Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 406: 130973, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879051

ABSTRACT

In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.


Subject(s)
Cellulose , Clostridium thermocellum , Saccharum , Solubility , Thermoanaerobacterium , Saccharum/chemistry , Cellulose/chemistry , Cellulose/metabolism , Thermoanaerobacterium/metabolism , Clostridium thermocellum/metabolism , Fermentation , Coculture Techniques , Ethanol/metabolism
2.
Bioresour Technol ; 406: 130982, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879055

ABSTRACT

Cotreatment, mechanical disruption of lignocellulosic biomass during microbial fermentation, is a potential alternative to thermochemical pretreatment as a means of increasing the accessibility of lignocellulose to biological attack. Successful implementation of cotreatment requires microbes that can withstand milling, while solubilizing and utilizing carbohydrates from lignocellulose. In this context, cotreatment with thermophilic, lignocellulose-fermenting bacteria has been successfully evaluated for a number of lignocellulosic feedstocks. Here, cotreatment was applied to sugarcane bagasse using monocultures of the cellulose-fermenting Clostridium thermocellum and cocultures with the hemicellulose-fermenting Thermoanaerobacterium thermosaccharolyticum. This resulted in 76 % carbohydrate solubilization (a 1.8-fold increase over non-cotreated controls) on 10 g/L solids loading, having greater effect on the hemicellulose fraction. With cotreatment, fermentation by wild-type cultures at low substrate concentrations increased cumulative product formation by 45 % for the monoculture and 32 % for the coculture. These findings highlight the potential of cotreatment for enhancing deconstruction of sugarcane bagasse using thermophilic bacteria.


Subject(s)
Cellulose , Coculture Techniques , Fermentation , Saccharum , Solubility , Saccharum/chemistry , Cellulose/metabolism , Cellulose/chemistry , Clostridium thermocellum/metabolism , Thermoanaerobacterium/metabolism , Lignin/metabolism , Lignin/chemistry , Bacteria, Anaerobic/metabolism
3.
Sci Rep ; 10(1): 14517, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32884054

ABSTRACT

Clostridium (Ruminiclostridium) thermocellum is recognized for its ability to ferment cellulosic biomass directly, but it cannot naturally grow on xylose. Recently, C. thermocellum (KJC335) was engineered to utilize xylose through expressing a heterologous xylose catabolizing pathway. Here, we compared KJC335's transcriptomic responses to xylose versus cellobiose as the primary carbon source and assessed how the bacteria adapted to utilize xylose. Our analyses revealed 417 differentially expressed genes (DEGs) with log2 fold change (FC) >|1| and 106 highly DEGs (log2 FC >|2|). Among the DEGs, two putative sugar transporters, cbpC and cbpD, were up-regulated, suggesting their contribution to xylose transport and assimilation. Moreover, the up-regulation of specific transketolase genes (tktAB) suggests the importance of this enzyme for xylose metabolism. Results also showed remarkable up-regulation of chemotaxis and motility associated genes responding to xylose feeding, as well as widely varying gene expression in those encoding cellulosomal enzymes. For the down-regulated genes, several were categorized in gene ontology terms oxidation-reduction processes, ATP binding and ATPase activity, and integral components of the membrane. This study informs potentially critical, enabling mechanisms to realize the conceptually attractive Next-Generation Consolidated BioProcessing approach where a single species is sufficient for the co-fermentation of cellulose and hemicellulose.


Subject(s)
Cellobiose/metabolism , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Transcriptome/genetics , Xylose/metabolism , Bacterial Proteins/metabolism , Cellulose/metabolism , Gene Expression Regulation, Bacterial , Polysaccharides/metabolism
4.
Enzyme Microb Technol ; 97: 43-54, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28010772

ABSTRACT

The main goal of the present study was a complete proteomic characterization of total proteins eluted from residual substrate-bound proteins (RSBP), and cellulosomes secreted by Clostridium thermocellum B8 during growth in the presence of microcrystalline cellulose as a carbon source. The second goal was to evaluate their potential use as enzymatic blends for hydrolyzing agro-industrial residues to produce fermentable sugars. Protein identification through LC-MS/MS mass spectrometry showed that the RSBP sample, in addition to cellulosomal proteins, contains a wide variety of proteins, including those without a well-characterized role in plant cell wall degradation. The RSBP subsample defined as purified cellulosomes (PC) consists mainly of glycoside hydrolases grouped in families 5, 8, 9, 10 and 48. Dynamic light scattering, DLS, analysis of PC resulted in two protein peaks (pi1 and pi2) presenting molecular masses in agreement with those previously described for cellulosomes and polycellulosomes. These peaks weren't detected after PC treatment with 1.0% Tween. PC and RSBP presented maximal activities at temperatures ranging from 60° to 70°C and at pH 5.0. RSBP retained almost all of its activity after incubation at 50, 60 and 70°C and PC showed remarkable thermostability at 50 and 60°C. RSBP holocellullolytic activities were inhibited by phenolic compounds, while PC showed either increasing activity or a lesser degree of inhibition. RSBP and PC hydrolyze sugar cane straw, cotton waste and microcrystalline cellulose, liberating a diversity of saccharides; however, the highest concentration of released sugar was obtained for assays carried out using PC as an enzymatic blend and after ten days at 50°C.


Subject(s)
Bacterial Proteins/metabolism , Clostridium thermocellum/metabolism , Lignin/metabolism , Biofuels , Biomass , Biotechnology , Cellulosomes/metabolism , Clostridium thermocellum/enzymology , Glycoside Hydrolases/metabolism , Hydrolysis , Proteome/metabolism , Proteomics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL