Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
BMC Infect Dis ; 24(1): 486, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730362

ABSTRACT

BACKGROUND: Recently, linezolid-resistant staphylococci have become an emerging problem worldwide. Understanding the mechanisms of resistance, molecular epidemiology and transmission of linezolid-resistant CoNS in hospitals is very important. METHODS: The antimicrobial susceptibilities of all isolates were determined by the microdilution method. The resistance mechanisms and molecular characteristics of the strains were determined using whole-genome sequencing and PCR. RESULTS: All the strains were resistant to oxacillin and carried the mecA gene; 13 patients (36.1%) had prior linezolid exposure. Most S. epidermidis and S. hominis isolates were ST22 and ST1, respectively. MLST typing and evolutionary analysis indicated most linezolid-resistant CoNS strains were genetically related. In this study, we revealed that distinct CoNS strains have different mechanisms of linezolid resistance. Among ST22-type S. epidermidis, acquisition of the T2504A and C2534T mutations in the V domain of the 23 S rRNA gene, as well as mutations in the ribosomal proteins L3 (L101V, G152D, and D159Y) and L4 (N158S), were linked to the development of linezolid resistance. In S. cohnii isolates, cfr, S158Y and D159Y mutations in the ribosomal protein L3 were detected. Additionally, emergence of the G2576T mutation and the cfr gene were major causes of linezolid resistance in S. hominis isolates. The cfr gene, G2576T and C2104T mutations, M156T change in L3 protein, and I188S change in L4 protein were found in S. capitis isolates. CONCLUSION: The emergence of linezolid-resistant CoNS in the environment is concerning because it involves clonal dissemination and frequently coexists with various drug resistance mechanisms.


Subject(s)
Anti-Bacterial Agents , Linezolid , Microbial Sensitivity Tests , Staphylococcal Infections , Tertiary Care Centers , Linezolid/pharmacology , Humans , China/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Female , Male , Middle Aged , Multilocus Sequence Typing , Aged , Whole Genome Sequencing , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/classification , Staphylococcus/enzymology , Coagulase/metabolism , Coagulase/genetics , RNA, Ribosomal, 23S/genetics , Adult , Methicillin Resistance/genetics , Mutation , Bacterial Proteins/genetics
2.
BMC Microbiol ; 24(1): 127, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627609

ABSTRACT

BACKGROUND: In Ethiopia, milk production and handling practices often lack proper hygiene measures, leading to the potential contamination of milk and milk products with Staphylococcus aureus (S. aureus), including methicillin-resistant strains, posing significant public health concerns. This study aimed to investigate the occurrence, antimicrobial susceptibility profiles and presence of resistance genes in S. aureus strains isolated from milk and milk products. METHODS: A cross-sectional study was conducted in the Arsi highlands, Oromia, Ethiopia from March 2022 to February 2023. A total of 503 milk and milk product samples were collected, comprising 259 raw milk, 219 cottage cheese, and 25 traditional yogurt samples. S. aureus isolation and coagulase-positive staphylococci enumeration were performed using Baird-Parker agar supplemented with tellurite and egg yolk. S. aureus was further characterized based on colony morphology, Gram stain, mannitol fermentation, catalase test, and coagulase test. Phenotypic antimicrobial resistance was assessed using the Kirby-Bauer disc diffusion method, while the polymerase chain reaction (PCR) was employed for confirming the presence of S. aureus and detecting antimicrobial resistance genes. RESULTS: S. aureus was detected in 24.9% of the milk and milk products, with the highest occurrence in raw milk (40.9%), followed by yogurt (20%), and cottage cheese (6.4%). The geometric mean for coagulase-positive staphylococci counts in raw milk, yogurt, and cottage cheese was 4.6, 3.8, and 3.2 log10 CFU/mL, respectively. Antimicrobial resistance analysis revealed high levels of resistance to ampicillin (89.7%) and penicillin G (87.2%), with 71.8% of the isolates demonstrating multidrug resistance. Of the 16 S. aureus isolates analyzed using PCR, all were found to carry the nuc gene, with the mecA and blaZ genes detected in 50% of these isolates each. CONCLUSION: This study revealed the widespread distribution of S. aureus in milk and milk products in the Arsi highlands of Ethiopia. The isolates displayed high resistance to ampicillin and penicillin, with a concerning level of multidrug resistance. The detection of the mecA and blaZ genes in selected isolates is of particular concern, highlighting a potential public health hazard and posing a challenge to effective antimicrobial treatment. These findings highlight the urgent need to enhance hygiene standards in milk and milk product handling and promote the rational use of antimicrobial drugs. Provision of adequate training for all individuals involved in the dairy sector can help minimize contamination. These measures are crucial in addressing the threats posed by S. aureus, including methicillin-resistant strains, and ensuring the safety of milk and its products for consumers.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Staphylococcus aureus , Milk , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Coagulase/genetics , Ethiopia , Cross-Sectional Studies , Staphylococcal Infections/epidemiology , Staphylococcus , Anti-Infective Agents/pharmacology , Ampicillin/pharmacology , Microbial Sensitivity Tests
3.
Sci Rep ; 14(1): 8245, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589670

ABSTRACT

The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , Coagulase/genetics , Genome, Viral , Skin/microbiology , Staphylococcus Phages/genetics , Staphylococcus/genetics
4.
Front Cell Infect Microbiol ; 14: 1328390, 2024.
Article in English | MEDLINE | ID: mdl-38371297

ABSTRACT

Coagulase-negative staphylococci (CoNS) are a group of gram-positive staphylococcal species that naturally inhabit the healthy human skin and mucosa. The clinical impact of CoNS-associated infections has recently been regarded as a challenge for diagnosis and therapeutic options. CoNS-associated infections are primarily caused by bacterial resistance to antibiotics and biofilm formation. As antibiotics are still the most used treatment, this problem will likely persist in the future. The present study aimed to investigate the resistance and virulence of CoNS recovered from various acne lesions and explore their genetic basis. Skin swab samples were collected from participants with acne and healthy skin. All samples underwent conventional culture for the isolation of CoNS, MALDI-TOF confirmation, antibiotic susceptibility, and biofilm formation testing. A total of 85 CoNS isolates were recovered from the samples and preliminarily identified as Staphylococcus epidermidis. Isolates from the acne group (n = 60) showed the highest rates of resistance to penicillin (73%), cefoxitin (63%), clindamycin (53.3%), and erythromycin (48%), followed by levofloxacin (36.7%) and gentamycin (31.7%). The lowest rates of resistance were observed against tetracycline (28.3%), doxycycline (11.7%), and minocycline (8.3%). CoNS isolated from mild, moderate acne and healthy isolates did not show strong biofilm formation, whereas the isolates from the severe cases of the acne group showed strong biofilm formation (76.6%). Four extensively drug-resistant and strong biofilm-forming staphylococcal isolates recovered from patients with severe acne were selected for whole-genome sequencing (WGS), and their genomes were investigated using bioinformatics tools. Three of the sequenced genomes were identified as S. epidermidis; however, isolate 29AM was identified as Staphylococcus warneri, which is a newly emerging pathogen that is not commonly associated with acne and was not detected by MALDI-TOF. All the sequenced strains were multidrug-resistant and carried multiple resistance genes, including blaZ, mecA, tet(K), erm(C), lnuA, vgaA, dfrC, fusB, fosBx1, norA, and vanT, which were found to be located on plasmids and chromosomes. Virulence features were detected in all genomes in the presence of genes involved in adherence and biofilm formation (icaA, icaB, icaC, sdrG, sdrH, atl, ebh, and ebp). Only the S. warneri isolate 29AM contained immune evasion genes (capB, capC, acpXL, and manA), an anti-phagocytosis gene (cdsA), and other unique features. As a result of their potential pathogenicity and antibiotic resistance, CoNS must be monitored as an emerging pathogen associated with acne infections. To the best of our knowledge, this is the first report to isolate, identify, and correlate S. warneri with severe acne infections among Egyptian patients using WGS and bioinformatic analysis.


Subject(s)
Acne Vulgaris , Staphylococcal Infections , Humans , Coagulase/genetics , Egypt , Staphylococcal Infections/microbiology , Staphylococcus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis/genetics , Microbial Sensitivity Tests
5.
PLoS One ; 19(2): e0296850, 2024.
Article in English | MEDLINE | ID: mdl-38330059

ABSTRACT

Staphylococcus schleiferi and Staphylococcus coagulans are opportunistic pathogens of animals and humans. They were previously classified as Staphylococcus schleiferi subs. schleiferi and Staphylococcus schleiferi subs. coagulans, respectively, and recently reclassified as separate species. S. coagulans, is frequently associated with dogs, whereas S. schleiferi is more commonly isolated from humans. Coagulase activity status is a defining characteristic of the otherwise closely related species. However, the use of coagulase tests originally developed to distinguish S. aureus from non-coagulase-producing staphylococci, for this purpose is questionable and the basis for their host preference has not been elucidated. In the current study, a putative coa gene was identified and correlated with coagulase activity measured using a chromogenic assay with human and bovine prothrombin (closely related to canine prothrombin). The results of the tests performed with human prothrombin showed greater reactivity of S. coagulans isolates from humans than isolates obtained from dogs with the same substrate. Our data suggest that unlike S. coagulans isolates from humans, isolates from dogs have more coagulase activity with bovine prothrombin (similar to canine prothrombin) than human prothrombin. Differences in nuc and 16s rRNA genes suggest a divergence in S. coagulans and S. schleiferi. Phenotypic and genotypic variation based on the number of IgG binding domains, and the numbers of tandem repeats in C-terminal fibronectin binding motifs was also found in protein A, and fibronectin-binding protein B respectively. This study identified a coa gene and associated phenotypic activity that differentiates S. coagulans and S. schleiferi and identified key phylogenetic and phenotypic differences between the species.


Subject(s)
Dog Diseases , Staphylococcal Infections , Animals , Humans , Dogs , Cattle , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Coagulase/genetics , Coagulase/metabolism , RNA, Ribosomal, 16S/genetics , Fibronectins/genetics , Phylogeny , Prothrombin , Staphylococcus/metabolism , Staphylococcal Infections/veterinary
6.
Environ Pollut ; 345: 123434, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290653

ABSTRACT

Staphylococcus is a significant food safety hazard. The marine environment serves as a source of food for humans and is subject to various human-induced discharges, which may contain Staphylococcus strains associated with antimicrobial resistance (AMR). The aim of this study was to assess the occurrence and geographical distribution of AMR Staphylococcus isolates in seawater and whiting (Merlangius merlangus) samples collected from the English Channel and the North Sea. We isolated and identified 238 Staphylococcus strains, including 12 coagulase-positive (CoPs) and 226 coagulase-negative (CoNs) strains. All CoPs isolates exhibited resistance to at least one of the 16 antibiotics tested. Among the CoNs strains, 52% demonstrated resistance to at least one antibiotic, and 7 isolates were classified as multi-drug resistant (MDR). In these MDR strains, we identified AMR genes that confirmed the resistance phenotype, as well as other AMR genes, such as quaternary ammonium resistance. One CoNS strain carried 9 AMR genes, including both antibiotic and biocide resistance genes. By mapping the AMR phenotypes, we demonstrated that rivers had a local influence, particularly near the English coast, on the occurrence of AMR Staphylococcus. The analysis of marine environmental parameters revealed that turbidity and phosphate concentration were implicated in the occurrence of AMR Staphylococcus. Our findings underscore the crucial role of wild whiting and seawater in the dissemination of AMR Staphylococcus within the marine environment, thereby posing a risk to human health.


Subject(s)
Gadiformes , Staphylococcus , Animals , Humans , Staphylococcus/genetics , Anti-Bacterial Agents/pharmacology , Coagulase/genetics , North Sea , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Seafood , Seawater
7.
J Dairy Sci ; 107(3): 1386-1396, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37944805

ABSTRACT

This study aimed to identify coagulase-positive staphylococci (CPS) species from 21 samples of clandestine Minas Frescal cheese, investigate the potential for deterioration in psychrotrophic and mesophilic conditions, verify the toxigenic potential of Staphylococcus aureus, and determine the antimicrobial susceptibility profile of toxigenic S. aureus. Species determination was performed based on the detection of ß-hemolysis in 5% ovine blood agar; fermentation of mannitol, maltose, and trehalose sugars; and production of acetoin. After species determination, DNA extraction and analysis was performed for S. aureus colonies for genes encoding staphylococcal toxins (eta, etb, tst, sea, seb, sec, sed, and see) using 2 multiplex PCR assays. Isolates identified as toxigenic S. aureus were tested for antimicrobial susceptibility to tetracycline, erythromycin, clindamycin, gentamicin, ciprofloxacin, sulfazotrim, trimethoprim, streptomycin, cefoxitin, vancomycin and enrofloxacin. Elevated CPS counts were observed with an average of >6 log cfu/g. Of the 355 isolates, 177 (49.86%) were identified as S. aureus. Staphylococcus hyicus, Staphylococcus intermedius, Staphylococcus delphini, and Staphylococcus coagulans were identified in 3 (0.84%), 2 (0.56%), 2 (0.56%), and 1 (0.28%) isolates, respectively. Of the total number of S. aureus, 25 (52.08%) were positive for the gene that encodes for toxic shock toxin (TSST-1). Another 16 (33.33%) were positive for the sea gene, and 4 isolates (8.33%) were positive for see and one isolate each was positive for seb (2.08%), sec (2.08%), and etb (2.08%) genes. All isolates demonstrated lipolytic activity under mesophilic and psychrotrophic conditions. S. intermedius and S. hyicus had the most prominent proteolytic potential. Multidrug resistance was observed in most of the potentially toxigenic isolates, with clindamycin having the lowest efficiency (40%), whereas the aminoglycosides (gentamicin and streptomycin) had the highest effectiveness demonstrating inhibition in all evaluated isolates. Methicillin-resistant S. aureus (MRSA) was detected. Minas Frescal cheeses, marketed in the north of Tocantins in the Brazilian Amazon region, do not comply with legal quality standards and pose a public health risk due to the enterotoxigenic potential of multiresistant isolates, in addition to low shelf life of the samples given the high spoilage potential of this microbiota.


Subject(s)
Cheese , Methicillin-Resistant Staphylococcus aureus , Animals , Sheep , Staphylococcus aureus , Coagulase/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Clindamycin , Staphylococcus , Anti-Bacterial Agents/pharmacology , Streptomycin , Gentamicins
8.
Foodborne Pathog Dis ; 21(1): 44-51, 2024 01.
Article in English | MEDLINE | ID: mdl-37855916

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) constitutes an important cause for concern in the field of public health, and the role of the food chain in the transmission of this pathogen and in antimicrobial resistance (AMR) has not yet been defined. The objectives of this work were to isolate and characterize coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS), particularly S. aureus, from school dining rooms located in Argentina. From 95 samples that were obtained from handlers, inert surfaces, food, and air in 10 establishments, 30 Staphylococcus strains were isolated. Four isolates were S. aureus, and the remaining ones (N = 26) belonged to 11 coagulase-negative species (CoNS). The isolates were tested for susceptibility to nine antibiotics. The presence of genes encoding toxins (luk-PV, sea, seb, sec, sed, and see), adhesins (icaA, icaD), and genes that confer resistance to methicillin (mecA) and vancomycin (vanA) was investigated. The resistance rates measured for penicillin, cefoxitin, gentamicin, vancomycin, erythromycin, clindamycin, levofloxacin, trimethoprim-sulfamethoxazole, and tetracycline were 73%, 30%, 13%, 3%, 33%, 17%, 13%, 7%, and 7% of the isolates, respectively. Seventeen AMR profiles were detected, and 11 isolates were multidrug resistant (MDR). Seven methicillin-resistant Staphylococcus isolates were detected in the hands of handlers from four establishments, two of them were MRSA. Two S. aureus isolates presented icaA and icaD, another one, only icaD. The gene vanA was found in two isolates. In relation to S. aureus, resistance to vancomycin but not to gentamicin was detected. School feeding plays a key role in the nutrition of children, and the consumption of food contaminated with MRSA and vancomycin-resistant S. aureus (VRSA) can be a serious threat to health. In particular, it was detected that the handlers were the source of MRSA, VRSA, MR-CoNS (methicillin-resistant coagulase-negative Staphylococcus), and MDR isolates. The results obtained indicate that the vigilance of this pathogen in school dining rooms should be extreme.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Child , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus , Coagulase/genetics , Vancomycin , Argentina , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Staphylococcus/genetics , Anti-Bacterial Agents/pharmacology , Schools , Gentamicins
9.
Int. microbiol ; 26(4): 989-1000, Nov. 2023. ilus
Article in English | IBECS | ID: ibc-227486

ABSTRACT

The pathogenic potential of vancomycin and methicillin-resistant coagulase-negative Staphylococci (VMRCoNS) on Egyptian poultry farms has received little attention. Therefore, this study aims to study the prevalence of CoNS in imported poultry flocks and commercial poultry farms, evaluate the presence of virulence and antibiotic resistance genes (sea, seb, sec, sed, see, and mecA), and assess their pathogenicity in broiler chicks. Seven species were identified among 25 isolates, such as 8 S. gallinarum, 5 S. saprophyticus, 5 S. chromogens, 3 S. warneri, 2 S. hominis, 1 S. caprae, and 1 S. epidermidis. All isolates were resistant to clindamycin, doxycycline, vancomycin, methicillin, rifampicin, and penicillin. The mecA gene was confirmed in 14 isolates, while the sed gene was revealed in seven isolates. Commercial 1-day-old Ross broiler chicks were divided into eight groups of three replicates (10 birds/group): group Ӏ was negative control; groups (П, Ш, IV, V, VI, VII, and VIII) were subcutaneously inoculated with 108 CFUml−1 of S. hominis, S. caprae, S. epidermidis, S. gallinarum, S. chromogens, S. warneri, and S. saprophyticus, respectively. Groups VIII and V had mortality rates of 100% and 20%, respectively, with no evidence of mortalities in the other groups. The highest re-isolation of CoNS species was recorded in groups VII, VIII, and V. Postmortem and histopathological examination revealed the common presence of polyserositis in the internal organs, and hepatic and myocardial necrosis in groups IV, V, and VI. These findings revealed the pathogenic potential of CoNS, so special attention must be directed toward their public health impact.(AU)


Subject(s)
Humans , Animals , Chickens/microbiology , Anti-Bacterial Agents/pharmacology , Coagulase/genetics , Staphylococcal Infections/microbiology , Virulence , Microbial Sensitivity Tests , Microbiology , Microbiological Techniques , Staphylococcal Infections/veterinary
10.
World J Microbiol Biotechnol ; 39(12): 358, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884743

ABSTRACT

Staphylococcus aureus (S. aureus) induces a variety of infectious diseases in humans and animals and is responsible for hospital- and community-acquired infections. The aim of this study was to investigate how bilobetin, a natural compound, attenuates S. aureus virulence by inhibiting two key virulence factors, von Willebrand factor-binding protein (vWbp) and staphylocoagulase (Coa). The results showed that bilobetin inhibited Coa- or vWbp-induced coagulation without affecting S. aureus proliferation. The Western blotting and fluorescence quenching assays indicated that bilobetin did not affect the expression of vWbp and Coa but directly bound to the proteins with KA values of 1.66 × 104 L/mol and 1.04 × 104 L/mol, respectively. To gain further insight into the mechanism of interaction of bilobetin with these virulence factors, we performed molecular docking and point mutation assays, which indicated that the TYR-6 and TYR-18 residues on vWbp and the ALA-190 and ASP-189 residues on Coa were essential for the binding of bilobetin. In addition, the in vivo studies showed that bilobetin ameliorated lung tissue damage and inflammation caused by S. aureus, thereby improving the survival of mice. Furthermore, the use of bilobetin as an adjuvant in combination with vancomycin was more effective in the treatment of a mouse model of pneumonia. Taken together, bilobetin had a dual inhibitory effect on vWbp and Coa by reducing the virulence of S. aureus, suggesting that it is a viable lead compound against S. aureus infections.


Subject(s)
Coagulase , Staphylococcal Infections , Humans , Mice , Animals , Coagulase/genetics , Coagulase/metabolism , Coagulase/pharmacology , Carrier Proteins/metabolism , Staphylococcus aureus , Virulence , von Willebrand Factor/metabolism , von Willebrand Factor/pharmacology , Molecular Docking Simulation , Staphylococcal Infections/drug therapy , Virulence Factors/genetics , Virulence Factors/metabolism
11.
Antimicrob Resist Infect Control ; 12(1): 110, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794413

ABSTRACT

BACKGROUND: Coagulase-Negative Staphylococci (CoNS) are opportunistic and nosocomial pathogens. The excessive use of antimicrobial agents, including antiseptics, represents one of the world's major public health problems. This study aimed to test the susceptibility of CoNS to antiseptics. METHODS: Out of 250 specimens collected from different sections of the hospital, 55 samples were identified as CoNS, categorized into three groups based on their sources: environmental samples (n = 32), healthcare worker carriers samples (n = 14), and clinical infection samples (n = 9). Isolates were examined for susceptibility to antibiotics and antiseptics, such as benzalkonium chloride (BC), cetyltrimethylammonium bromide (CTAB), and chlorhexidine digluconate (CHDG). Mupirocin and antiseptic resistance genes, as well as the mecA gene, were detected using polymerase chain reaction. CoNS isolates with notable resistance to antiseptics and antibiotics were identified using the API-Staph system. RESULTS: A high frequency of multidrug resistance among CoNS clinical infection isolates was observed. Approximately half of the CoNS isolates from healthcare workers were susceptible to CHDG, but 93% were resistant to BC and CTAB. The frequency of antiseptics and antibiotics resistance genes in CoNS isolates was as follows: qacA/B (51/55; 92.7%), smr (22/55; 40.0%), qacG (1/55; 1.8%), qacH (6/55; 10.9%), qacJ (4/55; 7.3%), mecA (35/55; 63.6%), mupB (10/55; 18.2%), and mupA (7/55; 12.7%). A significant difference in the prevalence of smr gene and qacJ genes between CoNS isolates from healthcare workers and other isolates was reported (P value = 0.032 and ˂0.001, respectively). Four different CoNS species; S. epidermidis, S. chromogene, S. haemolyticus, and S. hominis, were identified by API. CONCLUSIONS: CoNS isolates colonizing healthcare workers showed a high prevalence of antiseptic resistance genes, while clinical infection samples were more resistant to antibiotics. CHDG demonstrated greater efficacy than BC and CTAB in our hospital.


Subject(s)
Anti-Infective Agents, Local , Staphylococcal Infections , Humans , Anti-Infective Agents, Local/pharmacology , Mupirocin/pharmacology , Coagulase/genetics , Cetrimonium , Staphylococcal Infections/epidemiology , Bacterial Proteins/genetics , Staphylococcus/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis , Benzalkonium Compounds/pharmacology
12.
BMC Microbiol ; 23(1): 267, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37742008

ABSTRACT

BACKGROUND: Peritonitis is the most important complication of peritoneal dialysis (PD) and coagulase-negative staphylococci (CNS) are a frequent cause of dialysis-related infections. The association between SCCmec typing with psm-mec positivity in staphylococci and PD-related infections has not been identified. We aim to investigate the molecular epidemiology of CNS isolated from PD-peritonitis in a single Chinese center, focusing on the genetic determinants conferring methicillin resistance. METHODS: We collected 10 genetically unrelated CNS isolates from 10 patients with CNS PD-related peritonitis. The patients were divided into two groups based on the results of MIC to oxacillin: the methicillin-resistant CNS (MRCNS) and methicillin-sensitive CNS (MSCNS) groups. The biofilm formation group (BFG) and the non-biofilm formation group (NBFG) were used as the control groups. Phenotypic and molecular methods were used to analyze SCCmec types I, II and III, associated genes and biofilm formation and the existence of psm-mec. The demographic data and clinical indicators were collected. RESULTS: Ten CNS PD-related peritonitis patients were enrolled for this study. There were 6 MRCNS and 4 MRCNS isolates. SCCmec types were fully determined in 10 isolates. Seven staphylococci (70%) carried SCCmec, of which 4 isolates carried single SCCmec type I (40%) and 3 isolates had multiple SCCmec elements (I + III). Of the 6 MRCNS isolates, 3 carried SCCmec type I (50%) and 2 isolates carried SCCmec type I + III (33.3%). A high diversity of ccr types, mec complexes and ccr-mec complex combinations was identified among the 10 CNS isolates. The psm-mec gene was detected in 2/10 (20%) CNS isolates. There was no mutation in the psm-mec gene. CONCLUSIONS: The majority of isolates were hospital-associated isolates. Furthermore, 2 psm-mec positive isolates were MRCNS in the NBFG. The PD patients frequent exposure to hospital would be the main risk factor. The presence of the psm-mec signal in the spectra of the MRCNS tested here demonstrates the presence of certain SCCmec cassettes that convey methicillin resistance.


Subject(s)
Peritoneal Dialysis , Peritonitis , Staphylococcal Infections , Humans , Staphylococcus/genetics , Coagulase/genetics , Oxacillin , Peritoneal Dialysis/adverse effects , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
13.
BMC Microbiol ; 23(1): 222, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582708

ABSTRACT

BACKGROUND: Healthcare workers may pave the way for increased infections in hospitalized patients by coagulase-negative staphylococci (CoNS). Biofilm formation and antibiotic resistance are the major problems posed by CoNS in nosocomial infections. In this study, we determined biofilm production level and the distribution of biofilm-associated and virulence genes, including icaADBC, aap, bhp, atlE, embp, and fbe, as well as IS256, IS257, mecA, and ACME clusters (arc-A, opp-3AB) among 114 clinical (n = 57) and healthcare workers (n = 57) CoNS isolates in Kerman, Iran. RESULTS: In this study, more than 80% (n = 96) of isolates were methicillin-resistant CoNS (MR-CoNS). Out of 114 isolates, 33% (n = 38) were strong biofilm producers. Strong biofilm formation was found to be significantly different between clinical and healthcare workers' isolates (P < 0.050). In addition, 28% (n = 32) of isolates were positive for icaADBC simultaneously, and all were strong biofilm producers. The prevalence of icaADBC, mecA, bhp, fbe, and IS256 in clinical isolates was higher than that in healthcare workers' isolates (P < 0.050). A significant relationship was observed between clinical isolates and the presence of icaADBC, mecA, bhp, and IS256. Although these elements were detected in healthcare workers' isolates, they were more frequent in clinical isolates compared to those of healthcare workers. CONCLUSIONS: The high prevalence of ACME clusters in healthcare workers' isolates and biofilm formation of these isolates partially confirms the bacterial colonization in the skin of healthcare workers. Isolating MR-CoNS from healthcare workers' skin through similar genetic elements to clinical isolates, such as icaADBC, mecA, and IS256, calls for appropriate strategies to control and prevent hospital infections.


Subject(s)
Cross Infection , Staphylococcal Infections , Humans , Coagulase/genetics , Staphylococcal Infections/microbiology , Staphylococcus/genetics , Cross Infection/microbiology , Biofilms , Anti-Bacterial Agents , Microbial Sensitivity Tests
14.
Comp Immunol Microbiol Infect Dis ; 99: 102012, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37453201

ABSTRACT

The antimicrobial resistance (AMR) genes of 268 non-duplicated coagulase-negative staphylococci (CoNS) previously obtained from nasotracheal cavities of nestling storks were characterized. They included S. sciuri isolates (n = 191), and non-sciuri-CoNS isolates (NSc-CoNS, n = 77). All S. sciuri carried the intrinsic salA gene (for clindamycin-resistance) and so, clindamycin was not considered for general analysis in this species. About 71.7%/41.6% of the S. sciuri/NSc-CoNS isolates were susceptible to all antibiotics tested; moreover, 14.1%/16.9% and 3.1%/20.8% of S. sciuri/NSc-CoNS showed single antibiotic resistance and multidrug resistance (MDR) phenotype, respectively. Of the ten mecA-positive CoNS isolates, six were associated with SCCmec types-III, -IV or -V elements. Remarkably was the detection of one MDR-S. lentus isolate carrying both mecA and mecC genes, as well as the SCCmec type-XI element. MDR-CoNS was relatively higher in nestlings of parent storks foraging in landfills (21.3%) than those in natural areas (9.7%) (χ2 = 3.421, df=1, p = 0.064). AMR phenotypes (and genes detected) include penicillin (blaZ, blaARL), erythromycin-clindamycin-constitutive (ermA, ermC, ermT), clindamycin (lnuA, salA, vgaA), erythromycin (msrA, mphC), tetracycline (tetK, tetL, tetM), tobramycin (ant4'), tobramycin-gentamicin (aac6'-aph2″), sulfamethoxazole-trimethoprim (dfrA, dfrG, dfrK), chloramphenicol (fexA, fexB, catPC221), and mupirocin (mupA). Interestingly, one S. epidermidis isolate carried the ermT gene. About 29.9% of nestlings harboured more than one non-duplicated CoNS (with varied 2-5 AMR profiles). This study demonstrated that most of the CoNS isolates were susceptible to all the antibiotics tested (63.1%). However, AMR genes of public health importance were found, including the mecC-mediated methicillin resistance trait.


Subject(s)
Coagulase , Staphylococcal Infections , Animals , Coagulase/genetics , Spain , Microbial Sensitivity Tests/veterinary , Staphylococcus , Anti-Bacterial Agents/pharmacology , Clindamycin , Tobramycin , Erythromycin , Staphylococcal Infections/veterinary
15.
BMC Health Serv Res ; 23(1): 771, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468855

ABSTRACT

BACKGROUND AND OBJECTIVE: Currently, the detection rates of methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) in the blood cultures of neonates with sepsis exceed the national average drug resistance level, and vancomycin and linezolid are the primary antibacterial drugs used for these resistant bacteria according to the results of etiological examinations. However, a comprehensive evaluation of their costs and benefits in late-onset neonatal sepsis in a neonatal intensive care unit (NICU) has not been conducted. This study aimed to compare the cost and effectiveness of vancomycin and linezolid in treating neonatal sepsis in the NICU. METHODS: A cost-effectiveness analysis of real-world data was carried out by retrospective study in our hospital, and the cost and effectiveness of vancomycin and linezolid were compared by establishing a decision tree model. The drug doses in the model were 0.6 g for linezolid and 0.5 g for vancomycin. The cost break down included cost of medical ward, NICU stay, intravenous infusion of vancomycin or linezolid, all monitoring tests, culture tests and drugs. The unit costs were sourced from hospital information systems. The effectiveness rates were obtained by cumulative probability analysis. One-way sensitivity analysis was used to analyze uncertain influencing factors. RESULTS: The effectiveness rates of vancomycin and linezolid in treating neonatal sepsis in the NICU were 89.74% and 90.14%, respectively, with no significant difference. The average cost in the vancomycin group was ¥12261.43, and the average cost in the linezolid group was ¥17227.96. The incremental cost effectiveness was ¥12416.33 cost per additional neonate with treatment success in the linezolid group compared to vancomycin group at discharge. Factors that had the greatest influence on the sensitivity of the incremental cost-effectiveness ratio were the price of linezolid and the effectiveness rates. CONCLUSIONS: The cost for treatment success of one neonate in linezolid group was ¥5449.17 more than that in vancomycin group, indicating that vancomycin was more cost-effective. Therefore, these results can provide a reference for a cost effectiveness treatment scheme for neonatal sepsis in the NICU.


Subject(s)
Anti-Bacterial Agents , Drug Costs , Linezolid , Methicillin-Resistant Staphylococcus aureus , Neonatal Sepsis , Vancomycin , Vancomycin/administration & dosage , Vancomycin/economics , Vancomycin/therapeutic use , Linezolid/administration & dosage , Linezolid/economics , Linezolid/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/economics , Anti-Bacterial Agents/therapeutic use , Neonatal Sepsis/drug therapy , Cost-Effectiveness Analysis , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Male , Female , Infant , Coagulase/genetics , Retrospective Studies , Treatment Outcome , China
16.
Wiad Lek ; 76(5 pt 1): 936-943, 2023.
Article in English | MEDLINE | ID: mdl-37326073

ABSTRACT

OBJECTIVE: The aim: To describe microbiological features of the Staphylococcus spp. involved in complications of dental implantation. PATIENTS AND METHODS: Materials and methods: The main method was bacteriological. Indentification of the obtained isolates was done using commercially available test kits. Adhesive properties were evaluated using Brillis technique. Biofilm-forming ability was studied according to Christensen et al. Antimicrobial susceptibility testing was done following EUCAST recomendations. RESULTS: Results: There were 26 smears taken from the peri-implant area and gingival pockets of 12 patients. We obtained 38 isolates. Most of the patients were positive for Streptococcus spp. - 94% and Staphylococcus spp. - 90%. Among the representatives of Staphylococcus spp., the initial share of clinical isolates was S. aureus (34.21%) with inherent coagulase-positive properties. Coagulase-negative pathogens accounted for 65.79% of Staphylococcus spp., among them S. epidermidis, S. hominis, S. warneri were the main. All obtained isolates had typical properties, but appearance of small colonial variants of S. aureus was also recorded. Antimicrobial susceptibility testing was performed in 100% of cases. Among 13 isolates of S. aureus there were 2 cultures resistant to cefoxitin, i. e. methicillin-resistant by phenotype. Clinical isolates of S. aureus, colonizing peri-implant tissues in infectious-inflammatory complications of dental implantation, also had high adhesive and biofilm-forming properties. Clinical isolates of S. epidermidis an average ability to form biofilms. CONCLUSION: Conclusions: There is a prooved direct correlation between biofilm-forming ability and adhesive properties in highly biofilm-forming clinical isolates involved in the occurrence of purulent-inflammatory complications in peri-implant site.


Subject(s)
Staphylococcal Infections , Staphylococcus , Humans , Staphylococcus/genetics , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/microbiology , Coagulase/genetics , Staphylococcus epidermidis , Dental Implantation
17.
Commun Biol ; 6(1): 482, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137974

ABSTRACT

Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.


Subject(s)
Bacteriophages , Coagulase , Animals , Humans , Coagulase/genetics , Staphylococcus/genetics , Plasmids
18.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 145-149, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-37213141

ABSTRACT

A total of 100 samples collected from the wound, abscess skin, and normal human flora were investigated for S. aureus identification. Overall, in 40 samples, S. aureus isolates were present, out of which most strains were isolated from normal human flora (50.0%), followed by wound (37.5%) and burn (12.5%) samples. Moreover, S. aureus isolates from all samples could produce extracellular enzymes (catalase, coagulase, urease, and hemolysin-ß) as virulence factors except for some isolates from normal flora samples (unable to produce coagulase enzymes). Therefore, genes encoding the enzymes coagulase and hemolysin were evaluated in 20 S. aureus isolates by PCR-specialized primers targeting co-specific genes. The PCR analysis revealed that clinical isolates included both genes. Contrarily, 6 isolates of the normal flora lacked the coa gene, revealing bacterial fingerprints that can be used to distinguish between isolated bacteria and human beings.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Coagulase/genetics , Bacterial Proteins/genetics , Hemolysin Proteins/genetics , Staphylococcal Infections/microbiology , Anti-Bacterial Agents , Microbial Sensitivity Tests
19.
Microb Drug Resist ; 29(9): 388-391, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222764

ABSTRACT

Although coagulase negative staphylococci are rarely associated with complicated diseases, in some cases they cause life-threatening infections. Here we described a clinical case of a bacteremia due to a methicillin- and linezolid-resistant Staphylococcus capitis in a patient previously treated with linezolid. Whole genome sequencing revealed the common mutation G2576T in all rDNA 23S alleles and several acquired resistance genes. Moreover, the isolate was epidemiologically distant from the NRCS-A clade, usually responsible for nosocomial infections in neonatal intensive care units. Our findings further confirm the ability of minor staphylococci to acquire antibiotic resistances and challenge the treatment of these infections.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus capitis , Infant, Newborn , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Coagulase/genetics , Microbial Sensitivity Tests , Staphylococcus/genetics , Bacteremia/drug therapy , Genomics , Hospitals
20.
Int Microbiol ; 26(4): 989-1000, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37055707

ABSTRACT

The pathogenic potential of vancomycin and methicillin-resistant coagulase-negative Staphylococci (VMRCoNS) on Egyptian poultry farms has received little attention. Therefore, this study aims to study the prevalence of CoNS in imported poultry flocks and commercial poultry farms, evaluate the presence of virulence and antibiotic resistance genes (sea, seb, sec, sed, see, and mecA), and assess their pathogenicity in broiler chicks. Seven species were identified among 25 isolates, such as 8 S. gallinarum, 5 S. saprophyticus, 5 S. chromogens, 3 S. warneri, 2 S. hominis, 1 S. caprae, and 1 S. epidermidis. All isolates were resistant to clindamycin, doxycycline, vancomycin, methicillin, rifampicin, and penicillin. The mecA gene was confirmed in 14 isolates, while the sed gene was revealed in seven isolates. Commercial 1-day-old Ross broiler chicks were divided into eight groups of three replicates (10 birds/group): group Ӏ was negative control; groups (П, Ш, IV, V, VI, VII, and VIII) were subcutaneously inoculated with 108 CFUml-1 of S. hominis, S. caprae, S. epidermidis, S. gallinarum, S. chromogens, S. warneri, and S. saprophyticus, respectively. Groups VIII and V had mortality rates of 100% and 20%, respectively, with no evidence of mortalities in the other groups. The highest re-isolation of CoNS species was recorded in groups VII, VIII, and V. Postmortem and histopathological examination revealed the common presence of polyserositis in the internal organs, and hepatic and myocardial necrosis in groups IV, V, and VI. These findings revealed the pathogenic potential of CoNS, so special attention must be directed toward their public health impact.


Subject(s)
Chickens , Staphylococcal Infections , Animals , Coagulase/genetics , Virulence/genetics , Vancomycin , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcus/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...