug effects , Clone Cells/radiation effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Female , Genes, p53 , Humans , Lymphoma/therapy , Male , Middle Aged , Multiple Myeloma/therapy , Protein Phosphatase 2C/genetics , Young Adult
5.
PLoS Genet ; 12(10): e1006385, 2016 10.
Article in English | MEDLINE | ID: mdl-27788131

ABSTRACT

Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600­13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.


Subject(s)
DNA Damage/genetics , Genome, Human/genetics , Mutation/radiation effects , Neoplasms/genetics , Skin/radiation effects , Biopsy , Clone Cells/radiation effects , DNA Damage/radiation effects , Fibroblasts/pathology , Fibroblasts/radiation effects , Genome, Human/radiation effects , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutagenesis/genetics , Mutation/genetics , Mutation Rate , Neoplasms/etiology , Neoplasms/pathology , Single-Cell Analysis , Skin/pathology , Sunlight/adverse effects
7.
Int J Radiat Biol ; 91(10): 778-85, 2015.
Article in English | MEDLINE | ID: mdl-26136086

ABSTRACT

PURPOSE: We hypothesize that flattening filter free (FFF) high dose rate irradiation will decrease cell survival in normal and cancer cells with more pronounced effects in DNA repair deficient cells. Additionally, we hypothesize that removal of the flattening filter will result in an enhanced relative biological effectiveness independent of the dose rate. MATERIALS AND METHODS: Clonogenic survival was assessed after exposure to dose rates of 4 or 24 Gy/min (FFF 10 megavolt [MV] photon beam) using a Varian TrueBeam accelerator. Additionally, cells were exposed to 4 Gy/min with or without flattening filter. Relative biological effectiveness estimations were performed comparing the different beam photon spectra. RESULTS: Cell survival in tumor and normal cell lines was not influenced by high dose rate irradiation. The intrinsic radiation sensitivity of DNA repair deficient cells was not affected by high dose rate compared to normal dose rate. Furthermore, the relative biological effectiveness was not significantly different from unity in any of the cell lines for both FFF and conventional flattened beam exposures. CONCLUSIONS: High dose rate irradiation did not affect long-term survival and DNA repair for cell lines of different tissues. This suggests that high dose rate does not influence treatment outcome or treatment toxicity and could be safely implemented in clinical routine.


Subject(s)
Radiation Dosage , Safety , Cell Line, Tumor , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/radiation effects , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Homologous Recombination/radiation effects , Humans , Relative Biological Effectiveness
8.
PLoS One ; 10(4): e0120534, 2015.
Article in English | MEDLINE | ID: mdl-25853515

ABSTRACT

Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy.


Subject(s)
Genomics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/radiation effects , Mutation , Animals , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Cell Survival/genetics , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/radiation effects , Gene Expression Regulation/radiation effects , Gene Ontology , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology
9.
Trends Pharmacol Sci ; 36(4): 236-52, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25799457

ABSTRACT

Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.


Subject(s)
Brain Neoplasms/radiotherapy , Glioblastoma/radiotherapy , Nanomedicine/trends , Neoplastic Stem Cells/radiation effects , Animals , Brain Neoplasms/genetics , Clone Cells/radiation effects , Glioblastoma/genetics , Humans , Nanomedicine/methods , Signal Transduction/genetics , Signal Transduction/radiation effects
10.
Radiat Res ; 183(4): 465-75, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25807318

ABSTRACT

We have previously demonstrated that the small molecule octadecenyl thiophosphate (OTP), a synthetic mimic of the growth factor-like mediator lysophosphatidic acid (LPA), showed radioprotective activity in a mouse model of total-body irradiation (TBI) when given orally or intraperitoneally 30 min before exposure to 9 Gy γ radiation. In the current study, we evaluated the effects of OTP, delivered subcutaneously, for radioprotection or radiomitigation from -24 h before to up to +72 h postirradiation using a mouse TBI model with therapeutic doses at around 1 mg/kg. OTP was injected at 10 mg/kg without observable toxic side effects in mice, providing a comfortable safety margin. Treatment of C57BL/6 mice with a single dose of OTP over the time period from -12 h before to +26 h after a lethal dose of TBI reduced mortality by 50%. When administered at +48 h to +72 h postirradiation (LD50/30 to LD100/30), OTP reduced mortality by ≥34%. OTP administered at +24 h postirradiation significantly elevated peripheral white blood cell and platelet counts, increased crypt survival in the jejunum, enhanced intestinal glucose absorption and reduced endotoxin seepage into the blood. In the 6.4-8.6 Gy TBI range using LD50/10 as the end point, OTP yielded a dose modification factor of 1.2. The current data indicate that OTP is a potent radioprotector and radiomitigator ameliorating the mortality and tissue injury of acute hematopoietic as well as acute gastrointestinal radiation syndrome.


Subject(s)
Acute Radiation Syndrome/prevention & control , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/radiation effects , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Lysophospholipids/metabolism , Organophosphorus Compounds/pharmacology , ATPases Associated with Diverse Cellular Activities , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antigens, CD34/metabolism , Biological Transport/drug effects , Biological Transport/radiation effects , Biomimetic Materials/adverse effects , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/radiation effects , Dose-Response Relationship, Drug , Female , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Glucose/metabolism , HEK293 Cells , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Humans , LIM Domain Proteins/metabolism , Leukocyte Count , Mice , Mice, Inbred C57BL , Organophosphorus Compounds/adverse effects , Organophosphorus Compounds/pharmacokinetics , Phosphoproteins/metabolism , Platelet Count , Proteasome Endopeptidase Complex , Radiation-Protective Agents/adverse effects , Radiation-Protective Agents/pharmacokinetics , Radiation-Protective Agents/pharmacology , Sodium-Hydrogen Exchangers/metabolism , Transcription Factors/metabolism , Whole-Body Irradiation/adverse effects
11.
Radiat Res ; 183(1): 124-32, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25564721

ABSTRACT

Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X ray or 600 MeV/nucleon (56)Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X rays and (56)Fe resulted in a dose-dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X rays and (56)Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior.


Subject(s)
Linear Energy Transfer , Lung/cytology , Stem Cells/cytology , Stem Cells/radiation effects , Animals , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/radiation effects , Dose-Response Relationship, Radiation , Epithelial Cells/cytology , Epithelial Cells/radiation effects , Mice , Radiation Tolerance/radiation effects
12.
PLoS One ; 9(9): e107722, 2014.
Article in English | MEDLINE | ID: mdl-25251398

ABSTRACT

Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12 and CS9) and decreased Alu element methylation was observed for the other two unstable clones (115 and Fe5.0-8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0-8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes are almost as equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic instability and permit unstable cells to persist and proliferate.


Subject(s)
DNA Methylation/genetics , Epigenomics/methods , Gene Expression Profiling/methods , Genomic Instability/genetics , Transcriptome/genetics , Animals , CHO Cells , Cell Line , Cell Survival/genetics , Cell Survival/radiation effects , Clone Cells/metabolism , Clone Cells/radiation effects , Cricetinae , Cricetulus , DNA Methylation/radiation effects , Genomic Instability/radiation effects , Humans , Hybrid Cells , NF-kappa B/genetics , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Transcriptome/radiation effects
13.
Phys Med Biol ; 59(14): 3829-42, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24955811

ABSTRACT

The probability of a cure in radiation therapy (RT)-viewed as the probability of eventual extinction of all cancer cells-is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.


Subject(s)
Heavy Ion Radiotherapy , Neoplasms/pathology , Neoplasms/radiotherapy , Cell Count , Cell Survival/radiation effects , Clone Cells/pathology , Clone Cells/radiation effects , Models, Biological , Probability , Radiometry , Treatment Outcome
14.
Radiat Environ Biophys ; 53(3): 479-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24638149

ABSTRACT

Intraclonal recovery following X-irradiation in an in vitro study of L5178Y-S murine leukaemic cells is reviewed. This phenomenon was first described in 1994 occurring in the slowly growing clones ('slow clones') present among the survivors in irradiated cell populations. An attempt to explain these experimental data is given in terms of the present knowledge of the role of mitochondria in nontargeted radiation effects, with the focus on genomic instability and mtDNA-related epigenetic modifications of the nuclear genome. An understanding of this intraclonal recovery may be important in preventing tumour regrowth following radiotherapy, as well as in decreasing the risk of secondary radiation-induced malignancies.


Subject(s)
Genomic Instability/radiation effects , Animals , Cells, Cultured , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/radiation effects , Humans , Mitochondria/genetics , Mitochondria/radiation effects , X-Rays
15.
Nucl Med Biol ; 41(5): 377-83, 2014.
Article in English | MEDLINE | ID: mdl-24637100

ABSTRACT

INTRODUCTION: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, ¹¹¹In-NLS-7G3, which recognizes the CD123⁺/CD131⁻ phenotype uniquely displayed by LSCs. METHODS: The surviving fraction (SF) of CD123⁺/CD131⁻ AML-5 cells exposed to ¹¹¹In-NLS-7G3 (33-266 nmols/L; 0.74MBq/µg) or to γ-radiation (0.25-5Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 µmols/L) combined with ¹¹¹In-NLS-7G3 (16-66 nmols/L) or with γ-radiation (0.25-2Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of ¹¹¹In-NLS-7G3 measured by cell fractionation. RESULTS: Binding of (111)In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1µM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123⁺/CD131⁻ epitope. ¹¹¹In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with ¹¹¹In-NLS-7G3 (16-66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25-0.5Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to ¹¹¹In-NLS-7G3 (66 nmols/L) delivered up to 0.6Gy to AML-5 cells. CONCLUSIONS: We conclude that A12B4C3 radiosensitized AML cells to the DNA damaging effects of ¹¹¹In-NLS-7G3. Combination treatment may increase the effectiveness for Auger electron RIT of AML targeting the LSC subpopulation.


Subject(s)
Antibodies, Monoclonal/immunology , Coordination Complexes/immunology , DNA Repair Enzymes/antagonists & inhibitors , Electrons , Immunoconjugates/pharmacology , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid/pathology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrroles/pharmacology , Animals , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Clone Cells/drug effects , Clone Cells/pathology , Clone Cells/radiation effects , Coordination Complexes/chemistry , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Immunoconjugates/chemistry , Intracellular Space/drug effects , Intracellular Space/radiation effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Pyrroles/chemistry , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiometry
16.
Radiat Environ Biophys ; 53(2): 417-25, 2014 May.
Article in English | MEDLINE | ID: mdl-24549366

ABSTRACT

The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.0 mGy/h (chronic exposure) as well as 24 Gy/h (acute exposure). Cell growth, frequency of thymidine kinase mutants, and of chromosomal aberrations in painted chromosomes 2, 8, and 14 were analysed. A decline in cell growth and an increase in unstable-type chromosomal aberrations with increasing dose rate were observed in both cell lines. A dose rate effect was not seen on mutations or stable-type chromosomal aberrations in any of the two cell lines. Reduction in the hMTH1 protein does not influence the sensitivity of TK6 cells to gamma radiation. This result fits well with data of others generated with the same cell line.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Repair Enzymes/genetics , Gamma Rays/adverse effects , Mutation/radiation effects , Phosphoric Monoester Hydrolases/genetics , Radiation Dosage , Transfection , Cell Line , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Clone Cells/cytology , Clone Cells/radiation effects , Dose-Response Relationship, Radiation , Humans
17.
PLoS One ; 8(8): e72464, 2013.
Article in English | MEDLINE | ID: mdl-23967300

ABSTRACT

Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.


Subject(s)
Benzylidene Compounds/pharmacology , Feedback, Physiological/drug effects , Feedback, Physiological/radiation effects , Neuroblastoma/pathology , Piperidones/pharmacology , Signal Transduction/drug effects , Signal Transduction/radiation effects , Benzylidene Compounds/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Clone Cells/drug effects , Clone Cells/radiation effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Extracellular Space/radiation effects , Humans , NF-kappa B/metabolism , Piperidones/chemical synthesis , Recurrence , Telomerase/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/radiation effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Radiat Res ; 180(2): 189-204, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23862693

ABSTRACT

Mitochondrial targeted manganese superoxide dismutase is a major antioxidant enzyme, the levels of which modulate the response of cells, tissues and organs to ionizing irradiation. We developed a Tet-regulated MnSOD mouse (MnSOD(tet)) to examine the detailed relationship between cellular MnSOD concentration and radioresistance and carried out in vitro studies using bone marrow culture derived stromal cell lines (mesenchymal stem cells). Homozygous MnSOD(tet/tet) cells had low levels of MnSOD, reduced viability and proliferation, increased radiosensitivity, elevated overall antioxidant stores, and defects in cell proliferation and DNA strand-break repair. Doxycycline (doxy) treatment of MnSOD(tet/tet) cells increased MnSOD levels and radioresistance from ñ of 2.79 ± 1.04 to 8.69 ± 1.09 (P = 0.0060) and normalized other biologic parameters. In contrast, MnSOD(tet/tet) cells showed minimal difference in baseline and radiation induced mRNA and protein levels of TGF-ß, Nrf2 and NF-κB and radiation induced cell cycle arrest was not dependent upon MnSOD level. These novel MnSOD(tet/tet) mouse derived cells should be valuable for elucidating several parameters of the oxidative stress response to ionizing radiation.


Subject(s)
Cell Line/radiation effects , Gamma Rays/adverse effects , Radiation Tolerance/genetics , Stromal Cells/radiation effects , Superoxide Dismutase/physiology , Animals , Bone Marrow , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line/enzymology , Clone Cells/enzymology , Clone Cells/radiation effects , Colony-Forming Units Assay , DNA Breaks/radiation effects , Doxycycline/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/radiation effects , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/enzymology , Mutagenesis, Site-Directed , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , NF-kappa B/biosynthesis , NF-kappa B/genetics , Plasmids/genetics , RNA, Messenger/biosynthesis , Real-Time Polymerase Chain Reaction , Stromal Cells/enzymology , Superoxide Dismutase/biosynthesis , Superoxide Dismutase/genetics , Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/genetics
19.
Phys Med Biol ; 58(10): 3075-87, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23594417

ABSTRACT

Radiosensitization using gold nanoparticles (AuNPs) has been shown to vary widely with cell line, irradiation energy, AuNP size, concentration and intracellular localization. We developed a Monte Carlo-based AuNP radiosensitization predictive model (ARP), which takes into account the detailed energy deposition at the nano-scale. This model was compared to experimental cell survival and macroscopic dose enhancement predictions. PC-3 prostate cancer cell survival was characterized after irradiation using a 300 kVp photon source with and without AuNPs present in the cell culture media. Detailed Monte Carlo simulations were conducted, producing individual tracks of photoelectric products escaping AuNPs and energy deposition was scored in nano-scale voxels in a model cell nucleus. Cell survival in our predictive model was calculated by integrating the radiation induced lethal event density over the nucleus volume. Experimental AuNP radiosensitization was observed with a sensitizer enhancement ratio (SER) of 1.21 ± 0.13. SERs estimated using the ARP model and the macroscopic enhancement model were 1.20 ± 0.12 and 1.07 ± 0.10 respectively. In the hypothetical case of AuNPs localized within the nucleus, the ARP model predicted a SER of 1.29 ± 0.13, demonstrating the influence of AuNP intracellular localization on radiosensitization.


Subject(s)
Gold/chemistry , Gold/pharmacology , Metal Nanoparticles , Monte Carlo Method , Radiation Tolerance/drug effects , Radiobiology , Absorption , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/radiation effects , Gold/metabolism , Humans
20.
Cancer Prev Res (Phila) ; 6(2): 129-38, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23233735

ABSTRACT

Immunosuppressive drugs are thought to cause the dramatically increased risk of carcinomas in sun-exposed skin of organ transplant recipients. These drugs differ in local effects on skin. We investigated whether this local impact is predictive of skin cancer risk and may thus provide guidance on minimizing the risk. Immunosuppressants (azathioprine, cyclosporine, tacrolimus, mycophenolate mofetil, and rapamycin) were assessed on altering the UV induction of apoptosis in human skin models and of p53 mutant cell clones (putative tumor precursors) and ensuing skin carcinomas (with mutant p53) in the skin of hairless mice. Rapamycin was found to increase apoptosis (three-fold), whereas cyclosporine decreased apoptosis (three-fold). Correspondingly, a 1.5- to five-fold reduction (P = 0.07) or a two- to three-fold increase (P < 0.001) was found in cell clusters overexpressing mutant p53 in chronically UV-exposed skin of mice that had been fed rapamycin or cyclosporine, respectively. Deep sequencing showed, however, that the allelic frequency (∼5%) of the hotspot mutations in p53 (codons 270 and 275) remained unaffected. The majority of cells with mutated p53 seemed not to overexpress the mutated protein. Unexpectedly, none of the immunosuppressants admixed in high dosages to the diet accelerated tumor development, and cyclosporine even delayed tumor onset by approximately 15% (P < 0.01). Thus, in contrast to earlier findings, the frequency of p53-mutant cells was not predictive of the incidence of skin carcinoma. Moreover, the lack of any accelerative effect on tumor development suggests that immunosuppressive medication is not the sole cause of the dramatic increase in skin cancer risk in organ transplant recipients.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/drug effects , Clone Cells/drug effects , Diet , Immunosuppressive Agents/pharmacology , Neoplasms, Radiation-Induced/pathology , Skin Neoplasms/pathology , Animals , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/radiation effects , Cells, Cultured , Clone Cells/metabolism , Clone Cells/pathology , Clone Cells/radiation effects , Disease Progression , Female , Genes, p53 , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/adverse effects , Male , Mice , Mice, Hairless , Mutant Proteins/physiology , Mutation/physiology , Neoplasms, Radiation-Induced/genetics , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...