Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Microbiologyopen ; 9(4): e1008, 2020 04.
Article in English | MEDLINE | ID: mdl-32109003

ABSTRACT

Isoprene is an important bulk chemical which is mostly derived from fossil fuels. It is used primarily for the production of synthetic rubber. Sustainable, biotechnology-based alternatives for the production of isoprene rely on the fermentation of sugars from food and feed crops, creating an ethical dilemma due to the competition for agricultural land. This issue could be addressed by developing new approaches based on the production of isoprene from abundant renewable waste streams. Here, we describe a proof-of-principle approach for the production of isoprene from cellulosic biomass, the most abundant polymer on earth. We engineered the mesophilic prokaryote Clostridium cellulolyticum, which can degrade cellulosic biomass, to utilize the resulting glucose monomers as a feedstock for the production of isoprene. This was achieved by integrating the poplar gene encoding isoprene synthase. The presence of the enzyme was confirmed by targeted proteomics, and the accumulation of isoprene was confirmed by GC-MS/MS. We have shown for the first time that engineered C. cellulolyticum can be used as a metabolic chassis for the sustainable production of isoprene.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Cellulose/metabolism , Clostridium cellulolyticum/enzymology , Clostridium cellulolyticum/metabolism , Hemiterpenes/biosynthesis , Alkyl and Aryl Transferases/genetics , Bioreactors/microbiology , Biotechnology/methods , Butadienes , Clostridium cellulolyticum/genetics , Metabolic Engineering/methods , Proteomics/methods , Rubber/chemical synthesis
2.
Nucleic Acids Res ; 48(4): 2026-2034, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31943070

ABSTRACT

Type II CRISPR-Cas9 RNA-guided nucleases are widely used for genome engineering. Type II-A SpCas9 protein from Streptococcus pyogenes is the most investigated and highly used enzyme of its class. Nevertheless, it has some drawbacks, including a relatively big size, imperfect specificity and restriction to DNA targets flanked by an NGG PAM sequence. Cas9 orthologs from other bacterial species may provide a rich and largely untapped source of biochemical diversity, which can help to overcome the limitations of SpCas9. Here, we characterize CcCas9, a Type II-C CRISPR nuclease from Clostridium cellulolyticum H10. We show that CcCas9 is an active endonuclease of comparatively small size that recognizes a novel two-nucleotide PAM sequence. The CcCas9 can potentially broaden the existing scope of biotechnological applications of Cas9 nucleases and may be particularly advantageous for genome editing of C. cellulolyticum H10, a bacterium considered to be a promising biofuel producer.


Subject(s)
CRISPR-Associated Protein 9/chemistry , CRISPR-Cas Systems/genetics , Clostridium cellulolyticum/enzymology , DNA/chemistry , CRISPR-Associated Protein 9/genetics , Crystallography, X-Ray , DNA/genetics , Gene Editing , Mutation , Nucleotide Motifs/genetics , RNA, Guide, Kinetoplastida/genetics , Streptococcus pyogenes/enzymology , Substrate Specificity
3.
FEBS Lett ; 592(2): 190-198, 2018 01.
Article in English | MEDLINE | ID: mdl-29282732

ABSTRACT

Ruminiclostridium cellulolyticum produces extracellular cellulosomes which contain interalia numerous family-9 glycoside hydrolases, including the inactive Cel9V. The latter shares the same organization and 79% sequence identity with the active cellulase Cel9E. Nevertheless, two aromatic residues and a four-residue stretch putatively critical for the activity are missing in Cel9V. Introduction of one Trytophan and the four-residue stretch restored some weak activity in Cel9V, whereas the replacement of its catalytic domain by that of Cel9E generated a fully active cellulase. Altogether our data indicate that a series of mutations in the catalytic domain of Cel9V lead to an essentially inactive cellulase.


Subject(s)
Cellulase/genetics , Cellulase/metabolism , Clostridium cellulolyticum/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cellulase/chemistry , Enzyme Activation , Mutagenesis, Insertional , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Tryptophan/metabolism
4.
FEBS J ; 283(23): 4340-4356, 2016 12.
Article in English | MEDLINE | ID: mdl-27749025

ABSTRACT

Diverse unrelated enzymes that adopt the beta/alpha (or TIM) barrel topology display similar arrangements of beta/alpha units placed in a radial eight-fold symmetry around the barrel's axis. The TIM barrel was originally thought to be a single structural domain; however, it is now thought that TIM barrels arose from duplication and fusion of smaller half-barrels consisting of four beta/alpha units. We describe here the design, expression and purification, as well as characterization of folding, activity and stability, of chimeras of two TIM barrel glycosyl hydrolases, made by fusing different half-barrel domains derived from an endoglucanase from Clostridium cellulolyticum, CelCCA and a beta-glucosidase from Pyrococcus furiosus, CelB. We show that after refolding following purification from inclusion bodies, the two half-barrel fusion chimeras (CelCCACelB and CelBCelCCA) display catalytic activity although they assemble into large soluble oligomeric aggregated species containing chains of mixed beta and alpha structure. CelBCelCCA displays hyperthermophile-like structural stability as well as significant stability to chemical denaturation (Cm of 2.6 m guanidinium hydrochloride), whereas CelCCACelB displays mesophile-like stability (Tm of ~ 71 °C). The endoglucanase activities of both chimeras are an order of magnitude lower than those of CelB or CelCCA, whereas the beta-glucosidase activity of CelBCelCCA is about two orders of magnitude lower than that of CelB. The chimera CelCCACelB shows no beta-glucosidase activity. Our results demonstrate that half-barrel domains from unrelated sources can fold, assemble and function, with scope for improvement. ENZYME: Pyrococcus furiosus beta-glucosidase (CelB, EC: 3.2.1.21). Clostridium cellulolyticum endoglucanase A (CelCCA, EC: 3.2.1.4).


Subject(s)
Cellulase/genetics , Glycoside Hydrolases/genetics , Recombinant Fusion Proteins/genetics , beta-Glucosidase/genetics , Amino Acid Sequence , Binding Sites/genetics , Cellulase/chemistry , Cellulase/metabolism , Circular Dichroism , Clostridium cellulolyticum/enzymology , Clostridium cellulolyticum/genetics , Enzyme Stability , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Domains , Protein Engineering/methods , Protein Folding , Protein Multimerization , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Temperature , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism
5.
PLoS One ; 11(8): e0160812, 2016.
Article in English | MEDLINE | ID: mdl-27501457

ABSTRACT

Ruminiclostridium cellulolyticum (Clostridium cellulolyticum) is a mesophilic cellulolytic anaerobic bacterium that produces a multi-enzymatic system composed of cellulosomes and non-cellulosomal enzymes to degrade plant cell wall polysaccharides. We characterized one of the non-cellulosomal enzymes, Cel5I, composed of a Family-5 Glycoside Hydrolase catalytic module (GH5), a tandem of Family-17 and -28 Carbohydrate Binding Modules (CBM), and three S-layer homologous (SLH) modules, where the latter are expected to anchor the protein on the cell surface. Cel5I is the only putative endoglucanase targeting the cell surface as well as the only putative protein in R. cellulolyticum containing CBM17 and/or CBM28 modules. We characterized different recombinant structural variants from Cel5I. We showed that Cel5I has an affinity for insoluble cellulosic substrates through its CBMs, that it is the most active endoglucanase on crystalline cellulose of R. cellulolyticum characterized to date and mostly localized in the cell envelope of R. cellulolyticum. Its role in vivo was analyzed using a R. cellulolyticum cel5I mutant strain. Absence of Cel5I in the cell envelope did not lead to a significant variation of the phenotype compared to the wild type strain. Neither in terms of cell binding to cellulose, nor for its growth on crystalline cellulose, thus indicating that the protein has a rather subtle role in tested conditions. Cel5I might be more important in a natural environment, at low concentration of degradable glucose polymers, where its role might be to generate higher concentration of short cellodextrins close to the cell surface, facilitating their uptake or for signalization purpose.


Subject(s)
Cellulase/metabolism , Cellulosomes/metabolism , Clostridium cellulolyticum/enzymology , Glycosides/metabolism , Carbohydrate Metabolism , Hydrolysis
6.
J Struct Biol ; 194(3): 347-56, 2016 06.
Article in English | MEDLINE | ID: mdl-26993462

ABSTRACT

As a processive cellulase, Cel48F from Clostridium cellulolyticum plays a crucial role in cellulose fiber degradation. It has been confirmed in experiment that residue Glu44 will greatly affect the catalytic activity but the mechanism is still unknown. In this study, conventional molecular dynamics, steered molecular dynamics and free energy calculation were integrated to simulate the hydrolysis and product release process to gain insights into the factors that influence catalytic activity. Analysis of simulation results indicated that Glu44 could maintain the proper conformation of its substrate to ensure successful cleavage reaction or serve as a base required in the inverting mechanism in hydrolysis. After hydrolysis is completed, residues Glu44, Asp494, Trp611 and Glu55 participate in hydrogen bond rearrangement during product releasing process. This rearrangement can reduce the sliding barrier and stimulate the product to move toward the exit in the initial release stage. Dependent on the rearrangement, the product moves toward the exit and is exposed to an increasing amount of solvent molecules, which makes solvent effect more and more notable. With the assistance of solvent interaction, product can get rid of the enzyme more easily. However, the subsequent release process remains uncertain because of the disordered motion of solvent molecules. This work provides theoretical data as a basis of cellulase modification or mutation.


Subject(s)
Biocatalysis , Cellulase/chemistry , Clostridium cellulolyticum/enzymology , Amino Acids , Binding Sites , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Solvents/chemistry , Thermodynamics
7.
Biotechnol Bioeng ; 113(7): 1433-40, 2016 07.
Article in English | MEDLINE | ID: mdl-26693961

ABSTRACT

Molecular dynamics (MD) simulations were used to study substrate recognition by the family 48 exocellulase CelF from Clostridium cellulolyticum. It was hypothesized that residues around the entrance of the active site tunnel of this enzyme might serve to recognize and bind the substrate through an affinity for the cellulose monomer repeat unit, ß-d-glucopyranose. Simulations were conducted of the catalytic domain of this enzyme surrounded by a concentrated solution of ß-d-glucopyranose, and the full three-dimensional probability distribution for finding sugar molecules adjacent to the enzyme was calculated from the trajectory. A significant probability of finding the sugar stacked against the planar faces of Trp 310 and Trp 312 at the entrance of the active site tunnel was observed. Biotechnol. Bioeng. 2016;113: 1433-1440. © 2015 Wiley Periodicals, Inc.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cellulases/chemistry , Cellulases/metabolism , Clostridium cellulolyticum/enzymology , Molecular Dynamics Simulation , Binding Sites , Protein Binding , Substrate Specificity
8.
Appl Environ Microbiol ; 81(13): 4423-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25911483

ABSTRACT

The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes.


Subject(s)
CRISPR-Cas Systems , Clostridium cellulolyticum/enzymology , Clostridium cellulolyticum/genetics , Deoxyribonuclease I/metabolism , Gene Targeting/methods , Genetics, Microbial/methods , Molecular Biology/methods , Homologous Recombination , Streptococcus pyogenes/enzymology , Transformation, Bacterial
9.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 890-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25005083

ABSTRACT

The crystal structure of a D-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the D-tagatose 3-epimerase from Pseudomonas cichorii and the D-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit-subunit interface differed substantially from that in D-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of D-tagatose 3-epimerase family enzymes and endonuclease IV.


Subject(s)
Archaeal Proteins/chemistry , Carbohydrate Epimerases/chemistry , Methanocaldococcus/chemistry , Agrobacterium tumefaciens/chemistry , Agrobacterium tumefaciens/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Clostridium cellulolyticum/chemistry , Clostridium cellulolyticum/enzymology , Crystallography, X-Ray , Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hot Temperature , Methanocaldococcus/enzymology , Models, Molecular , Protein Folding , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein
10.
J Agric Food Chem ; 62(28): 6771-6, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24980476

ABSTRACT

The rare sugar D-psicose possesses several fundamental biological functions. D-Psicose 3-epimerase from Clostridium cellulolyticum (CC-DPEase) has considerable potential for use in D-psicose production. In this study, CC-DPEase was fused to the N terminus of oleosin, a unique structural protein of seed oil bodies and was overexpressed in Escherichia coli as a CC-DPEase-oleosin fusion protein. After reconstitution into artificial oil bodies (AOBs), refolding, purification, and immobilization of the active CC-DPEase were simultaneously accomplished. Immobilization of CC-DPEase on AOB increased the optimal temperature but decreased the optimal pH of the enzyme activity. Furthermore, the AOB-immobilized CC-DPEase had a thermal stability and a bioconversion rate similar to those of the free-form enzyme and retained >50% of its initial activity after five cycles of enzyme use. Thus, AOB-immobilized CC-DPEase has potential application in the production of d-psicose at a lower cost than the free-form enzyme.


Subject(s)
Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Clostridium cellulolyticum/enzymology , Enzymes, Immobilized/metabolism , Fructose/biosynthesis , Lipid Droplets/chemistry , Plant Proteins/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Kinetics
11.
J Mol Recognit ; 27(7): 438-47, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24895276

ABSTRACT

Glycoside hydrolase of Cel48F from Clostridium cellulolyticum is an important processive cellulose, which can hydrolyze cellulose into cellobiose. Molecular dynamics simulations were used to investigate the hydrolysis mechanism of cellulose. The two conformations of the Cel48F-cellotetrose complex in which the cellotetroses are bound at different sites (known as the sliding conformation and the hydrolyzing conformation) were simulated. By comparing these two conformations, a water-control mechanism is proposed, in which the hydrolysis proceeds by providing a water molecule for every other glucosidic linkage. The roles of certain key residues are determined: Glu55 and Asp230 are the most probable candidates for acid and base, respectively, in the mechanism of inverting anomeric carbon. Met414 and Trp417 constitute the water-control system. Glu44 might keep the substrate at a certain location within the active site or help the substrate chain to move from the sliding conformation to the hydrolyzing conformation. The other hydrophobic residues around the substrate can decrease the sliding energy barrier or provide a hydrophobic environment to resist entry of the surrounding water molecules into the active site, except for those coming from a specific water channel.


Subject(s)
Cellulases/chemistry , Molecular Conformation , Molecular Dynamics Simulation , Water/chemistry , Binding Sites , Catalytic Domain , Cellobiose/metabolism , Cellulases/metabolism , Cellulose/metabolism , Clostridium cellulolyticum/enzymology , Crystallography, X-Ray , Hydrogen Bonding , Hydrolysis , Substrate Specificity
12.
Bioengineered ; 5(4): 243-53, 2014.
Article in English | MEDLINE | ID: mdl-24830736

ABSTRACT

Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and ß-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.


Subject(s)
Cellulase/chemistry , Cellulose/chemistry , Models, Molecular , Protein Engineering , Cellulomonas/enzymology , Clostridium cellulolyticum/enzymology , Clostridium thermocellum/enzymology , Fibrobacter/enzymology , Glycoside Hydrolases/chemistry , Hydrolysis , Sensitivity and Specificity
13.
J Biol Chem ; 289(11): 7335-48, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24451379

ABSTRACT

The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.


Subject(s)
Cellulosomes/chemistry , Clostridium cellulolyticum/enzymology , Glycoside Hydrolases/chemistry , Catalytic Domain , Cellulase/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Dextrins/chemistry , Escherichia coli/metabolism , Genome, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Kinetics , Phylogeny , Protein Binding , Protein Engineering , Substrate Specificity , Viscosity
14.
Mol Microbiol ; 91(4): 694-705, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24330350

ABSTRACT

Cellulosomes are key for lignocellulosic biomass degradation in cellulolytic Clostridia. Better understanding of the mechanism of cellulosome regulation would allow us to improve lignocellulose hydrolysis. It is hypothesized that cellulosomal protease inhibitors would regulate cellulosome architecture and then lignocellulose hydrolysis. Here, a dockerin-containing protease inhibitor gene (dpi) in Clostridium cellulolyticum H10 was characterized by mutagenesis and physiological analyses. The dpi mutant had a decreased cell yield on glucose, cellulose and xylan, lower cellulose utilization efficiency, and a 70% and 52% decrease of the key cellulosomal components, Cel48F and Cel9E respectively. The decreased cellulolysis is caused by the proteolysis of major cellulosomal components, such as Cel48F and Cel9E. Disruption of cel9E severely impaired cell growth on cellulose while loss of cel48F completely abolished cellulolytic activity. These observations are due to the combinational results of gene inactivation and polar effects caused by intron insertion. Purified recombinant Dpi showed inhibitory activity against cysteine protease. Taken together, Dpi protects key cellulosomal cellulases from proteolysis in H10. This study identified the physiological importance of cellulosome-localized protease inhibitors in Clostridia.


Subject(s)
Bacterial Proteins/metabolism , Cellulases/metabolism , Clostridium cellulolyticum/enzymology , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics , Cellulose/metabolism , Clostridium cellulolyticum/genetics , DNA Mutational Analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Proteolysis
15.
Biotechnol J ; 8(2): 257-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22847905

ABSTRACT

Immobilization of enzymes onto nanoparticles for enhanced biocatalytic activity via enzyme clustering is a growing field. In this paper, the effect of nanoparticle size on the hydrolytic activity of artificial cellulosomes was investigated. A simple method based on metal affinity coordination was employed to directly conjugate two enzymes, an endoglucanase CelA and an exoglucanase CelE, onto CdSe-ZnS core-shell quantum dots (QDs) without the use of any chemical modification or linker molecules such as streptavidin. Artificial cellulosomes were created by clustering the enzymes onto two different QDs (5 and 10 nm) to systematically study the influence of particle size and QD to enzyme ratio on the enhancement in cellulose hydrolysis. Our results indicate that enzyme proximity is the most important factor for activity enhancement while the influence of particle size is relatively modest. This detailed understanding will provide insights for the design of other artificial cellulosomes based on nanoclustering of multiple catalytic domains with significantly enhanced activities, and may be applicable for designing improved nanobiocatalysts for biofuel production, bioremediation, and drug design.


Subject(s)
Cellulase/chemistry , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Catalysis , Cellulase/genetics , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulosomes/metabolism , Clostridium cellulolyticum/enzymology , Clostridium thermocellum/enzymology , Enzymes, Immobilized/chemistry , Escherichia coli/metabolism , Hydrolysis , Nanoparticles/chemistry , Particle Size , Quantum Dots
16.
Appl Environ Microbiol ; 79(3): 867-76, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23183968

ABSTRACT

Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , Biomass , Cellulases/genetics , Cellulases/metabolism , Metabolic Engineering , Plants/microbiology , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Carbohydrates/analysis , Clostridium cellulolyticum/enzymology , Clostridium cellulolyticum/genetics , Culture Media/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
Sheng Wu Gong Cheng Xue Bao ; 28(4): 457-65, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22803395

ABSTRACT

Rare sugar is a kind of important low-energy monosaccharide that is rarely found in nature and difficult to synthesize chemically. D-allose, a six-carbon aldose, is an important rare sugar with unique physiological functions. It is radical scavenging active and can inhibit cancer cell proliferation. To obtain D-allose, the microorganisms deriving D-psicose 3-epimerase (DPE) and L-rhamnose isomerase (L-RhI) have drawn intense attention. In this paper, DPE from Clostridium cellulolyticum H10 was cloned and expressed in Bacillus subtilis, and L-RhI from Bacillus subtilis 168 was cloned and expressed in Escherichia coli BL21 (DE3). The obtained crude DPE and L-RhI were then purified through a HisTrap HP affinity chromatography column and an anion-exchange chromatography column. The purified DPE and L-RhI were employed for the production of rare sugars at last, in which DPE catalyzed D-fructose into D-psicose while L-RhI converted D-psicose into D-allose. The conversion of D-fructose into D-psicose by DPE was 27.34%, and the conversion of D-psicose into D-allose was 34.64%.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Carbohydrate Epimerases/metabolism , Fructose/metabolism , Glucose/metabolism , Bacillus subtilis/enzymology , Clostridium cellulolyticum/enzymology , Escherichia coli/metabolism
18.
Protein Cell ; 3(2): 123-31, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22426981

ABSTRACT

D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (ß/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.


Subject(s)
Clostridium cellulolyticum/enzymology , Hexoses/chemistry , Racemases and Epimerases/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Manganese/chemistry , Protein Structure, Quaternary , Racemases and Epimerases/metabolism , Substrate Specificity
19.
J Agric Food Chem ; 59(14): 7785-92, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21663329

ABSTRACT

The noncharacterized protein ACL75304 encoded by the gene Ccel_0941 from Clostridium cellulolyticum H10 (ATCC 35319), previously proposed as the xylose isomerase domain protein TIM barrel, was cloned and expressed in Escherichia coli . The expressed enzyme was purified by nickel-affinity chromatography with electrophoretic homogeneity and then characterized as d-psicose 3-epimerase. The enzyme was strictly metal-dependent and showed a maximal activity in the presence of Co(2+). The optimum pH and temperature for enzyme activity were 55 °C and pH 8.0. The half-lives for the enzyme at 60 °C were 6.8 h and 10 min when incubated with and without Co(2+), respectively, suggesting that this enzyme was extremely thermostable in the presence of Co(2+) but readily inactivated without metal ion. The Michaelis-Menten constant (K(m)), turnover number (k(cat)), and catalytic efficiency (k(cat)/K(m)) values of the enzyme for substrate d-psicose were estimated to be 17.4 mM, 3243.4 min(-1), and 186.4 mM min(-1), respectively. The enzyme carried out the epimerization of d-fructose to d-psicose with a conversion yield of 32% under optimal conditions, suggesting that the enzyme is a potential d-psicose producer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Clostridium cellulolyticum/enzymology , Gene Expression , Racemases and Epimerases/chemistry , Racemases and Epimerases/genetics , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Clostridium cellulolyticum/chemistry , Clostridium cellulolyticum/genetics , Enzyme Stability , Fructose/metabolism , Kinetics , Molecular Sequence Data , Molecular Weight , Racemases and Epimerases/isolation & purification , Racemases and Epimerases/metabolism , Sequence Alignment , Substrate Specificity
20.
Appl Environ Microbiol ; 77(9): 2831-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21378034

ABSTRACT

The genes encoding the cellulases Cel5A, Cel8C, Cel9E, Cel48F, Cel9G, and Cel9M from Clostridium cellulolyticum were cloned in the C. acetobutylicum expression vector pSOS952 under the control of a Gram-positive constitutive promoter. The DNA encoding the native leader peptide of the heterologous cellulases was maintained. The transformation of the solventogenic bacterium with the corresponding vectors generated clones in the cases of Cel5A, Cel8C, and Cel9M. Analyses of the recombinant strains indicated that the three cellulases are secreted in an active form to the medium. A large fraction of the secreted cellulases, however, lost the C-terminal dockerin module. In contrast, with the plasmids pSOS952-cel9E, pSOS952-cel48F, and pSOS952-cel9G no colonies were obtained, suggesting that the expression of these genes has an inhibitory effect on growth. The deletion of the DNA encoding the leader peptide of Cel48F in pSOS952-cel48F, however, generated strains of C. acetobutylicum in which mature Cel48F accumulates in the cytoplasm. Thus, the growth inhibition observed when the wild-type cel48F gene is expressed seems related to the secretion of the cellulase. The weakening of the promoter, the coexpression of miniscaffoldin-encoding genes, or the replacement of the native signal sequence of Cel48F by that of secreted heterologous or endogenous proteins failed to generate strains secreting Cel48F. Taken together, our data suggest that a specific chaperone(s) involved in the secretion of the key family 48 cellulase, and probably Cel9G and Cel9E, is missing or insufficiently synthesized in C. acetobutylicum.


Subject(s)
Cellulase/metabolism , Clostridium acetobutylicum/metabolism , Clostridium cellulolyticum/enzymology , Cellulase/genetics , Cloning, Molecular , Clostridium acetobutylicum/genetics , Clostridium cellulolyticum/genetics , Culture Media/chemistry , Cytoplasm/enzymology , Gene Expression , Genetic Vectors , Plasmids , Protein Sorting Signals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...