Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
1.
J Am Chem Soc ; 146(18): 12857-12863, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38676654

ABSTRACT

The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.


Subject(s)
Amino Acids , Anticodon , Codon , Anticodon/chemistry , Anticodon/genetics , Amino Acids/chemistry , Codon/chemistry , Codon/genetics , Ribosomes/metabolism , Ribosomes/chemistry , Binding Sites , Models, Molecular
2.
J Biol Chem ; 299(4): 104608, 2023 04.
Article in English | MEDLINE | ID: mdl-36924943

ABSTRACT

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Subject(s)
Anticodon , Codon , RNA, Ribosomal , Ribosomes , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Codon/chemistry , Codon/genetics , Codon/metabolism , Nucleic Acid Conformation , Nucleotides/chemistry , Nucleotides/metabolism , Protein Biosynthesis , Ribosomes/chemistry , Ribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Base Pair Mismatch , Models, Molecular , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism
3.
Infect Genet Evol ; 97: 105175, 2022 01.
Article in English | MEDLINE | ID: mdl-34871776

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads all over the world and brings great harm to humans in many countries. Many new SARS-CoV-2 variants appeared during its transmission. In the present study, the Delta variants (B.1.617.2) of SARS-CoV-2, which have appeared in many countries, were considered for analysis. In order to evaluate the evolutionary divergence of the Delta variants(B.1.617.2), the codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2 was compared to that of the SARS-CoV-2 genomes emerged before June 2020. All Delta variants (B.1.617.2) and 350 early genomes of SARS-CoV-2 in the NCBI database were downloaded. Codon usage pattern including the basic composition, the GC ratio of the third position (GC3) and the first two positions (GC12) in codons, overall GC contents, the effective number of codons (ENC), the codon bias index (CBI), the relative synonymous codon usage (RSCU) values, etc., of all concerned important gene sequences were all calculated. Codon usage divergence of them was calculated via summing their standard deviations. The results suggested that base compositions in both Delta variants (B.1.617.2) of SARS-CoV-2 and the early SARS-CoV-2 genomes were similar to each other. However, the internal codon usage divergence for most genes in Delta variants (B.1.617.2) was significantly wider than that of SARS-CoV-2. The RSCU values were further used to explore the synonymous and non-synonymous mutations in the sequences of the Delta variants (B.1.617.2), and the results showed the synonymous mutations are more obvious than the non-synonymous in the concerned sequences. The related codon usage divergence analysis is helpful for further study on the adaptability and disease prognosis of the SARS-CoV-2 variants.


Subject(s)
COVID-19/epidemiology , Codon/chemistry , Genome, Viral , Mutation , SARS-CoV-2/genetics , Viral Proteins/genetics , Base Composition , COVID-19/transmission , COVID-19/virology , Databases, Genetic , Epidemiological Monitoring , Evolution, Molecular , Gene Expression , Humans , Open Reading Frames , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Viral Proteins/metabolism
4.
PLoS Comput Biol ; 17(10): e1009482, 2021 10.
Article in English | MEDLINE | ID: mdl-34679099

ABSTRACT

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome.


Subject(s)
Codon , Computational Biology/methods , Histocompatibility Antigens Class I , Neural Networks, Computer , Algorithms , Amino Acid Sequence , Codon/chemistry , Codon/genetics , Codon/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans
5.
Oncogene ; 40(45): 6309-6320, 2021 11.
Article in English | MEDLINE | ID: mdl-34584217

ABSTRACT

A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.


Subject(s)
Codon/genetics , Neoplasms/genetics , RNA, Transfer/metabolism , Codon/chemistry , Humans , Mutation , Protein Biosynthesis , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Mutat Res ; 823: 111761, 2021.
Article in English | MEDLINE | ID: mdl-34461460

ABSTRACT

Understanding the origins of mutations in tumor suppressor genes and oncogenes associated with cancers in different tissues is critical to the development of potential prevention strategies. Analysis of >10,000 nonsense mutations in 63 tumor suppressor genes based on the ratio of the number of nonsense mutations per codon type is reported for each gene. The ratio for C•G→T•A nonsense mutations at Arg CGA codons to the number of CGA codons in all cancers is 23 (3088 total nonsense mutations for 134 CGA codons in the 63 suppressor genes). The ratio for this codon, which is attributed to hydrolytic deamination of 5-methylcytosine at CpG sites based on the sequence context, is 6-fold higher than the next highest ratio that involves a C•G→T•A transition at Trp TGG codons. C•G→A•T transversions at Glu, Ser, Tyr, Gly and Cys codons account for 25 % of the total nonsense mutations but the mutation per codon ratio for these codons is 1.0. Analysis of the bases 5' of the mutated CGA codons in the 63 tumor suppressor genes in all cancers shows a preference of 5'-G > C ∼ T ∼ A, which is not indicative of a role for enzymatic deamination by deaminases. Overall C•G→T•A mutations account for 61 % of all of the nonsense mutations in the collection of tumor suppressor genes. It is demonstrated that the ratio of C•G→T•A deamination-associated nonsense mutations at CGA codons (hydrolytic deamination) to the number of frame shift insertion/deletion mutations (i.e., replication based) for 5 major tumor suppressors genes are very similar in 3 different tissues that undergo a wide range of stem cell divisions. Therefore, the frequency of deamination mutations parallels the number of stem cell replications. This may reflect the generation of more solvent accessible single-stranded DNA regions during polymerization that are kinetically more prone to deamination.


Subject(s)
Codon, Nonsense , Codon/chemistry , Genes, Tumor Suppressor , Neoplasms/genetics , Codon/metabolism , Databases, Factual , Gene Expression Regulation, Neoplastic , Humans , Mutation Rate , Neoplasms/pathology
7.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972434

ABSTRACT

Synonymous codon substitutions are not always selectively neutral as revealed by several types of analyses, including studies of codon usage patterns among genes. We analyzed codon usage in 13 bacterial genomes sampled from across a large order of bacteria, Enterobacterales, and identified presumptively neutral and selected classes of synonymous substitutions. To estimate substitution rates, given a neutral/selected classification of synonymous substitutions, we developed a flexible [Formula: see text] substitution model that allows multiple classes of synonymous substitutions. Under this multiclass synonymous substitution (MSS) model, the denominator of [Formula: see text] includes only the strictly neutral class of synonymous substitutions. On average, the value of [Formula: see text] under the MSS model was 80% of that under the standard codon model in which all synonymous substitutions are assumed to be neutral. The indication is that conventional [Formula: see text] analyses overestimate these values and thus overestimate the frequency of positive diversifying selection and underestimate the strength of purifying selection. To quantify the strength of selection necessary to explain this reduction, we developed a model of selected compensatory codon substitutions. The reduction in synonymous substitution rate, and thus the contribution that selection makes to codon bias variation among genes, can be adequately explained by very weak selection, with a mean product of population size and selection coefficient, [Formula: see text].


Subject(s)
Codon/metabolism , Enterobacteriaceae/genetics , Genome, Bacterial , Models, Genetic , Silent Mutation , Bacterial Load , Biological Evolution , Codon/chemistry , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Genetic Variation , Models, Statistical , Selection, Genetic
8.
RNA ; 27(1): 40-53, 2021 01.
Article in English | MEDLINE | ID: mdl-33008838

ABSTRACT

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Subject(s)
Escherichia coli/genetics , Frameshifting, Ribosomal , Mutation , Peptide Chain Elongation, Translational , Peptide Elongation Factor G/genetics , Ribosomes/genetics , Anticodon/chemistry , Anticodon/metabolism , Binding Sites , Codon/chemistry , Codon/metabolism , Escherichia coli/metabolism , Histidine/genetics , Histidine/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Elongation Factor G/chemistry , Peptide Elongation Factor G/metabolism , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA, Messenger , RNA, Transfer , Reading Frames , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomes/metabolism
9.
Nucleic Acids Res ; 48(21): 12016-12029, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33211868

ABSTRACT

Ribosome profiling, also known as Ribo-seq, has become a popular approach to investigate regulatory mechanisms of translation in a wide variety of biological contexts. Ribo-seq not only provides a measurement of translation efficiency based on the relative abundance of ribosomes bound to transcripts, but also has the capacity to reveal dynamic and local regulation at different stages of translation based on positional information of footprints across individual transcripts. While many computational tools exist for the analysis of Ribo-seq data, no method is currently available for rigorous testing of the pattern differences in ribosome footprints. In this work, we develop a novel approach together with an R package, RiboDiPA, for Differential Pattern Analysis of Ribo-seq data. RiboDiPA allows for quick identification of genes with statistically significant differences in ribosome occupancy patterns for model organisms ranging from yeast to mammals. We show that differential pattern analysis reveals information that is distinct and complimentary to existing methods that focus on translational efficiency analysis. Using both simulated Ribo-seq footprint data and three benchmark data sets, we illustrate that RiboDiPA can uncover meaningful pattern differences across multiple biological conditions on a global scale, and pinpoint characteristic ribosome occupancy patterns at single codon resolution.


Subject(s)
Gene Expression Regulation, Fungal , Protein Biosynthesis , RNA, Fungal/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Software , Base Sequence , Benchmarking , Codon/chemistry , Codon/metabolism , High-Throughput Nucleotide Sequencing , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Sequence Analysis, RNA
10.
J Phys Chem Lett ; 11(15): 6337-6343, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32701298

ABSTRACT

The residue 2-thiouridine (s2U) provides a remarkable example for the "modified wobble" hypothesis, which postulates that some post-transcriptional modifications at the wobble position of tRNAs restrict recognition of degenerate codons. Through extensive molecular dynamics simulations using our χIDRP force field parameters, we demonstrate how this modification shifts the conformational ensemble from a predominantly disordered, as in the case of an RNA pentamer (GUUUC), to a substantially ordered population in Gs2UUUC. Our simulations clearly showed that the van der Waals interaction of sulfur played a major role in driving the disorder-to-order transition. The conformational redistribution and the slowing down of the transition between the clusters within the population in the presence of s2U suggest ensemble allostery to be a key mechanism that may play a general role in the functioning of the wobble modifications of tRNAs.


Subject(s)
RNA, Transfer/chemistry , Thiouridine/chemistry , Allosteric Site , Base Sequence , Codon/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation
11.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486212

ABSTRACT

Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM ß-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of ß-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. ß-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant ß-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular ß-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly ß-CGTase by the recombinant E. coli.


Subject(s)
Bacillus/enzymology , Codon/chemistry , Escherichia coli/metabolism , Glucosyltransferases/biosynthesis , Glycine/chemistry , Chromatography, Affinity , Codon Usage , Culture Media/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Nickel/chemistry , Recombinant Proteins/biosynthesis , Temperature
12.
Naturwissenschaften ; 107(3): 20, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32367155

ABSTRACT

Stereochemical nucleotide-amino acid interactions, in the form of noncovalent nucleotide-amino acid interactions, potentially produced the genetic code's codon-amino acid assignments. Empirical estimates of single nucleotide-amino acid affinities on surfaces and in solution are used to test whether trinucleotide-amino acid affinities determined genetic code assignments pending the principle "first arrived, first served": presumed early amino acids have greater codon-amino acid affinities than ulterior ones. Here, these single nucleotide affinities are used to approximate all 64 × 20 trinucleotide-amino acid affinities. Analyses show that (1) on surfaces, genetic code codon-amino acid assignments tend to match high affinities for the amino acids that integrated earliest the genetic code (according to Wong's metabolic coevolution hypothesis between nucleotides and amino acids) and (2) in solution, the same principle holds for the anticodon-amino acid assignments. Affinity analyses match best genetic code assignments when assuming that trinucleotides competed for amino acids, rather than amino acids for trinucleotides. Codon-amino acid affinities stick better to genetic code assignments than anticodon-amino acid affinities. Presumably, two independent coding systems, on surfaces and in solution, converged, and formed the current translation system. Proto-translation on surfaces by direct codon-amino acid interactions without tRNA-like adaptors coadapted with a system emerging in solution by proto-tRNA anticodon-amino acid interactions. These systems assigned identical or similar cognates to codons on surfaces and to anticodons in solution. Results indicate that a prebiotic metabolism predated genetic code self-organization.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Codon/chemistry , Codon/metabolism , Biological Evolution , Codon/genetics , Stereoisomerism
13.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32266934

ABSTRACT

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Subject(s)
Codon/genetics , Purines/chemistry , Purines/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Base Pair Mismatch , Base Pairing , Base Sequence , Codon/chemistry , Codon/metabolism , Eukaryotic Cells/metabolism , Gene Library , Guanine/chemistry , Guanine/metabolism , Internal Ribosome Entry Sites/genetics , Nucleotides/chemistry , Nucleotides/metabolism , Peptide Chain Elongation, Translational , RNA, Transfer/metabolism , Ribosomes/metabolism
14.
Biosystems ; 191-192: 104116, 2020 May.
Article in English | MEDLINE | ID: mdl-32081715

ABSTRACT

Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.


Subject(s)
Amino Acids/genetics , Anticodon/genetics , Codon/genetics , Genetic Code/genetics , Protein Biosynthesis/genetics , Amino Acid Sequence , Amino Acids/chemistry , Anticodon/chemistry , Base Sequence , Codon/chemistry , Deamination , Humans , Hydrophobic and Hydrophilic Interactions , Models, Genetic , Nucleotides/genetics , Protein Conformation, beta-Strand , RNA, Transfer/chemistry , RNA, Transfer/genetics , Sequence Homology, Nucleic Acid
15.
ACS Synth Biol ; 9(1): 43-52, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31774997

ABSTRACT

Expanding the chemical diversity of aptamers remains an important thrust in the field in order to increase their functional potential. Previously, our group developed LOOPER, which enables the incorporation of up to 16 unique modifications throughout a ssDNA sequence, and applied it to the in vitro evolution of thrombin binders. As LOOPER-derived highly modified nucleic acids polymers are governed by two interrelated evolutionary variables, namely, functional modifications and sequence, the evolution of this polymer contrasts with that of canonical DNA. Herein we provide in-depth analysis of the evolution, including structure-activity relationships, mapping of evolutionary pressures on the library, and analysis of plausible evolutionary pathways that resulted in the first LOOPER-derived aptamer, TBL1. A detailed picture of how TBL1 interacts with thrombin and how it may mimic known peptide binders of thrombin is also proposed. Structural modeling and folding studies afford insights into how the aptamer displays critical modifications and also how modifications enhance the structural stability of the aptamer. A discussion of benefits and potential limitations of LOOPER during in vitro evolution is provided, which will serve to guide future evolutions of this highly modified class of aptamers.


Subject(s)
Anticodon/chemistry , Aptamers, Nucleotide/chemistry , DNA Ligases/chemistry , DNA, Single-Stranded/chemistry , Directed Molecular Evolution/methods , Thrombin/chemistry , Binding Sites , Codon/chemistry , Epitopes/chemistry , Gene Library , Humans , Molecular Dynamics Simulation , Nucleic Acids/chemistry , Polymerization , Polymers , SELEX Aptamer Technique/methods
16.
Cell Mol Life Sci ; 77(1): 149-160, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31175370

ABSTRACT

Protein-coding nucleic acids exhibit composition and codon biases between sequences coding for intrinsically disordered regions (IDRs) and those coding for structured regions. IDRs are regions of proteins that are folding self-insufficient and which function without the prerequisite of folded structure. Several authors have investigated composition bias or codon selection in regions encoding for IDRs, primarily in Eukaryota, and concluded that elevated GC content is the result of the biased amino acid composition of IDRs. We substantively extend previous work by examining GC content in regions encoding IDRs, from 44 species in Eukaryota, Archaea, and Bacteria, spanning a wide range of GC content. We confirm that regions coding for IDRs show a significantly elevated GC content, even across all domains of life. Although this is largely attributable to the amino acid composition bias of IDRs, we show that this bias is independent of the overall GC content and, most importantly, we are the first to observe that GC content bias in IDRs is significantly different than expected from IDR amino acid composition alone. We empirically find compensatory codon selection that reduces the observed GC content bias in IDRs. This selection is dependent on the overall GC content of the organism. The codon selection bias manifests as use of infrequent, AT-rich codons in encoding IDRs. Further, we find these relationships to be independent of the intrinsic disorder prediction method used, and independent of estimated translation efficiency. These observations are consistent with the previous work, and we speculate on whether the observed biases are causal or symptomatic of other driving forces.


Subject(s)
Codon/chemistry , Intrinsically Disordered Proteins/chemistry , Animals , Base Composition , Codon/genetics , Codon Usage , Humans , Intrinsically Disordered Proteins/genetics , Protein Biosynthesis , Protein Conformation
17.
Biomolecules ; 9(11)2019 11 18.
Article in English | MEDLINE | ID: mdl-31752208

ABSTRACT

In-frame decoding in the ribosome occurs through canonical or wobble Watson-Crick pairing of three mRNA codon bases (a triplet) with a triplet of anticodon bases in tRNA. Departures from the triplet-triplet interaction can result in frameshifting, meaning downstream mRNA codons are then read in a different register. There are many mechanisms to induce frameshifting, and most are insufficiently understood. One previously proposed mechanism is doublet decoding, in which only codon bases 1 and 2 are read by anticodon bases 34 and 35, which would lead to -1 frameshifting. In E. coli, tRNASer3GCU can induce -1 frameshifting at alanine (GCA) codons. The logic of the doublet decoding model is that the Ala codon's GC could pair with the tRNASer3's GC, leaving the third anticodon residue U36 making no interactions with mRNA. Under that model, a U36C mutation would still induce -1 frameshifting, but experiments refute this. We perform all-atom simulations of wild-type tRNASer3, as well as a U36C mutant. Our simulations revealed a hydrogen bond between U36 of the anticodon and G1 of the codon. The U36C mutant cannot make this interaction, as it lacks the hydrogen-bond-donating H3. The simulation thus suggests a novel, non-doublet decoding mechanism for -1 frameshifting by tRNASer3 at Ala codons.


Subject(s)
Codon/chemistry , Escherichia coli/chemistry , Frameshifting, Ribosomal , Molecular Dynamics Simulation , RNA, Bacterial/chemistry , RNA, Transfer, Ser/chemistry , Codon/genetics , Escherichia coli/genetics , Point Mutation , RNA, Bacterial/genetics , RNA, Transfer, Ser/genetics
18.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597770

ABSTRACT

The family of giant viruses is still expanding, and evidence of a translational machinery is emerging in the virosphere. The Klosneuvirinae group of giant viruses was first reconstructed from in silico studies, and then a unique member was isolated, Bodo saltans virus. Here we describe the isolation of a new member in this group using coculture with the free-living amoeba Vermamoeba vermiformis This giant virus, called Yasminevirus, has a 2.1-Mb linear double-stranded DNA genome encoding 1,541 candidate proteins, with a GC content estimated at 40.2%. Yasminevirus possesses a nearly complete translational machinery, with a set of 70 tRNAs associated with 45 codons and recognizing 20 amino acids (aa), 20 aminoacyl-tRNA synthetases (aaRSs) recognizing 20 aa, as well as several translation factors and elongation factors. At the genome scale, evolutionary analyses placed this virus in the Klosneuvirinae group of giant viruses. Rhizome analysis demonstrated that the genome of Yasminevirus is mosaic, with ∼34% of genes having their closest homologues in other viruses, followed by ∼13.2% in Eukaryota, ∼7.2% in Bacteria, and less than 1% in Archaea Among giant virus sequences, Yasminevirus shared 87% of viral hits with Klosneuvirinae. This description of Yasminevirus sheds light on the Klosneuvirinae group in a captivating quest to understand the evolution and diversity of giant viruses.IMPORTANCE Yasminevirus is an icosahedral double-stranded DNA virus isolated from sewage water by amoeba coculture. Here its structure and replicative cycle in the amoeba Vermamoeba vermiformis are described and genomic and evolutionary studies are reported. This virus belongs to the Klosneuvirinae group of giant viruses, representing the second isolated and cultivated giant virus in this group, and is the first isolated using a coculture procedure. Extended translational machinery pointed to Yasminevirus among the quasiautonomous giant viruses with the most complete translational apparatus of the known virosphere.


Subject(s)
DNA, Viral/genetics , Gene Expression Regulation, Viral , Genome, Viral , Giant Viruses/genetics , Mimiviridae/genetics , Virion/genetics , Amino Acids/genetics , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/classification , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Base Composition , Chromosome Mapping , Coculture Techniques , Codon/chemistry , Codon/metabolism , DNA, Viral/metabolism , Genome Size , Giant Viruses/classification , Giant Viruses/metabolism , Giant Viruses/ultrastructure , Hartmannella/virology , Mimiviridae/classification , Mimiviridae/metabolism , Mimiviridae/ultrastructure , Peptide Elongation Factors/classification , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Phylogeny , Protein Biosynthesis , RNA, Transfer/classification , RNA, Transfer/genetics , RNA, Transfer/metabolism , Sequence Analysis, DNA , Virion/metabolism , Virion/ultrastructure
19.
RNA Biol ; 16(12): 1806-1816, 2019 12.
Article in English | MEDLINE | ID: mdl-31470761

ABSTRACT

Translation initiation is a critical step in the regulation of protein synthesis, and it is subjected to different control mechanisms, such as 5' UTR secondary structure and initiation codon context, that can influence the rates at which initiation and consequentially translation occur. For some genes, translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5 can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library in Escherichia coli genes and examined the correlation between the expected levels of translation according to the GFP data with the experimental measures of protein expression. We observed that E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless, our data indicate that different enterobacteria present similar nucleotide composition enrichment as E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer sequences.


Subject(s)
Codon/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Peptide Chain Initiation, Translational , 5' Untranslated Regions , Base Sequence , Biological Evolution , Codon/chemistry , Computational Biology/methods , Enhancer Elements, Genetic , Escherichia coli/metabolism , Gene Library , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Nucleic Acid Conformation , Nucleotide Motifs , Open Reading Frames , Ribosomes/genetics , Ribosomes/metabolism
20.
Nucleic Acids Res ; 47(19): 10400-10413, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31501867

ABSTRACT

Chromosomally-encoded toxin-antitoxin complexes are ubiquitous in bacteria and regulate growth through the release of the toxin component typically in a stress-dependent manner. Type II ribosome-dependent toxins adopt a RelE-family RNase fold and inhibit translation by degrading mRNAs while bound to the ribosome. Here, we present biochemical and structural studies of the Escherichia coli YoeB toxin interacting with both a UAA stop and an AAU sense codon in pre- and post-mRNA cleavage states to provide insights into possible mRNA substrate selection. Both mRNAs undergo minimal changes during the cleavage event in contrast to type II ribosome-dependent RelE toxin. Further, the 16S rRNA decoding site nucleotides that monitor the mRNA in the aminoacyl(A) site adopt different orientations depending upon which toxin is present. Although YoeB is a RelE family member, it is the sole ribosome-dependent toxin that is dimeric. We show that engineered monomeric YoeB is active against mRNAs bound to both the small and large subunit. However, the stability of monomeric YoeB is reduced ∼20°C, consistent with potential YoeB activation during heat shock in E. coli as previously demonstrated. These data provide a molecular basis for the ability of YoeB to function in response to thermal stress.


Subject(s)
Bacterial Toxins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Protein Stability , Ribonucleases/chemistry , Amino Acid Sequence/genetics , Bacterial Toxins/genetics , Codon/chemistry , Codon/genetics , Dimerization , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Heat-Shock Response/genetics , RNA Stability/genetics , RNA, Messenger , RNA, Ribosomal, 16S/genetics , Ribonucleases/genetics , Ribosomes/chemistry , Ribosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL