Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Cells ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38607030

ABSTRACT

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Subject(s)
Cockayne Syndrome , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , DNA Helicases/genetics , DNA Repair Enzymes/metabolism , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Brain/metabolism , Organoids/metabolism
2.
DNA Repair (Amst) ; 138: 103679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640601

ABSTRACT

Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.


Subject(s)
DNA Repair , Neurodegenerative Diseases , Humans , Animals , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA Repair-Deficiency Disorders/genetics , DNA Repair-Deficiency Disorders/metabolism , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism
3.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674442

ABSTRACT

(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.


Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , Poly-ADP-Ribose Binding Proteins , Transcription Factors , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , Cockayne Syndrome/diagnosis , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/genetics , Female , Male , DNA Helicases/genetics , Child , Child, Preschool , Adolescent , Retrospective Studies , Adult , Infant , Genetic Association Studies , Young Adult
4.
Mol Biol Rep ; 51(1): 371, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411728

ABSTRACT

BACKGROUND: Cockayne syndrome is an inherited heterogeneous defect in transcription-coupled DNA repair (TCR) cause severe clinical syndromes, which may affect the nervous system development of infants and even lead to premature death in some cases. ERCC8 diverse critical roles in the nucleotide excision repair (NER) complex, which is one of the disease-causing genes of Cockayne syndrome. METHODS AND RESULTS: The mutation of ERCC8 in the patient was identified and validated using WES and Sanger sequencing. Specifically, a compound heterozygous mutation (c.454_460dupGTCTCCA p. T154Sfs*13 and c.755_759delGTTTT p.C252Yfs*3) of ERCC8 (CSA) was found, which could potentially be the genetic cause of Cockayne syndrome in the proband. CONCLUSION: In this study, we identified a novel heterozygous mutation of ERCC8 in a Chinese family with Cockayne syndrome, which enlarging the genetic spectrum of the disease.


Subject(s)
Cockayne Syndrome , Humans , Asian People , Cell Nucleus , Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , Excision Repair , Mutation/genetics , Transcription Factors
6.
Geroscience ; 46(2): 1861-1879, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37751047

ABSTRACT

Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.


Subject(s)
Cockayne Syndrome , Progeria , Pyridones , Pyrimidinones , Werner Syndrome , Humans , Werner Syndrome/drug therapy , Werner Syndrome/genetics , Cockayne Syndrome/drug therapy , Cockayne Syndrome/genetics , Alternative Splicing/genetics , Senotherapeutics , Progeria/drug therapy , Progeria/genetics , RNA Splicing Factors
7.
BMJ Case Rep ; 16(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848274

ABSTRACT

Xeroderma pigmentosum-Cockayne syndrome complex (XP-CS) is exceedingly rare, with 43 cases described over the past five decades; 21 of these cases exhibited mutations in the ERCC5 endonuclease associated with xeroderma pigmentosum, group G.We report the first known phenotypic characterisation of the homozygous chromosome 13 ERCC5, Exon 11, c.2413G>A (p.Gly805Arg) missense mutation in a female toddler presenting with findings of both XP and CS.Her severe presentation also questions previous hypotheses that only truncating mutations and early missense mutations of XPG are capable of producing the dire findings of XP-CS.


Subject(s)
Cockayne Syndrome , Xeroderma Pigmentosum , Humans , Female , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/genetics , Mutation, Missense , Cockayne Syndrome/diagnosis , Cockayne Syndrome/genetics , Cockayne Syndrome/complications , Mutation
8.
Aging Cell ; 22(10): e13959, 2023 10.
Article in English | MEDLINE | ID: mdl-37688320

ABSTRACT

Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes. A large fraction of CS-specific DNAm changes were associated with expression changes in CS samples, including in previously reported post-mortem cerebella. The progeroid phenotype of CS was further supported by epigenomic hallmarks of ageing: the prediction of DNAm of repetitive elements suggested an hypomethylation of Alu sequences in CS, and the epigenetic clock returned a marked increase in CS biological age respect to healthy and UVSS cells. The epigenomic remodelling of accelerated ageing in CS displayed both commonalities and differences with other progeroid diseases and regular ageing. CS shared DNAm changes with normal ageing more than other progeroid diseases do, and included genes functionally validated for regular ageing. Collectively, our results support the existence of an epigenomic basis of accelerated ageing in CS and unveil new genes and pathways that are potentially associated with the progeroid/degenerative phenotype.


Subject(s)
Cockayne Syndrome , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Epigenomics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Repair , Aging/genetics , Mutation
9.
Intern Med ; 62(15): 2253-2259, 2023.
Article in English | MEDLINE | ID: mdl-37532514

ABSTRACT

Two patients, 48- and 50-year-old sisters, presented with a characteristic facial appearance with slowly progressive deafness and cerebellar ataxia starting in their 30s. Genetic testing identified compound heterozygous pathogenic variants in the ERCC6 gene: c.1583G>A (p.G528E) and c.1873T>G (p.Y625D). A diagnosis of Cockayne syndrome (CS) B type III was made. CS is usually diagnosed in childhood with well-defined facial characteristics and photosensitivity. This case report describes rare cases of adulthood CS with a primary presentation of slowly progressing deafness and cerebellar ataxia. CS should be considered in adults with characteristic facial and skin findings, deafness, and cerebellar ataxia.


Subject(s)
Cerebellar Ataxia , Cockayne Syndrome , Deafness , Adult , Humans , Middle Aged , Cockayne Syndrome/complications , Cockayne Syndrome/diagnosis , Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , Siblings , Cerebellar Ataxia/genetics , Mutation
11.
Mol Genet Genomic Med ; 11(11): e2254, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37592445

ABSTRACT

BACKGROUND: Cockayne syndrome (CS, OMIM #133540, #216400) is a rare autosomal recessive disease involving multiple systems, typically characterized by microcephaly, premature aging, growth retardation, neurosensory abnormalities, and photosensitivity. The age of onset is related to the severity of the clinical phenotype, which may lead to fatal outcomes. METHODS: We report a 3-year-old girl who presented with photosensitivity, gait abnormalities, stunting, and microcephaly and showed atypical clinical classification due to mild clinical manifestations at an early onset age. RESULTS: Next-generation sequencing reveals the frameshift mutation (c.394_398del, p.Leu132Asnfs*6) and a novel microdeletion of ERCC8 (exon4del, p.Arg92fs). CONCLUSION: Therefore, it is still necessary to carry out next-generation sequencing for CS patients with atypical clinical manifestations, which is essential for diagnosis and accurate genetic counseling.


Subject(s)
Cockayne Syndrome , Microcephaly , Female , Humans , Child, Preschool , Cockayne Syndrome/diagnosis , Cockayne Syndrome/genetics , Microcephaly/diagnosis , Microcephaly/genetics , East Asian People , DNA Repair Enzymes/genetics , Transcription Factors/genetics , High-Throughput Nucleotide Sequencing
12.
Dermatologie (Heidelb) ; 74(9): 696-706, 2023 Sep.
Article in German | MEDLINE | ID: mdl-37650893

ABSTRACT

Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.


Subject(s)
Aging, Premature , Cockayne Syndrome , Skin Aging , Humans , Quality of Life , Aging/genetics , Cockayne Syndrome/genetics , Aging, Premature/genetics
13.
DNA Repair (Amst) ; 127: 103510, 2023 07.
Article in English | MEDLINE | ID: mdl-37148846

ABSTRACT

Mutations that affect the proteins responsible for the nucleotide excision repair (NER) pathway can lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, and Cerebro-oculo-facio-skeletal syndrome. Hence, understanding their molecular behavior is needed to elucidate these diseases' phenotypes and how the NER pathway is organized and coordinated. Molecular dynamics techniques enable the study of different protein conformations, adaptable to any research question, shedding light on the dynamics of biomolecules. However, as important as they are, molecular dynamics studies focused on DNA repair pathways are still becoming more widespread. Currently, there are no review articles compiling the advancements made in molecular dynamics approaches applied to NER and discussing: (i) how this technique is currently employed in the field of DNA repair, focusing on NER proteins; (ii) which technical setups are being employed, their strengths and limitations; (iii) which insights or information are they providing to understand the NER pathway or NER-associated proteins; (iv) which open questions would be suited for this technique to answer; and (v) where can we go from here. These questions become even more crucial considering the numerous 3D structures published regarding the NER pathway's proteins in recent years. In this work, we tackle each one of these questions, revising and critically discussing the results published in the context of the NER pathway.


Subject(s)
Cockayne Syndrome , Xeroderma Pigmentosum , Humans , Molecular Dynamics Simulation , DNA Repair , Xeroderma Pigmentosum/genetics , Proteins , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism
14.
Eur J Cell Biol ; 102(2): 151325, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37216802

ABSTRACT

Mutations in CSA and CSB proteins cause Cockayne syndrome, a rare genetic neurodevelopment disorder. Alongside their demonstrated roles in DNA repair and transcription, these two proteins have recently been discovered to regulate cytokinesis, the final stage of the cell division. This last finding allowed, for the first time, to highlight an extranuclear localization of CS proteins, beyond the one already known at mitochondria. In this study, we demonstrated an additional role for CSA protein being recruited at centrosomes in a strictly determined step of mitosis, which ranges from pro-metaphase until metaphase exit. Centrosomal CSA exerts its function in specifically targeting the pool of centrosomal Cyclin B1 for ubiquitination and proteasomal degradation. Interestingly, a lack of CSA recruitment at centrosomes does not affect Cyclin B1 centrosomal localization but, instead, it causes its lasting centrosomal permanence, thus inducing Caspase 3 activation and apoptosis. The discovery of this unveiled before CSA recruitment at centrosomes opens a new and promising scenario for the understanding of some of the complex and different clinical aspects of Cockayne Syndrome.


Subject(s)
Cockayne Syndrome , Humans , Cyclin B1/genetics , Cyclin B1/metabolism , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Mitosis , Centrosome/metabolism , Ubiquitination
16.
Annu Rev Biochem ; 92: 81-113, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37040775

ABSTRACT

Ultraviolet (UV) irradiation and other genotoxic stresses induce bulky DNA lesions, which threaten genome stability and cell viability. Cells have evolved two main repair pathways to remove such lesions: global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The modes by which these subpathways recognize DNA lesions are distinct, but they converge onto the same downstream steps for DNA repair. Here, we first summarize the current understanding of these repair mechanisms, specifically focusing on the roles of stalled RNA polymerase II, Cockayne syndrome protein B (CSB), CSA and UV-stimulated scaffold protein A (UVSSA) in TC-NER. We also discuss the intriguing role of protein ubiquitylation in this process. Additionally, we highlight key aspects of the effect of UV irradiation on transcription and describe the role of signaling cascades in orchestrating this response. Finally, we describe the pathogenic mechanisms underlying xeroderma pigmentosum and Cockayne syndrome, the two main diseases linked to mutations in NER factors.


Subject(s)
Cockayne Syndrome , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Transcription, Genetic , DNA Repair , DNA Damage , DNA/genetics , DNA/metabolism , Carrier Proteins/metabolism
17.
Pediatr Neurol ; 141: 79-86, 2023 04.
Article in English | MEDLINE | ID: mdl-36791574

ABSTRACT

BACKGROUND: Cockayne syndrome (CS) is a DNA repair disorder primarily associated with pathogenic variants in ERCC6 and ERCC8. As in other Mendelian disorders, there are a number of genetically unsolved CS cases. METHODS: We ascertained five individuals with monoallelic pathogenic variants in MORC2, previously associated with three dominantly inherited phenotypes: an axonal form of Charcot-Marie-Tooth disease type 2Z; a syndrome of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy; and a rare form of spinal muscular atrophy. RESULTS: One of these individuals bore a strong phenotypic resemblance to CS. We then identified monoallelic pathogenic MORC2 variants in three of five genetically unsolved individuals with a clinical diagnosis of CS. In total, we identified eight individuals with MORC2-related disorder, four of whom had clinical features strongly suggestive of CS. CONCLUSIONS: Our findings indicate that some forms of MORC2-related disorder have phenotypic similarities to CS, including features of accelerated aging. Unlike classic DNA repair disorders, MORC2-related disorder does not appear to be associated with a defect in transcription-coupled nucleotide excision repair and follows a dominant pattern of inheritance with variants typically arising de novo. Such de novo pathogenic variants present particular challenges with regard to both initial gene discovery and diagnostic evaluations. MORC2 should be included in diagnostic genetic test panels targeting the evaluation of microcephaly and/or suspected DNA repair disorders. Future studies of MORC2 and its protein product, coupled with further phenotypic characterization, will help to optimize the diagnosis, understanding, and therapy of the associated disorders.


Subject(s)
Cockayne Syndrome , Microcephaly , Humans , Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , Phenotype , Microcephaly/genetics , Mutation/genetics , Transcription Factors/genetics
18.
J Dermatol ; 50(4): 541-545, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36597170

ABSTRACT

We present a mild case of Cockayne syndrome that was referred to us with an extreme sunburn at the age of 3. In early teens, although her cutaneous symptoms alleviated without any medications, she developed tremor and dysarthria. Neurological examination and brain imaging suggested demyelination disorders. The patient's cells indicated a reduced recovery of RNA synthesis, which was partially restored by the introduction of CSB (Cockayne Syndrome B)-cDNA. In addition, her cells indicated a substantially reduced level of CSB protein. Despite the insidious progression of neurological symptoms, she gave birth to a child. Such mild cases of Cockayne syndrome may be misdiagnosed.


Subject(s)
Cockayne Syndrome , DNA Repair , Humans , Female , Child , Adolescent , Cockayne Syndrome/complications , Cockayne Syndrome/diagnosis , Cockayne Syndrome/genetics
19.
Pediatr Neurol ; 138: 95-97, 2023 01.
Article in English | MEDLINE | ID: mdl-36434915

ABSTRACT

BACKGROUND: Cockayne syndrome is a rare DNA repair disorder marked by premature aging, poor growth, and intellectual disability. Neurological complications such as seizures, movement disorder, and stroke have been reported. Hemiplegic migraine has not been reported in association with Cockayne syndrome. METHODS: We report a male with Cockayne syndrome due to biallelic heterozygous pathogenic variants in ERCC6 who presented repeatedly with transient focal neurological deficits and headache, which were consistent with hemiplegic migraine. Two siblings also had Cockayne syndrome and presented with similar symptoms. RESULTS: Our patient was originally diagnosed based on clinical suspicion and then confirmed by targeted exome analysis of genes associated with Cockayne syndrome. The family's research exome sequencing data were reanalyzed to identify variants in genes known to cause familial hemiplegic migraine. No variants in the genes known to cause familial hemiplegic migraine were identified. CONCLUSION: This is a novel association of familial hemiplegic migraine in three full siblings with Cockayne syndrome. Hemiplegic migraine has not previously been described as part of the Cockayne syndrome presentation. A separate genetic cause of familial hemiplegic migraines was not identified in an exome-based analysis of genes known to cause this condition. This report may represent an expansion of the Cockayne syndrome phenotype.


Subject(s)
Cockayne Syndrome , Migraine with Aura , Male , Humans , Migraine with Aura/diagnosis , Cockayne Syndrome/genetics , Hemiplegia/genetics , Siblings , Phenotype
20.
Pharmacol Res ; 187: 106637, 2023 01.
Article in English | MEDLINE | ID: mdl-36586641

ABSTRACT

Cockayne syndrome (CS) is a devastating autosomal recessive genetic disorder, mainly characterized by photosensitivity, growth failure, neurological abnormalities, and premature aging. Mutations in CSB (ERCC6) are associated with almost all clinical phenotypes resembling classic CS. Using RNA-seq approach in multiple cell types, we identified Necdin (NDN) as a target of the CSB protein. Supportive of the RNA-seq results, CSB directly binds to NDN and manipulates the remodeling of active histone marks and DNA 5mC methylation on the regulatory elements of the NDN gene. Intriguingly, hyperactivation of NDN due to CSB deficiency does not interfere with nucleotide excision repair (1), but greatly affects neuronal cell differentiation. Inhibition of NDN can partially rescue the motor neuron defects in CSB mouse models. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for intervention, these data substantiate a reciprocal communication between CSB and NDN in the context of general transcription regulation.


Subject(s)
Cockayne Syndrome , Animals , Mice , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , DNA Repair , Nuclear Proteins/metabolism , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...