Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Cytokine ; 177: 156545, 2024 05.
Article in English | MEDLINE | ID: mdl-38368695

ABSTRACT

The symptomatology of COVID-19 is dependent on the immune status and the cytokine response of the host. The cytokine level of the host is influenced by the presence of chronic persistent or latent infections with co-pathogens. Parasitic diseases are known to induce host immune-modulation which may impact the response to co-infection. Toxoplasmosis is a widespread protozoal infection that remains quiescent in its latent form to be re-activated during states of immune depression. Clinical data on the relation between toxoplasmosis and COVID-19 cytokine profile and symptomatology are still insufficient. Seventy-nine subjects were included in this study. Patients were diagnosed with COVID-19 by PCR. Serological testing for toxoplasmosis was performed by the detection of anti-Toxoplasma IgG antibodies, in addition to IgG avidity testing. IFN-γ and TNF-α levels were determined by RT-PCR. Among patients diagnosed with COVID-19, 67.1% were seronegative for anti-Toxoplasma IgG, while 32.9% were seropositive. High avidity was found in 10 cases (40% of seropositive cases), 4 of whom required ICU administration, while low avidity was found in 15 cases (60%), 7 of which were administered to the ICU. TNF-α and INF-γ levels were significantly higher in COVID-19 patients than in healthy control subjects. No significant association was found between the seroprevalence of toxoplasmosis and the presence of COVID-19 and its severity. Cytokines were significantly higher in both seropositive and seronegative COVID-19 patients than in their control counterparts. The high prevalence of toxoplasmosis merits further exploration of its relation to COVID-19 by mass studies.


Subject(s)
COVID-19 , Coinfection , SARS-CoV-2 , Toxoplasma , Toxoplasmosis , Humans , Antibodies, Protozoan , Coinfection/metabolism , COVID-19/metabolism , Cytokines , Immunoglobulin G , Patient Acuity , Seroepidemiologic Studies , Toxoplasmosis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interferon-gamma/metabolism
2.
Front Immunol ; 14: 1276817, 2023.
Article in English | MEDLINE | ID: mdl-37928551

ABSTRACT

Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.


Subject(s)
Coinfection , HIV Infections , Mycobacterium tuberculosis , Humans , Interleukin-4/genetics , Interleukin-4/metabolism , Coinfection/metabolism , Macrophages , HIV Infections/metabolism , Transcription Factors/metabolism , Virulence Factors/metabolism
3.
mBio ; 14(5): e0086323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37772820

ABSTRACT

IMPORTANCE: Miscommunication of antiviral and antibacterial immune signals drives worsened morbidity and mortality during respiratory viral-bacterial coinfections. Extracellular vesicles (EVs) are a form of intercellular communication with broad implications during infection, and here we show that epithelium-derived EVs released during the antiviral response impair the antibacterial activity of macrophages, an innate immune cell crucial for bacterial control in the airway. Macrophages exposed to antiviral EVs display reduced clearance of Staphylococcus aureus as well as altered inflammatory signaling and anti-inflammatory metabolic reprogramming, thus revealing EVs as a source of dysregulated epithelium-macrophage crosstalk during coinfection. As effective epithelium-macrophage communication is critical in mounting an appropriate immune response, this novel observation of epithelium-macrophage crosstalk shaping macrophage metabolism and antimicrobial function provides exciting new insight and improves our understanding of immune dysfunction during respiratory coinfections.


Subject(s)
Coinfection , Extracellular Vesicles , Staphylococcal Infections , Humans , Coinfection/metabolism , Macrophages , Staphylococcal Infections/metabolism , Anti-Bacterial Agents/metabolism , Antiviral Agents/metabolism
4.
Pharm Biol ; 61(1): 755-766, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37139624

ABSTRACT

CONTEXT: Vancomycin (VCM), an important antibiotic against refractory infections, has been used to treat secondary infections in severe COVID-19 patients. Regrettably, VCM treatment has been associated with nephrotoxicity. Vitamin D3 can prevent nephrotoxicity through its antioxidant effect. OBJECTIVE: This study tests the antioxidant effect of vitamin D3 in the prevention of VCM-induced nephrotoxicity. MATERIALS AND METHODS: Wistar Albino rats (21) were randomly divided into 3 groups: (A) control; (B) VCM 300 mg/kg daily for 1 week; and (C) VCM plus vitamin D3 500 IU/kg daily for 2 weeks. All the rats were sacrificed and serum was separated to determine kidney function parameters. Their kidneys were also dissected for histological examination and for oxidative stress markers. RESULTS: Lipid peroxidation, creatinine, and urea levels decreased significantly (p < 0.0001) in the vitamin D3-treated group (14.46, 84.11, 36.17%, respectively) compared to the VCM group that was given VCM (MIC<2 µg/mL) only. A significant increase was observed in superoxide dismutase levels in the vitamin D3-treated group (p < 0.05) compared to rats without treatment. Furthermore, kidney histopathology of the rats treated with vitamin D3 showed that dilatation, vacuolization and necrosis tubules decreased significantly (p < 0.05) compared with those in the VCM group. Glomerular injury, hyaline dystrophy, and inflammation improved significantly in the vitamin D3 group (p < 0.001, p < 0.05, p < 0.05, respectively) compared with the VCM group. DISCUSSION AND CONCLUSIONS: Vitamin D3 can prevent VCM nephrotoxicity. Therefore, the appropriate dose of this vitamin must be determined, especially for those infected with COVID-19 and receiving VCM, to manage their secondary infections.


Subject(s)
COVID-19 , Coinfection , Animals , Rats , Vancomycin/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Coinfection/metabolism , Coinfection/pathology , Rats, Wistar , COVID-19/metabolism , Kidney , Oxidative Stress
5.
Front Immunol ; 14: 1112985, 2023.
Article in English | MEDLINE | ID: mdl-36993954

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype. Computational models open novel frontiers in research by integrating large-scale interaction to interrogate the influence of complex biological behavior across scales. The ability to model large biological networks will likely pave the way to understanding any complex system in more approachable ways. We developed a logical and predictive model of DC function that integrates the heterogeneity of DCs population, APC function, and cell-cell interaction, spanning molecular to population levels. Our logical model consists of 281 components that connect environmental stimuli with various layers of the cell compartments, including the plasma membrane, cytoplasm, and nucleus to represent the dynamic processes within and outside the DC, such as signaling pathways and cell-cell interactions. We also provided three sample use cases to apply the model in the context of studying cell dynamics and disease environments. First, we characterized the DC response to Sars-CoV-2 and influenza co-infection by in-silico experiments and analyzed the activity level of 107 molecules that play a role in this co-infection. The second example presents simulations to predict the crosstalk between DCs and T cells in a cancer microenvironment. Finally, for the third example, we used the Kyoto Encyclopedia of Genes and Genomes enrichment analysis against the model's components to identify 45 diseases and 24 molecular pathways that the DC model can address. This study presents a resource to decode the complex dynamics underlying DC-derived APC communication and provides a platform for researchers to perform in-silico experiments on human DC for vaccine design, drug discovery, and immunotherapies.


Subject(s)
COVID-19 , Coinfection , Humans , Dendritic Cells , Coinfection/metabolism , COVID-19/metabolism , SARS-CoV-2 , Immunity
6.
Lupus ; 32(1): 119-128, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36433710

ABSTRACT

OBJECTIVE: To analyze the characteristics of peripheral blood lymphocyte subsets in systemic lupus erythematosus (SLE) patients with infection and non-infection group. Explore the risk factors of infection in SLE patients and establish a risk matrix model to predict the occurrence of co-infection. METHODS: total of 333 SLE patients without infection, 163 patients suffering from infection, and 132 healthy controls (HCs) were recruited. General clinical data and disease activity indicators were collected. The levels of total T, B, CD4+T, CD8+T, NK, Th1, Th2, Th17, and Treg cells in peripheral blood of HCs, SLE patients (including infected and non-infected group) were analyzed by flow cytometry. The risk assessment model was constructed, and the receiver operating characteristic curve was drawn. 39 SLE patients with infection and 20 patients without infection were randomly selected to evaluate the predictive power of the regression model. RESULTS: The levels of T, B, CD4+T, CD8+T, and NK cells in the infected patients were significantly decreased when compared with that of both non-infected patients and HCs (p < .05). The non-infected patients had a higher level of Th17 than that of HCs (p < . 05), but the absolute numbers of Th17 in infected patients was the lowest among the three groups (p < .001). The number of Treg cells in SLE patients was significantly lower than that of HCs (p < .01), and the infected patients had the fewest Treg cells among all these groups (p < . 05). A risk assessment model for SLE with infection was established, p = 1/(1-e-y), Y = 1.763-0.004 × Absolute number of CD4 + T cells-0.005 × Absolute number of NK cells -0.005 × Platelet count(×1012/L) + 1.033 × Absolute number of lymphocytes (×109/L) + 0.023 × C-reactive protein (mg/dL), whose predictive sensitivity is 77.5%, and specificity is 78.3%. CONCLUSION: The new risk assessment model exhibits good predictive ability to assess co-infection risk in SLE patients. T cells, NK cells, and CD4 + T cells along with other parameters help in differentiating Lupus with infection from Lupus alone.


Subject(s)
Coinfection , Lupus Erythematosus, Systemic , Humans , Coinfection/metabolism , T-Lymphocytes, Regulatory/metabolism , Risk Factors , Risk Assessment , Flow Cytometry
7.
Front Immunol ; 13: 1011944, 2022.
Article in English | MEDLINE | ID: mdl-36532055

ABSTRACT

In severe bacterial infections, there is a pro-inflammatory response to promote bacterial clearance but this response can cause tissue injury. Later, the immune system becomes dysregulated and the host is unable to clear a secondary or a pre-existing infection. Specialized Pro-resolving Mediators (SPMs) such as resolvin D2 (RvD2) have been shown to be beneficial for inflammation/infection resolution in animal models of sepsis but in vivo mechanisms by which RvD2 may promote bacterial clearance and/or attenuate deleterious effects of a secondary infection have not been fully established. In this study, we used the 2-hit model of cecal ligation and puncture (CLP) induced infectious peritonitis and secondary lung infection with Pseudomonas aeruginosa to find possible antimicrobial and immunomodulatory mechanisms of RvD2. We show that RvD2 given as late as 48h after CLP surgery reduced blood bacterial load without altering plasma cytokines compared to mice given saline vehicle. RvD2 increased splenic neutrophil accumulation as well as average reactive oxygen species (ROS) production. There was also an increase in an immature leukocyte population the myeloid derived suppressor cells (MDSCs) in the spleen of RvD2 treated mice. RvD2 reduced lung lavage bacterial load 24h after P. aeruginosa administration and significantly decreased lung lavage levels of IL-23, a cytokine essential in the Th-17 inflammatory response. In addition, we show that RvD2 increased the number of non-inflammatory alveolar macrophages after P. aeruginosa administration compared to saline treated mice. The study uncovered an antimicrobial mechanism of RvD2 where RvD2 increases mature neutrophil and MDSC accumulation into the spleen to promote blood bacterial clearance. The study showed that in this 2-hit model, RvD2 promotes lung bacterial clearance, increased non-inflammatory alveolar macrophage number and inhibits an adaptive immune pathway providing evidence of its resolution mechanism in secondary pulmonary infection.


Subject(s)
Coinfection , Peritonitis , Pneumonia , Mice , Animals , Coinfection/metabolism , Disease Models, Animal , Lung , Peritonitis/drug therapy , Peritonitis/metabolism , Cytokines/metabolism , Pseudomonas aeruginosa , Pneumonia/drug therapy , Pneumonia/etiology , Pneumonia/metabolism
8.
Front Immunol ; 13: 1038332, 2022.
Article in English | MEDLINE | ID: mdl-36389843

ABSTRACT

Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1ß) and/or increasing IL-4, IL-10, and TGF-ß. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-ß, and/or promotion of IFN-γ and IL-1ß release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.


Subject(s)
Chagas Disease , Coinfection , Trypanosoma cruzi , Humans , Coinfection/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Macrophages , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism
9.
J Innate Immun ; 14(5): 569-580, 2022.
Article in English | MEDLINE | ID: mdl-35249041

ABSTRACT

Influenza A Virus (IAV), Staphylococcus aureus (staphylococci), and Streptococcus pneumoniae (pneumococci) are leading viral and bacterial causes of pneumonia. Dendritic cells (DCs) are present in the lower respiratory tract. They are characterized by low expression of co-stimulatory molecules, including CD80 and CD86 and high capacity of antigen uptake. Subsequently, DCs upregulate co-stimulatory signals and cytokine secretion to effectively induce T-cell priming. Here, we investigated these processes in response to bacterial and viral single as well as coinfections using human monocyte-derived (mo)DCs. Irrespective of single or coinfections, moDCs matured in response to IAV and/or staphylococcal infections, secreted a wide range of cytokines, and activated CD4+, CD8+ as well as double-negative T cells. In contrast, pneumococcal single and coinfections impaired moDC maturation, which was characterized by low expression of CD80 and CD86, downregulated expression of CD40, and a mild cytokine release resulting in abrogated CD4+ T-cell activation. These actions were attributed to the cholesterol-dependent cytotoxin pneumolysin (Ply). Infections with a ply-deficient mutant resulted in restored moDC maturation and exclusive CD4+ T-cell activation. These findings show that Ply has important immunomodulatory functions, supporting further investigations in specific modalities of Ply-DC interplay.


Subject(s)
Coinfection , Influenza A virus , Bacterial Proteins , CD4-Positive T-Lymphocytes , Coinfection/metabolism , Cytokines/metabolism , Dendritic Cells , Humans , Streptococcus pneumoniae , Streptolysins
10.
Prostaglandins Other Lipid Mediat ; 159: 106617, 2022 04.
Article in English | MEDLINE | ID: mdl-35007703

ABSTRACT

In the development of sepsis, there is early, massive inflammation which can lead to multiple organ failure. Later there is an immunosuppressed phase where the host is susceptible to secondary infections or is unable to clear existing infection. Specialized Pro-resolving Mediators (SPMs) are endogenously produced lipids which resolve infection by decreasing bacteria load and reducing systemic inflammatory response. There has been little work studying if SPMs given late, can promote host defense. We examined if an SPM, Resolvin D2 (RvD2) could promote host defense in a 2-hit mouse model of cecal ligation and puncture (CLP) sepsis and secondary Pseudomonas aeruginosa lung infection. RvD2 given 48 h after mild CLP (1st hit), increased gene expression of Toll-like receptor-2 (TLR-2) and alveolar macrophage/monocyte phagocytic ability compared to CLP mice given saline vehicle. In this model, RvD2 did not affect plasma IL-6 or IL-10. These effects induced by RvD2, lowered lung bacterial load and decreased mortality after the secondary infection of Pseudomonas aeruginosa (2nd hit). Splenic T-cell numbers were also increased in RvD2 treated mice compared to saline vehicle treated animals. The results suggest that RvD2 promoted mechanisms of host defense in a 2-hit model sepsis and secondary lung infection.


Subject(s)
Coinfection , Pneumonia , Pseudomonas Infections , Sepsis , Animals , Coinfection/complications , Coinfection/metabolism , Cytokines/metabolism , Disease Models, Animal , Docosahexaenoic Acids , Lung/metabolism , Mice , Pneumonia/complications , Pneumonia/metabolism , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Pseudomonas Infections/genetics , Sepsis/complications , Sepsis/metabolism , Sepsis/microbiology
11.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-34793331

ABSTRACT

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Subject(s)
Bacterial Infections , Bronchoalveolar Lavage Fluid , COVID-19 , Coinfection , Influenza, Human , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Coinfection/immunology , Coinfection/metabolism , Coinfection/pathology , Cytokines/analysis , Female , Humans , Inflammation , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/immunology , Influenza, Human/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Middle Aged
12.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34855621

ABSTRACT

Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.


Subject(s)
Anti-Retroviral Agents/pharmacology , Coinfection , Latent Tuberculosis/metabolism , Mycobacterium tuberculosis/metabolism , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus/metabolism , Animals , Coinfection/drug therapy , Coinfection/metabolism , Coinfection/microbiology , Coinfection/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/microbiology
13.
Front Immunol ; 12: 797550, 2021.
Article in English | MEDLINE | ID: mdl-34956233

ABSTRACT

Successful pathogens require metabolic flexibility to adapt to diverse host niches. The presence of co-infecting or commensal microorganisms at a given infection site can further influence the metabolic processes required for a pathogen to cause disease. The Gram-positive bacterium Staphylococcus aureus and the polymorphic fungus Candida albicans are microorganisms that asymptomatically colonize healthy individuals but can also cause superficial infections or severe invasive disease. Due to many shared host niches, S. aureus and C. albicans are frequently co-isolated from mixed fungal-bacterial infections. S. aureus and C. albicans co-infection alters microbial metabolism relative to infection with either organism alone. Metabolic changes during co-infection regulate virulence, such as enhancing toxin production in S. aureus or contributing to morphogenesis and cell wall remodeling in C. albicans. C. albicans and S. aureus also form polymicrobial biofilms, which have greater biomass and reduced susceptibility to antimicrobials relative to mono-microbial biofilms. The S. aureus and C. albicans metabolic programs induced during co-infection impact interactions with host immune cells, resulting in greater microbial survival and immune evasion. Conversely, innate immune cell sensing of S. aureus and C. albicans triggers metabolic changes in the host cells that result in an altered immune response to secondary infections. In this review article, we discuss the metabolic programs that govern host-pathogen interactions during S. aureus and C. albicans co-infection. Understanding C. albicans-S. aureus interactions may highlight more general principles of how polymicrobial interactions, particularly fungal-bacterial interactions, shape the outcome of infectious disease. We focus on how co-infection alters microbial metabolism to enhance virulence and how infection-induced changes to host cell metabolism can impact a secondary infection.


Subject(s)
Candida albicans/physiology , Candidiasis/metabolism , Coinfection/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/physiology , Adaptation, Physiological , Animals , Biofilms , Humans , Microbial Interactions
14.
J Gen Virol ; 102(12)2021 12.
Article in English | MEDLINE | ID: mdl-34882535

ABSTRACT

Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.


Subject(s)
Coinfection/virology , Hepacivirus/physiology , Hepatitis B virus/physiology , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Core Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/metabolism , Coinfection/metabolism , Hep G2 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Viral Core Proteins/genetics
15.
Sci Rep ; 11(1): 16177, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376749

ABSTRACT

To describe the clinical features and the risk factors for nontuberculous mycobacteria (NTM) and Talaromyces marneffei (TM) co-infections in HIV-negative patients. A multicenter retrospective study in 13 hospitals, and a systematic literature review were performed of original articles published in English related to TM/NTM co-infections. HIV-negative patients with TM and NTM co-infections comprised Group 1; TM-only infection Group 2; NTM-only infection Group 3; and healthy volunteers Group 4. Univariate logistic analysis was used to estimate the potential risk factors of TM/NTM co-infections. A total of 22 cases of TM and NTM co-infections were enrolled. Of these, 17 patients (77.3%) had a missed diagnosis of one of the TM or NTM pathogens. The anti-IFN-γ autoantibodies (AIGAs) titer, white blood cell (WBC), neutrophil counts (N), erythrocyte sedimentation rate (ESR), C reactive protein (CRP), globulin, and immunoglobulin G (IgG) levels of Group 1 were higher than those of the other groups, whereas the levels of CD4+T cells was lower than those of other groups. There was a significant negative correlation between the AIGA titers and the number of CD4+T cells (P < 0.05). Factors including the ratio of the actual values to the cut-off values of AIGAs, WBC, N, HGB, CD4+T cells, IgG, IgM, IgA, serum globulin, ESR, and CRP were taken as potential risk factors for TM and NTM co-infection. Most patients with TM and NTM co-infection had a missed diagnosis of one of the TM or NTM pathogens. The levels of AIGAs, WBC, N, ESR, and CRP in TM and NTM co-infections were remarkably higher than in mono-infection. High-titer AIGAs may be a potential risk factor and susceptibility factor for co-infection of TM and NTM in HIV-negative hosts.


Subject(s)
Coinfection/epidemiology , Cytokines/metabolism , HIV Infections , Mycobacterium Infections, Nontuberculous/epidemiology , Nontuberculous Mycobacteria/isolation & purification , Talaromyces/isolation & purification , Adult , Aged , Case-Control Studies , China/epidemiology , Coinfection/diagnosis , Coinfection/metabolism , Coinfection/microbiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Prognosis , Retrospective Studies , Risk Factors
16.
Biochimie ; 189: 169-180, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34197866

ABSTRACT

Despite the development of efficient anti-human immunodeficiency virus-1 (HIV-1) therapy, HIV-1 associated pathogens remain a major clinical problem. Human cytomegalovirus (CMV) is among the most common HIV-1 copathogens and one of the main causes of persistent immune activation associated with dysregulation of the immune system, cerebrovascular and cardiovascular pathologies, and premature aging. Here, we report on the development of dual-targeted drugs with activity against both HIV-1 and CMV. We synthesized seven compounds that constitute conjugates of molecules that suppress both pathogens. We showed that all seven compounds exhibit low cytotoxicity and efficiently inhibited both viruses in cell lines. Furthermore, we chose a representative compound and demonstrated that it efficiently suppressed replication of HIV-1 and CMV in human lymphoid tissue ex vivo coinfected with both viruses. Further development of such compounds may lead to the development of dual-targeted anti-CMV/HIV-1 drugs.


Subject(s)
Antiviral Agents , Coinfection/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus/metabolism , HIV Infections/drug therapy , HIV-1/metabolism , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Coinfection/metabolism , Cytomegalovirus Infections/metabolism , HIV Infections/metabolism , Humans , Swine
17.
J Virol ; 95(18): e0092121, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232730

ABSTRACT

Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. IMPORTANCE Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.


Subject(s)
Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Epithelium/virology , HIV Infections/virology , HIV-1/physiology , Palatine Tonsil/virology , California/epidemiology , Coinfection/epidemiology , Coinfection/metabolism , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/metabolism , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelium/metabolism , HIV Infections/epidemiology , HIV Infections/metabolism , Humans , Infant , Macrophages/metabolism , Macrophages/virology , Palatine Tonsil/metabolism , Tight Junctions
18.
Sci Rep ; 11(1): 11931, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099797

ABSTRACT

To understand the possible role of mixed-prion infections in disease presentation, the current study reports the co-infection of sheep with bovine spongiform encephalopathy (BSE) and scrapie. The bovine BSE agent was inoculated subcutaneously into sheep with ARQ/ARQ or VRQ/ARQ PRNP genotypes either at the same time as subcutaneous challenge with scrapie, or three months later. In addition, VRQ/VRQ sheep naturally infected with scrapie after being born into a scrapie-affected flock were challenged subcutaneously with BSE at eight or twenty one months-of-age. Sheep were analysed by incubation period/attack rate, and western blot of brain tissue determined the presence of BSE or scrapie-like PrPSc. Serial protein misfolding cyclic amplification (sPMCA) that can detect very low levels of BSE in the presence of an excess of scrapie agent was also applied to brain and lymphoreticular tissue. For VRQ/ARQ sheep challenged with mixed infections, scrapie-like incubation periods were produced, and no BSE agent was detected. However, whilst ARQ/ARQ sheep developed disease with BSE-like incubation periods, some animals had a dominant scrapie western blot phenotype in brain, but BSE was detected in these sheep by sPMCA. In addition, VRQ/VRQ animals challenged with BSE after natural exposure to scrapie had scrapie-like incubation periods and dominant scrapie PrPSc in brain, but one sheep had BSE detectable by sPMCA in the brain. Overall, the study demonstrates for the first time that for scrapie/BSE mixed infections, VRQ/ARQ sheep with experimental scrapie did not propagate BSE but VRQ/VRQ sheep with natural scrapie could propagate low levels of BSE, and whilst BSE readily propagated in ARQ/ARQ sheep it was not always the dominant PrPSc strain in brain tissue. Indeed, for several animals, a dominant scrapie biochemical phenotype in brain did not preclude the presence of BSE prion.


Subject(s)
Cattle Diseases/diagnosis , Coinfection/diagnosis , Encephalopathy, Bovine Spongiform/diagnosis , Scrapie/diagnosis , Sheep Diseases/diagnosis , Animals , Brain/metabolism , Cattle , Cattle Diseases/metabolism , Coinfection/genetics , Coinfection/metabolism , Encephalopathy, Bovine Spongiform/complications , Encephalopathy, Bovine Spongiform/metabolism , Genotype , Phenotype , Prion Proteins/genetics , Prion Proteins/metabolism , Scrapie/complications , Scrapie/metabolism , Sheep , Sheep Diseases/genetics , Sheep Diseases/metabolism
19.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669411

ABSTRACT

Tuberculosis (TB) is the leading cause of death among HIV-1-infected individuals and Mycobacterium tuberculosis (Mtb) co-infection is an early precipitate to AIDS. We aimed to determine whether Mtb strains differentially modulate cellular susceptibility to HIV-1 infection (cis- and trans-infection), via surface receptor interaction by their cell envelope lipids. Total lipids from pathogenic (lineage 4 Mtb H37Rv, CDC1551 and lineage 2 Mtb HN878, EU127) and non-pathogenic (Mycobacterium bovis BCG and Mycobacterium smegmatis) Mycobacterium strains were integrated into liposomes mimicking the lipid distribution and antigen accessibility of the mycobacterial cell wall. The resulting liposomes were tested for modulating in vitro HIV-1 cis- and trans-infection of TZM-bl cells using single-cycle infectious virus particles. Mtb glycolipids did not affect HIV-1 direct infection however, trans-infection of both R5 and X4 tropic HIV-1 strains were impaired in the presence of glycolipids from M. bovis, Mtb H37Rv and Mtb EU127 strains when using Raji-DC-SIGN cells or immature and mature dendritic cells (DCs) to capture virus. SL1, PDIM and TDM lipids were identified to be involved in DC-SIGN recognition and impairment of HIV-1 trans-infection. These findings indicate that variant strains of Mtb have differential effect on HIV-1 trans-infection with the potential to influence HIV-1 disease course in co-infected individuals.


Subject(s)
AIDS-Related Opportunistic Infections/metabolism , Coinfection/metabolism , Glycolipids/metabolism , HIV-1/physiology , Liposomes/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis/metabolism , AIDS-Related Opportunistic Infections/virology , Cell Adhesion Molecules/metabolism , Cell Wall/metabolism , HEK293 Cells , Humans , Lectins, C-Type/metabolism , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium bovis/metabolism , Mycobacterium smegmatis/metabolism , Receptors, Cell Surface/metabolism , Tuberculosis/microbiology , Virus Internalization
20.
Cardiovasc Toxicol ; 21(7): 517-532, 2021 07.
Article in English | MEDLINE | ID: mdl-33723718

ABSTRACT

Calcium dysregulation and mitochondrial dysfunction are key elements in the development of sepsis-induced cardiac dysfunction. Evidences have suggested that inhibition of Wnt/ß-Catenin signalling prevents cardiac dysfunction and remodelling in surgical, hypertension and pressure overload models. The present study investigated the effects of Wnt/ß-Catenin inhibitor on calcium overload and mitochondrial dysfunction in rat sepsis model of cardiomyopathy. Induction of sepsis by cecal ligation puncture (CLP) resulted in the up-regulation of cardiac ß-catenin transcriptional levels and cardiac dysfunction depicted by increased serum lactate dehydrogenase, CK-MB levels reduced maximum (dp/dt max.) and minimum developed pressure (dp/dt min.), increased LVEsDP and relaxation constant tau values. Moreover, oxidative and inflammatory stress, immune cell infiltration, increased myeloperoxidase activity, enhanced caspase-3 activity and fibronectin protein levels were observed in septic rat's heart. Also, septic rat's heart displayed mitochondrial dysfunction due to mPTP opening, increased calcium up-regulation in left ventricular apex tissues and whole heart, increased collagen staining, necrosis and structural damage. Pre-treatment with Wnt/ß-Catenin antagonist attenuated sepsis-induced serum and tissue biochemical changes, cardiac dysfunction and structural alterations by inhibiting mitochondrial mPTP opening and restricting calcium overloading in cardiac tissue.


Subject(s)
Calcium/metabolism , Cardiomyopathies/prevention & control , Coinfection/drug therapy , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Pyrvinium Compounds/pharmacology , Sepsis/drug therapy , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Coinfection/metabolism , Coinfection/microbiology , Cytokines/metabolism , Disease Models, Animal , Fibrosis , Inflammation Mediators/metabolism , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis , Oxidative Stress/drug effects , Rats, Wistar , Sepsis/metabolism , Sepsis/microbiology , Ventricular Function, Left/drug effects , Ventricular Pressure/drug effects , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...