ABSTRACT
Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.
Subject(s)
Cocos , Lipase , Lipase/isolation & purification , Lipase/chemistry , Lipase/biosynthesis , Lipase/metabolism , Cocos/chemistry , Plant Oils/chemistry , Fermentation , Fungal Proteins/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/biosynthesis , Fungal Proteins/geneticsABSTRACT
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Subject(s)
Carbohydrate Metabolism , Cocos , Fatty Acids , Plant Proteins , Seeds , Fatty Acids/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Seeds/growth & development , Cocos/metabolism , Proteomics/methods , Proteome/metabolism , Lipid Metabolism , Gene Expression Regulation, PlantABSTRACT
This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.
Subject(s)
Manihot , Pyrones , Manihot/chemistry , Manihot/metabolism , Pyrones/metabolism , Pyrones/chemistry , Cocos/chemistry , Odorants/analysis , Hypocreales/metabolism , FermentationABSTRACT
The coconut tree is a crop widely distributed in more than 90 countries worldwide. It has a high economic value derived from the large number of products obtained from the plant, with fast-growing global markets for some of them. Unfortunately, coconut production is decreasing mainly due to the old age of the plants and devastating pests and diseases, such as phytoplasma disease lethal yellowing (LY). Massive replanting is required with phytoplasma-resistant and high-yielding selected coconut plants to keep up with the market demand for fruit. For this purpose, an efficient micropropagation technology via somatic embryogenesis has been established at CICY, yielding fully developed vitro-plants grown within an in vitro environment. Hence, the last stage of the micropropagation process is the acclimatization of the vitro-plants, which are gradually adapted to live in external conditions outside the glass container and the growth room. A protocol has been developed at CICY to acclimate the coconut vitro-plants, and close to 80% survival can be obtained. This protocol is described here.
Subject(s)
Acclimatization , Cocos , Plant Somatic Embryogenesis Techniques/methods , PhytoplasmaABSTRACT
This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.
Subject(s)
DNA Methylation , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic , Enzyme-Linked Immunosorbent Assay/methods , DNA, Plant/genetics , Cocos/genetics , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methodsABSTRACT
Background: Desserts with vegetable ingredients are a constantly expanding global market due to the search for alternatives to cow's milk. Fermentation of these matrices by lactic acid bacteria can add greater functionality to the product, improving its nutritional, sensory, and food safety characteristics, as well as creating bioactive components with beneficial effects on health. Concern for health and well-being has aroused interest in byproducts of the industry that have functional properties for the body, such as mature coconut water, a normally discarded residue that is rich in nutrients. This study aimed to develop a probiotic gelatin based on pulp and water from mature coconuts and evaluate the physicochemical characteristics, viability of the Lacticaseibacillus rhamnosus LR32 strain in the medium, as well as the texture properties of the product. Methods: After collection and cleaning, the physicochemical characterization, mineral analysis, analysis of the total phenolic content and antioxidant activity of mature coconut water were carried out, as well as the centesimal composition of its pulp. Afterwards, the gelling was developed with the addition of modified corn starch, gelatin, sucrose, and probiotic culture, being subjected to acidity analysis, texture profile and cell count, on the first day and every 7 days during 21 days of storage, under refrigeration at 5 °C. An analysis of the centesimal composition was also carried out. Results: The main minerals in coconut water were potassium (1,932.57 mg L-1), sodium (19.57 mg L-1), magnesium (85.13 mg L-1) calcium (279.93 mg L-1) and phosphorus (11.17 mg L- 1), while the pulp had potassium (35.96 g kg-1), sodium (0.97 g kg-1), magnesium (2.18 g kg-1), 37 calcium (1.64 g kg-1), and phosphorus (3.32 g kg-1). The phenolic content of the water and pulp was 5.72 and 9.77 mg gallic acid equivalent (GAE) 100 g-1, respectively, and the antioxidant capacity was 1.67 and 0.98 39 g of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) mg-1, respectively. The coconut pulp had 2.81 g 100 g-1of protein, 1.11 g 100 g-1 of 40 ash, 53% moisture, and 5.81 g 100 g-1 of carbohydrates. The gelatin produced during the storage period presented firmness parameters ranging from 145.82 to 206.81 grams-force (gf), adhesiveness from 692.85 to 1,028.63 gf sec, cohesiveness from 0.604 to 0.473, elasticity from 0.901 to 0.881, gumminess from 86.27 to 97.87 gf, and chewiness from 77.72 to 91.98 gf. Regarding the viability of the probiotic microorganism, the dessert had 7.49 log CFU g-1 that remained viable during the 21-day storage, reaching 8.51 CFU g-1. Acidity ranged from 0.15 to 0.64 g of lactic acid 100 g-1. The centesimal composition of the product showed 4.88 g 100 g-1 of protein, 0.54 g 100 g-1 of ash, 85.21% moisture, and 5.37g 100 g-1 of carbohydrates. The development of the gelatin made it possible to obtain a differentiated product, contributing to diversification in the food sector, providing a viable alternative for maintaining consumer health and reducing costs compared to desserts already available on the market.
Subject(s)
Cocos , Gelatin , Lacticaseibacillus rhamnosus , Probiotics , Cocos/chemistry , Cocos/microbiology , Gelatin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , FermentationABSTRACT
The urgent need for a simple and cost-effective thermochemical process to produce biochar has prompted this study. The aim was to develop a straightforward thermochemical process under O2-limited conditions for the production of coconut-based biochar (CBB) and to assess its ability to remove methylene blue (MB) through adsorption, comparing it with CBB produced by slow pyrolysis. CBBs were obtained under different atmospheric conditions (O2-limited, muffle furnace biochar (MFB); and inert, pyrolytic reactor biochar (PRB)), at 350, 500, and 700 °C, and for 30 and 90'. MFB and PRB were characterized using FTIR, RAMAN, SEM, EDS, and XRD analyses. Adsorption tests were conducted using 1.0 g L-1 of MFB and PRB, 10 mg L-1 of MB at 25 °C for 48 h. Characterization revealed that atmospheric conditions significantly influenced the yield and structural features of the materials. PRB exhibited higher yields and larger cavities than MFB, but quite similar spectral features. Adsorption tests indicated that MFB and PRB had qt values of 33.1 and 9.2 mg g-1, respectively, which were obtained at 700 °C and 90', and 700 °C and 30', respectively. This alternative method produced an innovative and promising lignocellulose-based material with great potential to be used as a biosorbent.
Subject(s)
Charcoal , Cocos , Lignin , Cocos/chemistry , Charcoal/chemistry , Lignin/chemistry , Adsorption , Methylene Blue/chemistry , TemperatureABSTRACT
The inclusion of by-product coconut mesocarp skins (CMS) in diets was evaluated in feedlot lambs. The objective of this study was to evaluate CMS levels effects on carcass traits and meat quality of lambs. Thirty-five male lambs with an initial body weight of 16.9 ± 2.93 kg were distributed in a completely randomized design with five CMS levels in total dry matter (0; 4.8; 9.6; 14.4 and 19.2%) and fed during 71 d until slaughter. High levels of CMS decreased the intake of dry matter and negatively affected the performance of lambs. Fat and protein contents of Longissimus lumborum muscle (P < 0.05) and the saturated fatty acid (FA) decreased (P < 0.001) whereas polyunsaturated FA increased (P < 0.01) with the inclusion of CMS. The ratio t10/t11-18:1 increased with the inclusion of CMS (P < 0.001). The instrumental color descriptors were unaffected by CMS levels. According to the effects on the investigated meat quality traits we recommend up to 4.8% CMS in diets of confined lambs.
Subject(s)
Animal Feed , Cocos , Diet , Fatty Acids , Muscle, Skeletal , Red Meat , Sheep, Domestic , Animals , Male , Cocos/chemistry , Animal Feed/analysis , Red Meat/analysis , Diet/veterinary , Fatty Acids/analysis , Muscle, Skeletal/chemistry , Color , Body CompositionABSTRACT
The food industry has grown with the demands for new products and their authentication, which has not been accompanied by the area of analysis and quality control, thus requiring novel process analytical technologies for food processes. An electronic tongue (e-tongue) is a multisensor system that can characterize complex liquids in a fast and simple way. Here, we tested the efficacy of an impedimetric microfluidic e-tongue setup - comprised by four interdigitated electrodes (IDE) on a printed circuit board (PCB), with four pairs of digits each, being one bare sensor and three coated with different ultrathin nanostructured films with different electrical properties - in the analysis of fresh and industrialized coconut water. Principal Component Analysis (PCA) was applied to observe sample differences, and Partial Least Squares Regression (PLSR) was used to predict sample physicochemical parameters. Linear Discriminant Analysis (LDA) and Partial Least Square - Discriminant Analysis (PLS-DA) were compared to classify samples based on data from the e-tongue device. Results indicate the potential application of the microfluidic e-tongue in the identification of coconut water composition and determination of physicochemical attributes, allowing for classification of samples according to soluble solid content (SSC) and total titratable acidity (TTA) with over 90% accuracy. It was also demonstrated that the microfluidic setup has potential application in the food industry for quality assessment of complex liquid samples.
Subject(s)
Cocos , Dielectric Spectroscopy , Principal Component Analysis , Cocos/chemistry , Least-Squares Analysis , Dielectric Spectroscopy/methods , Discriminant Analysis , Water/chemistry , Food Analysis/methods , Microfluidics/methods , Microfluidics/instrumentation , Electronic NoseABSTRACT
OBJECTIVE: The aim of this article is to investigate the effect of intermittent fasting, associated or not with coconut oil intake, on the gut-liver axis of obese rats. METHODS: A total of 50 rats were divided into five groups: control, obese, obese with intermittent fasting, obese with intermittent fasting plus coconut oil, and obese with caloric restriction. The rats were induced to obesity with a high-sugar diet for 17 wk. The respective interventions were carried out in the last 4 wk. RESULTS: The groups with intermittent fasting protocols had reduced total cholesterol (on average 54.31%), low-density lipoprotein (on average 53.39%), and triacylglycerols (on average 23.94%) versus the obese group; and the obese with intermittent fasting plus coconut oil group had the highest high-density lipoprotein compared with all groups. The obese with intermittent fasting plus coconut oil and obese with caloric restriction groups had lower metabolic load compared with the other groups. The obese group had high citric and succinic acid concentrations, which affected the hepatic tricarboxylic acid cycle, while all the interventions had reduced concentrations of these acids. No histologic changes were observed in the intestine or liver of the groups. CONCLUSION: Intermittent fasting, especially when associated with coconut oil, had effects comparable with caloric restriction in modulating the parameters of the gut-liver axis.
Subject(s)
Cocos , Intermittent Fasting , Rats , Animals , Coconut Oil/metabolism , Coconut Oil/pharmacology , Diet , Obesity/metabolism , Lipoproteins, HDL , Liver/metabolism , Plant Oils/metabolismABSTRACT
The red palm mite Raoiella indica Hirst, 1924 (Acari: Tenuipalpidae) is an important pest of the coconut palm Cocos nucifera L. (Arecaceae) and has caused problems in coconut production worldwide. Research has been carried out aiming at controlling the mite through chemical, biological, alternative, and host plant resistance methods. Identifying coconut palm cultivars resistant to R. indica is important to reduce the problems caused to plantations. Therefore, the objective of this work was to evaluate the performance of R. indica in six dwarf coconut palm cultivars, to identify sources of resistance. The cultivars of the sub-varieties green, red, and yellow evaluated were Brazilian Green Dwarf-Jiqui (BGDJ), Brazilian Red Dwarf-Gramame (BRDG), Cameroon Red Dwarf (CRD), Malayan Red Dwarf (MRD), Brazilian Yellow Dwarf-Gramame (BYDG), and Malayan Yellow Dwarf (MYD). Confinement and free choice tests of R. indica on the cultivars were performed, in which biological parameters and preference were evaluated. Mite performance was different in the cultivars evaluated. In the confinement bioassay, R. indica had the worst performance in the cultivar BGDJ, the best performance in CRD, MRD, and BRDG, and intermediate performance in BYDG and MYD. In the free choice test, the cultivars MRD and MYD were preferred in relation to BGDJ, and CRD was less preferred in relation to BGDJ. Therefore, we considered that the cultivar BGDJ is the most resistant to R. indica, by antibiosis and antixenosis; CRD has resistance by antixenosis; and MRD, BRDG, BYDG, and MYD are susceptible.
Subject(s)
Arecaceae , Mites , Trombiculidae , Animals , Cocos , BrazilABSTRACT
The aim of this work was to evaluate the adsorptive performance of the phosphorylated coconut fiber lignin (PCFL) obtained through an innovative biorefinery process for removing methylene blue (MB). PCFL was obtained using coconut fiber mixed with 85 % wt. H3PO4 at 70 °C for 1 h. Milled wood lignin (MWL) and PCFL were characterized by FTIR, CP-MAS 31P NMR, phosphorous and hydroxyl contents, pHPZC, and BET analyses. The batch adsorption tests evaluated the effects of the biosorbent (0.25 - 4 g L-1) and adsorbate dosages (2.5 - 7.5 mg L-1), contact time (0 - 60 min), pH (4 - 8), ionic strength (0.001 - 0.1 mol L-1) and temperature (298.15 - 318.15 K) on MB adsorption. Kinetic, equilibrium, and thermodynamic modeling were used. The phosphorous content on PCFL was 2.5 times higher than that of MWL. PCFL presented an enhanced adsorptive performance for removing MB, which was spontaneous (ΔG0 < 0), endothermic (ΔH0 > 0), with affinity between the biosorbent and adsorbate (ΔS0 > 0), and driven by physisorption (Ea > 40 kJ mol-1). The adsorptive performance of PCFL was enhanced due to the grafting of new active sites by using an innovative biorefinery process, showing its potential to be used for textile effluent remediation.
Subject(s)
Lignin , Water Pollutants, Chemical , Methylene Blue/chemistry , Cocos/chemistry , Adsorption , Phosphates , Hydrogen-Ion Concentration , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistryABSTRACT
Poultry meat allergy is rare and may present as primary or secondary, in the context of bird-egg syndrome. Chicken meat is responsible for most of the reactions. Cross-reactive allergens (parvalbumins, enolases, aldolases) between fish and chicken meat have been described. Coconut allergy is also rare. Coc n2 (7S globulin) and Coc n4 (11S globulin) have been implicated. We present a complex multiple food allergy case report where investigation into fish and chicken meat allergies as well as coconut allergy is carried out.
A alergia à carne de aves é rara e pode apresentar-se como primária ou secundária, no contexto da síndrome ovo-ave. A carne de frango é responsável pela maioria das reações. Foram descritos alergênios com reação cruzada (parvalbuminas, enolases, aldolases) entre peixe e carne de frango. A alergia ao coco também é rara. Coc n2 (globulina 7S) e Coc n4 (globulina 11S) foram implicados. Apresentamos um relato de caso complexo de alergia alimentar múltipla, onde é realizada investigação sobre alergia a peixe e carne de frango, bem como alergia ao coco.
Subject(s)
Humans , Male , Adolescent , Cocos , FishesABSTRACT
The leaf crown borer Eupalamides cyparissias (Cramer, 1775) is an important pest of coconut (Cocos nucifera L.) and other palms (Arecaceae) of economic importance, attacking the base of leaves, inflorescences, and infructescences, increasing fruit abortion. The objective of this study was to evaluate the spatial correlation of the infestation rate of E. cyparissias in coconut plantation blocks in the Brazilian Amazon, from January to December 2019, in the city of Santa Izabel, Pará, Brazil. The study area is a farm subdivided into 157 blocks of a commercial plantation of the green dwarf coconut. The Local Moran's Index was used to evaluate the existence of spatial autocorrelation of the E. cyparissias infestation rate in the 157 blocks with neighboring blocks. The infestation rate was calculated by the ratio between the number of plants attacked by the borer and the total number of plants in a block. There is a significant correlation of the symptomatology of the attack by E. cyparissias in the blocks of the experimental area, which indicates an aggregated pattern of distribution. There is no significant correlation between the attack by the borer and the age of the coconut tree; however there is a significant correlation between the attack by the borer and proximity to forest areas. These results indicate that forest regions are foci of infestation by the borer in coconut plantations.
Subject(s)
Arecaceae , Lepidoptera , Animals , Cocos , Plant Leaves , BrazilABSTRACT
Cocos nucifera L. is a crop grown in the humid tropics. It is grouped into two classes of varieties: dwarf and tall; regardless of the variety, the endosperm of the coconut accumulates carbohydrates in the early stages of maturation and fatty acids in the later stages, although the biochemical factors that determine such behavior remain unknown. We used tandem mass tagging with synchronous precursor selection (TMT-SPS-MS3) to analyze the proteomes of solid endosperms from Yucatan green dwarf (YGD) and Mexican pacific tall (MPT) coconut cultivars. The analysis was conducted at immature, intermediate, and mature development stages to better understand the regulation of carbohydrate and lipid metabolisms. Proteomic analyses showed 244 proteins in YGD and 347 in MPT; from these, 155 proteins were shared between both cultivars. Furthermore, the proteomes related to glycolysis, photosynthesis, and gluconeogenesis, and those associated with the biosynthesis and elongation of fatty acids, were up-accumulated in the solid endosperm of MPT, while in YGD, they were down-accumulated. These results support that carbohydrate and fatty acid metabolisms differ among the developmental stages of the solid endosperm and between the dwarf and tall cultivars. This is the first proteomics study comparing different stages of maturity in two contrasting coconut cultivars and may help in understanding the maturity process in other palms.
Subject(s)
Cocos , Endosperm , Endosperm/metabolism , Cocos/metabolism , Fatty Acids/metabolism , Proteome/metabolism , Proteomics , Carbohydrates , Metabolic Networks and PathwaysABSTRACT
This study aimed to evaluate coconut sugar (CS) as an alternative osmotic agent to sucrose for the osmotic dehydration (OD) of strawberries. OD was performed by immersing strawberries cut into 13.6 ± 0.4 mm edge cubes in osmotic solutions of CS or sucrose, at two different concentrations (40% and 60%, w/w), with and without application of vacuum (AV) in the first 20 min of the process. The total OD time was 300 min. Evaluations of the kinetics of solid gain (SG), water loss (WL), and weight reduction (WR) were performed at 30, 60, 120, 180, 240, and 300 min. SG, WL, and WR increased over the OD time and showed values of up to 7.94%, 63.40%, and 55.94%, respectively. AV increased WL, WR, shrinkage, pH, and total color difference and decreased anthocyanin, ascorbic acid (AA), phenolic, and antioxidant contents. The higher concentration led to higher SG, WL, WR, shrinkage, hardness, and lower moisture content, water activity, anthocyanin, AA, phenolic, and antioxidant contents. The use of CS instead of sucrose had little influence on strawberry properties, except pH and color responses. The optimal treatment was using a 60% CS solution without AV, showing a very distinct color change, hardness increased by approximately 4.5 times and maintenance of acidity, anthocyanins, AA, total phenolics, and antioxidants of 38.0%, 39.6%, 11.8%, 30.0%, 31.1%, and 30.3%, respectively, compared to fresh strawberries. PRACTICAL APPLICATION: Osmotic dehydration of fruit is a process traditionally carried out using sucrose. However, increasing health concerns have made consumers seek alternative sugars to sucrose. The use of coconut sugar made it possible to produce osmo-dehydrated strawberries different from the traditional one, maintaining product quality and process efficiency.
Subject(s)
Antioxidants , Fragaria , Antioxidants/chemistry , Fragaria/chemistry , Anthocyanins/analysis , Sugars/analysis , Cocos , Dehydration , Desiccation , Ascorbic Acid/analysis , Fruit/chemistry , Sucrose/analysis , Water/analysisABSTRACT
During a survey in Trinidad and Grenada for putative vectors of palm lethal decline phytoplasmas, three species of planthopper in the genus Melanoliarus (Hemiptera, Cixiidae) were collected. Melanoliarus maidis was collected from coconut palms in Grenada, M. kindli was collected from grasses in a coconut plot in Trinidad and a new species of Melanoliarus was collected from coconut palms in Trinidad. Herein the novel taxon is described with supplementary molecular data for the cytochrome c oxidase subunit I (COI) gene, 18S rRNA gene, and histone 3 (H3) gene to support placement in the genus Melanoliarus in the strict sense.
Subject(s)
Arecaceae , Hemiptera , Animals , Cocos , Hemiptera/genetics , Trinidad and Tobago , Surveys and QuestionnairesABSTRACT
The present study aimed to evaluate the effect of E-VCO on the neurobehaviour and intestinal health parameters of obesity-induced rats, focusing on food consumption, body composition, bacterial and faecal organic acids and histological analyses in the hippocampus and colon. A total of 32 male Wistar rats were randomized into healthy (HG, n = 16) and obese groups (OG, n = 16), which consumed a control or cafeteria diet for eight weeks, respectively. After this period, they were subdivided into four groups: healthy (HG, n = 8); healthy treated with E-VCO (HGCO, n = 8); obese (OG, n = 8); obese treated with E-VCO (OGCO, n = 8), continuing for another eight weeks with their respective diets. The treated groups received 3000 mg kg-1 of E-VCO and control groups received water via gavage. Food preference, body weight gain, body composition, anxiety- and depression-like behaviour were evaluated. Bacteria and organic acids were evaluated in faeces, and histological analyses of the hippocampus and M1 and M2 macrophages in the colon were performed. E-VCO reduced energy intake (16.68%) and body weight gain (16%), although it did not reduce the fat mass of obese rats. E-VCO showed an antidepressant effect, increased lactic acid bacteria counts and modulated organic acids in obese rats. Furthermore, E-VCO protected the hippocampus from neuronal degeneration caused by the obesogenic diet, decreased the M1 macrophage and increased the M2 macrophage population in the gut. The results suggest neurobehavioural modulation and improved gut health by E-VCO, with promising effects against obesity-related comorbidities.
Subject(s)
Cocos , Obesity , Rats , Male , Animals , Coconut Oil , Rats, Wistar , Obesity/drug therapy , DietABSTRACT
The meristematic region of Cocos nucifera fruits can be colonized by various species of mites, including Steneotarsonemus concavuscutum, Steneotarsonemus furcatus, and Aceria guerreronis. The consequence of this colonization is the development of necrotic lesions on the fruit, and sometimes its abortion. Losses are commonly attributed to A. guerreronis alone, owing to the similarities in the injuries caused and its predominance in coconut plantations. However, S. concavuscutum may be the predominant pest species in some crops. Despite the possible impact of S. concavuscutum, little is known about its bioecological aspects, such as the influence of biotic and abiotic factors on its population dynamics. Our objective was to document macroclimatic abiotic factors (temperature, relative humidity, and precipitation) and biotic factors (interspecific competition and predation) interfere in the population dynamics of S. concavuscutum. We evaluated the diversity and abundance of mites in the perianth of coconut fruit naturally infested by S. concavuscutum for 1 year. The species found in the fruits of bunch 6 of the plant, which is the fruit age at which the mites commonly reach the highest abundance, were counted every 2 weeks. We found mites from nine families and S. concavuscutum was the predominant species, representing about 92% of the individuals collected. Predators represented approximately 2% of the total collection, with Neoseiulus baraki as the predominant species. Steneotarsonemus concavuscutum population density ranged from 60 to 397 mites/fruit. The highest population densities of S. concavuscutum were observed in the hottest and driest periods of the year. The population densities of S. concavuscutum were negatively associated with the presence of N. baraki, suggesting that this predator may have a role in the biological control of this pest.
Subject(s)
Mites , Animals , Fruit , Cocos , Temperature , Population DynamicsABSTRACT
Haplaxius is a large genus of cixiid planthopper found in the New World. The genus is of particular interest due to the ability of H. crudus to transmit the phytoplasmas for lethal decline in various palm species, primarily in the Caribbean and Florida, U.S.A. During recent vector survey work in Jamaica, a specimen was collected at Castleton Botanic Garden and determined to be a new species of Haplaxius. The novel taxon is herein described, Haplaxius fornicus sp. n., and corresponding DNA sequence data is provided for the barcoding region of the cytochrome c oxidase subunit I (COI) gene, 18S rRNA gene, and histone 3 (H3) gene. An updated phylogeny of the genus is provided with currently available taxa demonstrating additional support for the placement of H. fornicus sp. n. in Haplaxius.