Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428790

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Dietary Exposure/analysis , Environmental Monitoring , Soil Pollutants/analysis , Risk Assessment , Soil , China
2.
Bioresour Technol ; 397: 130498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432542

ABSTRACT

Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.


Subject(s)
Charcoal , Coke , Rhodococcus , Wastewater , Phenol , Ammonia , Up-Regulation , Quorum Sensing , Extracellular Polymeric Substance Matrix/chemistry , Electrons , Phenols , Sewage/chemistry , Coke/analysis
3.
Environ Res ; 247: 118359, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38320717

ABSTRACT

In this work, the Mn, Co, Ce co-doped corn cob biochar (MCCBC) as catalytic particle electrodes in a three-dimensional heterogeneous electro-Fenton-like (3D-HEFL) system for the efficient degradation of coking wastewater was investigated. Various characterization methods such as SEM, EDS, XRD, XPS and electrochemical analysis were employed for the prepared materials. The results showed that the MCCBC particle electrodes had excellent electrochemical degradation performances of COD in coking wastewater, and the COD removal and degradation rates of the 3D/HEFL system were 85.35% and 0.0563 min-1 respectively. RSM optimized conditions revealed higher COD removal rate at 89.23% after 31.6 min of electrolysis. The efficient degradability and wide adaptability of the 3D/HEFL system were due to its beneficial coupling mechanism, including the synergistic effect between the system factors (3D and HEFL) as well as the synergistic interactions between the ROS (dominated by •OH and supplemented by O2•-) in the system. Moreover, the COD removal rate of MCCBC could still remain at 81.41% after 5 cycles with a lower ion leaching and a specific energy consumption of 11.28 kWh kg-1 COD. The superior performance of MCCBC, as catalytic particle electrodes showed a great potential for engineering applications for the advanced treatment of coking wastewater.


Subject(s)
Charcoal , Cocaine , Coke , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Coke/analysis , Oxidation-Reduction , Electrodes , Cocaine/analysis , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 468: 133802, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38377909

ABSTRACT

To investigate the environmental behavior of and carcinogenic risk posed by 16 priority-controlled polycyclic aromatic hydrocarbons (PAHs), soil samples and air samples from the coke oven top were collected in two prototype coking plants (named PF and JD). The PF soils contained more PAHs than the JD soils because the PF plant employed the side-charging technique and had a lower coke oven height. The soils from both plants contained enough PAHs to pose a carcinogenic risk, and this risk was higher in the PF plant. Data were collected on the source characteristic spectrum of stable carbon isotopic composition (δ13C) of PAHs emitted from the coke oven top (δ13C values of -36.02‰ to -32.05‰ for gaseous PAHs and -34.09‰ to -25.28‰ for particulate PAHs), and these data fill a research gap and may be referenced for isotopic-technology-based source apportionment. Diagnostic ratios and isotopic technology revealed that the coking plant soils were mainly influenced by the coking process, followed by vehicle exhaust; the soils near the boundary of each plant were slightly affected by C3 plant burning. For most PAHs [excluding fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and dibenzo(a,h)anthracene], the dominant migration process was the net volatilization of PAHs from soil to air. In the PF plant, 13C was depleted in gaseous PAHs during volatilization.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Carbon Isotopes/analysis , Coke/analysis , Carbon/analysis , Carcinogens/analysis , China , Risk Assessment , Environmental Monitoring , Soil Pollutants/analysis
5.
Waste Manag ; 178: 199-209, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402740

ABSTRACT

Solid recovered fuel (SRF) from non-recyclable waste obtained from source separation and mechanical treatments can replace carbon coke in cement plants, contributing to the carbon neutrality. A life cycle assessment (LCA) of the SRF production from non-recyclable and selected waste was conducted in an Italian mechanical treatment plant to estimate the potential environmental impacts per ton of SRF produced. The analysis would contribute to evaluate the benefits that can be obtained due to coke substitution in best- and worst-case scenarios. The avoided impacts achieved were assessed, together with an evaluation of the variables that can affect the environmental benefits: SRF biogenic carbon content (in percentage of paper and cardboard); transportation distances travelled from the treatment plant to the cement kiln; the renewable energy used in the mechanical facility. On average, about 35.6 kgCO2-eq are generated by the SRF transportation and production phase. These impacts are greatly compensated by coke substitution, obtaining a net value of about -1.1 tCO2-eq avoided per ton of SRF. On balance, the global warming potential due to SRF production and consumption ranges from about -542 kgCO2-eq to about -1729 kgCO2-eq. The research recommended the use of SRF to substitute coke in cement kilns also in low densely-populated areas to mitigate environmental impacts and achieve carbon neutrality at a global level.


Subject(s)
Coke , Refuse Disposal , Waste Management , Animals , Coke/analysis , Renewable Energy , Carbon , Life Cycle Stages , Solid Waste/analysis
6.
Int J Hyg Environ Health ; 256: 114323, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237548

ABSTRACT

Whether adopting healthy lifestyles and maintaining moderate levels of essential metals could attenuate the reduction of heart rate variability (HRV) related to polycyclic aromatic hydrocarbons (PAHs) exposure are largely unknown. In this study, we measured urinary metals and PAHs as well as HRV, and constructed a healthy lifestyle score in 1267 coke oven workers. Linear regression models were used to explore the association of healthy lifestyle score and essential metals with HRV, and interaction analysis was performed to investigate the potential interaction between healthy lifestyle score, essential metals, and PAHs on HRV. Mean age of the participants was 41.9 years (84.5% male). Per one point higher healthy lifestyle score was associated with a 2.5% (95% CI, 1.0%-3.9%) higher standard deviation of all normal to normal intervals (SDNN), 2.1% (95% CI, 0.5%-3.6%) higher root mean square of successive differences in adjacent NN intervals (r-MSSD), 4.3% (95% CI, 0.4%-8.2%) higher low frequency, 4.4% (95% CI, 0.2%-8.5%) higher high frequency, and 4.4% (95% CI, 1.2%-7.6%) higher total power, respectively. Urinary level of chromium was positively associated with HRV indices, with the corresponding ß (95% CI) (%) was 5.17 (2.84, 7.50) for SDNN, 4.29 (1.74, 6.84) for r-MSSD, 12.26 (6.08, 18.45) for low frequency, 12.61 (5.87, 19.36) for high frequency, and 11.31 (6.19, 16.43) for total power. Additionally, a significant interaction was found between healthy lifestyle score and urinary total hydroxynaphthalene on SDNN (Pinteraction = 0.04), and higher level of urinary chromium could attenuate the adverse effect of total hydroxynaphthalene level on HRV (all Pinteraction <0.05). Findings of our study suggest adopting healthy lifestyle and maintaining a relatively high level of chromium might attenuate the reduction of HRV related to total hydroxynaphthalene exposure.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Male , Adult , Female , Polycyclic Aromatic Hydrocarbons/urine , Heart Rate , Coke/analysis , Naphthols/analysis , Naphthols/pharmacology , Metals/urine , Chromium/analysis , Chromium/pharmacology , Healthy Lifestyle , Occupational Exposure/analysis
7.
Chemosphere ; 349: 140923, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092162

ABSTRACT

Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.


Subject(s)
Coke , Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Coke/analysis , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Waste Disposal, Fluid/methods
8.
Environ Pollut ; 342: 123029, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38030105

ABSTRACT

The identification of polycyclic aromatic hydrocarbon (PAH) sources in heterogeneous urban soils containing pyrogenic and/or petrogenic anthropogenic substrates is a common task for risk assessment. Here, for the first time, the results of source identification using analysis of 71 PAH, alkylated PAH patterns and PAH Alkylation Index were related to visually identified and quantified anthropogenic substrates in 50 soil samples. Only the combination of chemical methods with visual characterization enabled the deeper understanding of varying alkylated PAH patterns used for source apportionment and their superimposition if multiple sources occur. Pyrogenic substrates show homogenic slope-shape PAH patterns despite large visual variety. Petrogenic substrates (bituminous coals), show prevailingly bell-shape patterns but pyrogenic patterns also occur, probably due to residues from industrial processes and/or sorption of other pyrogenic PAH. Superimposition of both PAH patterns within a sample results in intermediate patterns, which are determined by the abundance of substrates and their individual PAH contents. A discrepancy between the share of petrogenic substrates and petrogenic PAH was observed due to low-medium PAH contents from coals/tailings. This may lead to misinterpretations if only chemical source identification methods are applied. With increasing proportion of petrogenic PAH in the mixture, the intermediate V-shape pattern (later bell-shape) appears in lower molecular weight PAH and moves progressively to higher molecular weight PAH. ∑71 PAH contents vary from 1.77 to 326.5 mg/kg (median 26.5 mg/kg). Non-EPA PAH measured include highly toxic ∑4 dibenzopyrene isomers (0.045-6.23 mg/kg, median 0.79 mg/kg) and 7H-benzo[c]fluorene (0.008-1.57 mg/kg, median 0.12 mg/kg). Most common anthropogenic substrates are bottom ashes, slags, bituminous coals/tailings and coke/coke ash. The PAH Alkylation Index identifies reliably samples dominated by either petrogenic (<0.4) or pyrogenic (>0.9) PAH, independently of the PAH content. Mixed or primarily pyrogenic PAH sources (0.4-0.9) need further investigations, like the presented combination of methods, which enables a reliable source apportionment.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Coal/analysis , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Environmental Monitoring/methods
9.
Huan Jing Ke Xue ; 44(12): 6992-7003, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098422

ABSTRACT

To explore the influences of chemical oxidation on the physiological and ecological functions of indigenous microorganisms during contaminated soil remediation, three oxidants, including KMnO4, Na2S2O8, and O3, were selected to investigate their remediation effects on PAHs and the responses to indigenous microorganisms under different liquid-solid ratios, in this study. The results showed that:when the ΣPAHs concentration was 679.1 mg·kg-1 and the dosage of KMnO4 and Na2S2O8 was 1%, the removal efficiency of ΣPAHs reached up to 96.9% and 95.7% under the liquid-solid ratio of 6:1; for the O3 treatment, the removal efficiency of ΣPAHs was the highest(82.3%) at the O3 dosage and the liquid-solid ratio of 72 mg·min-1 and 8:1, respectively. The removal efficiency of low ring(3-4 rings) PAHs was higher than that of high ring(5-6 rings) PAHs under different liquid-solid ratios. The highest removal efficiencies were observed for phenanthrene and acenaphthene, whereas for benzo[a]pyrene, only the KMnO4treatment provided an effective performance, showing the highest removal efficiency of 97.4%. The microbial quantity analysis indicated that the quantity of soil microorganisms in the soil dropped sharply after being treated with KMnO4, decreasing from 108 copies·g-1 to 105 copies·g-1, whereas it changed only slightly after being treated with Na2S2O8 and O3. The community structure analysis showed that Proteobacteria were predominant in the contaminated soil, with the relative abundance of 99.5%. The addition of KMnO4 and Na2S2O8 significantly increased the microbial diversity; in particular, the relative abundance of a variety of microorganisms(such as Ralstonia and Acinetobacter) that can degrade PAHs was remarkably increased. The analysis of microbial metabolic function pathways revealed that chemical oxidation could simultaneously increase the relative abundance of PAHs-degrading bacteria and improve the ability of organic metabolism. Overall, the KMnO4 treatment greatly altered the quantity of microorganisms and the structure of the microbial community and the relative abundance of PAHs-degrading microorganisms at the liquid-solid ratio of 6:1.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Oxidants/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Coke/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Soil/chemistry , Soil Microbiology
10.
Chemosphere ; 344: 140335, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778642

ABSTRACT

BACKGROUND: Epidemiological studies have shown that exposure to Polycyclic aromatic hydrocarbons (PAHs) is associated with reduced mitochondrial DNA copy number (mtDNA-CN). Long non-coding RNA maternally expressed gene 3 (MEG3) is involved in mitochondrial function regulation. However, it is unknown whether single-nucleotide polymorphisms in the MEG3 can regulate the mtDNAcn in PAHs exposed populations. The aim of this study was to examine the effect of MEG3 genetic polymorphisms on the mtDNA-CN in PAHs exposed populations. MATERIALS AND METHODS: We recruited 544 coke oven workers and 238 controls using random cluster sampling. High-performance liquid chromatography was used to detect the concentrations of four OH-PAHs (1-hydroxypyrene [1-OHPyr], 1-hydroxynathalene [1-OHNap], 2-hydroxynathalene [2-OHNap], and 3-hydroxyphenanthrene [3-OHPhe]) in urine. The mtDNA-CN of peripheral blood leukocytes was measured using the quantitative polymerase chain reaction method. Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform was used to detect ten polymorphisms in MEG3. RESULTS: The OH-PAHs levels in the exposure group were significantly higher than those in the control group (P < 0.001). The mtDNA-CN in the exposure group was significantly lower than that in the control group (P < 0.001). A linear regression model revealed that PAHs-exposure (ß [95% confidence interval, CI], -0.428 [-0.475, -0.381], P < 0.001), male gender (-0.052 [-0.098, -0.005], P = 0.029), genotype TT for MEG3 rs11859 (-0.088 [-0.142, -0.035], P = 0.001), and genotype GG for MEG3 rs7155428 (-0.114 [-0.210, -0.017], P = 0.021) were associated with decreased mtDNA-CN. CONCLUSION: PAHs-exposure, male gender, genotype TT for rs11859, and genotype GG for rs7155428 were risk factors for mtDNA-CN.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Male , Humans , DNA, Mitochondrial/genetics , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , DNA Copy Number Variations , Mitochondria/genetics , Leukocytes/chemistry , Coke/analysis , Occupational Exposure/analysis
11.
Environ Sci Pollut Res Int ; 30(50): 108596-108605, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37751005

ABSTRACT

Long non-coding RNA maternally expressed gene 3 (MEG3) has been revealed to be involved in telomere length (TL) maintenance and homeostasis. However, it is unknown whether single-nucleotide polymorphisms (SNPs) in MEG3 could regulate TL in populations exposed to polycyclic aromatic hydrocarbons (PAHs). This study aimed to explore the effect of MEG3 genetic polymorphisms on TL in PAH-exposed populations. This study recruited 544 coke oven workers and 238 controls using random cluster sampling. The concentrations of four urinary OH-PAHs were measured by employing high-performance liquid chromatography. TL was measured by a quantitative polymerase chain reaction assay. The MEG3 genetic polymorphisms were detected using a Sequenom MassARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform. The concentrations of four urinary OH-PAHs in the exposure group were significantly higher than those in the control group (P < 0.001). TL in the exposure group (4.57 ± 0.84) was significantly lower than in the control (5.00 ± 0.75), and TL had a negative correlation with OH-PAHs. The generalized linear model found that PAH exposure [ß(95% CI) = -0.409(-0.537, -0.282), P < 0.001] and the CT+TT genotype in MEG3 rs10132552 [ß(95% CI) = -0.299(-0.582, -0.017), P = 0.038] were associated with the decreased TL. In conclusion, PAH exposure and the CT+TT genotype in MEG3 rs10132552 may be the risk factors for TL reduction.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Occupational Exposure/analysis , Telomere , Leukocytes , Polymorphism, Single Nucleotide , Coke/analysis
12.
Sci Total Environ ; 904: 167337, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37748612

ABSTRACT

A new innovative methodology system framework for source apportionment and source-specific risk assessment has been proposed and actively applied to identify the contamination characteristics, oriented sources and health risks associated with contamination levels of Heavy metals (HMs) and Polycyclic Aromatic Hydrocarbons (PAHs) in soils, a typical cold agricultural region in Northeastern China. To achieve this meaningful goal, a large-scale dataset including 1780 top soil samples, 10 HMs and 16 priority PAHs has been organized and collected from a typical study area in China. The total concentrations of the 10 selected HMs in study area range from 0.05 to 2147.40 mg/kg, with an average of 549.25 ± 541.37 mg/kg. The average concentrations of PAHs for (3-6)-rings are 16.60 ± 18.90, 26.40 ± 28.20, 9.51 ± 13.00 and 1.99 ± 5.30 ng/g, respectively. On the base of optimized literature source fingerprints for HM and PAH, a widely used receptor model, positive matrix factorization (PMF) has been applied to apportion the contamination sources HMs and PAHs in soils. Then source-specific health risk of soil HMs and PAHs have been assessed using the probabilistic incremental lifetime cancer risk model incorporated with source apportionment results data. Fertilizer residues/coke oven comprise the primary contamination source contributors of HMs and PAHs with corresponding contributions of 32.23 % and 27.93 % for HMs and 37.94 % for PAHs. Fertilizer/pesticide residues contributes most to the risks of soil HMs (28.8 %), followed by fossil fuel combustion (24.6 %), mining activities (20.2 %), traffic and vehicle emission (16.3 %) and electroplating/dyeing (14.1 %). Meanwhile, the ranking of health risks from the five identified contamination sources of soil PAHs are resident discharge, coal-fired boilers, coke oven emission, gasoline combustion and power plant, with the contribution of 27.1 %, 25.3 %, 17.3 %, 15.5 % and 14.8 %. And relatively, source-specific risk assessment demonstrates fossil fuel and coal combustion contribute the greatest impact to the total risk of HMs and PAHs (61.7 % and 56.1 %), respectively. This study provides a good example of how the source specific health risk assessment can be utilized to reduce the contamination in soils.


Subject(s)
Coke , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil/chemistry , Coke/analysis , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Fertilizers , Soil Pollutants/analysis , Coal/analysis , China , Risk Assessment/methods
13.
Environ Sci Technol ; 57(35): 13004-13014, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37526013

ABSTRACT

High-resolution mass spectrometry is an advanced technique for comprehensive screening of toxic chemicals. In this study, urine samples were collected from both an occupationally exposed population at a coking site and normal inhabitants to identify novel urinary biomarkers for occupational exposure to coking contaminants. A coking-site-appropriate analytical method was developed for unknown chemical screening. Through nontarget screening, 515 differential features were identified, and finally, 32 differential compounds were confirmed as candidates for the current study, including 13 polycyclic aromatic hydrocarbon (PAH) metabolites. Besides monohydroxy-PAHs (such as 1-&2-naphthol, 2-&9-hydroxyfluorene, 2-&4-phenanthrol, and 1-&2-hydroxypyrene), many other PAH metabolites including dihydroxy metabolites, PAH oxide, and sulfate conjugate were detected, suggesting that the quantification based solely on monohydroxy-PAHs significantly underestimated the human exposure to PAHs. Furthermore, several novel compounds were recognized that could be considered as biomarkers for the exposure to coking contaminants, including quinolin-2-ol (1.10 ± 0.44 ng/mL), naphthylmethanols (11.4 ± 5.47 ng/mL), N-hydroxy-1-aminonaphthalene (0.78 ± 0.43 ng/mL), hydroxydibenzofurans (17.4 ± 7.85 ng/mL), hydroxyanthraquinone (0.13 ± 0.053 ng/mL), and hydroxybiphenyl (2.70 ± 1.03 ng/mL). Despite their lower levels compared with hydroxy-PAHs (95.1 ± 30.8 ng/mL), their severe toxicities should not be overlooked. The study provides a nontarget screening approach to identify chemicals in human urine, which is crucial for accurately assessing the health risks of toxic chemicals in the coking industry.


Subject(s)
Cocaine , Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Coke/analysis , Chromatography, High Pressure Liquid , Occupational Exposure/analysis , Cocaine/analysis , Biomarkers , Environmental Monitoring/methods
14.
Article in English | MEDLINE | ID: mdl-37510575

ABSTRACT

Coking wastewater is a typical high-strength organic wastewater, for which it is difficult to meet discharging standards with a single biological treatment. In this study, effective advanced treatment of coking wastewater was achieved by coagulation with freshly prepared polyaluminum silicate sulfate (PASS). The performance advantage was determined through comparison with commercial coagulants including ferric chloride, polyferric sulfate, aluminum sulfate and polyaluminum chloride. Both single-factor and Taguchi experiments were conducted to determine the optimal conditions for coagulation with CODCr and UV254 as indicators. A dosage of 7 mmol/L PASS, flocculation velocity of 75 r/min, flocculation time of 30 min, pH of 7, and temperature of 20 °C could decrease the CODCr concentration from 196.67 mg/L to 59.94 mg/L. Enhanced coagulation could further help to remove the organic compounds, including pre-oxidation with ozonation, adsorption with activated carbon, assistant coagulation with polyacrylamide and secondary coagulation. UV spectrum scanning and gas chromatography-mass spectrometry revealed that the coagulation process effectively removed the majority of organic compounds, especially the high molecular weight alkanes and heterocyclic compounds. Coagulation with PASS provides an effective alternative for the advanced treatment of coking wastewater.


Subject(s)
Coke , Water Pollutants, Chemical , Wastewater , Sulfates/analysis , Coke/analysis , Organic Chemicals , Oxidation-Reduction , Waste Disposal, Fluid/methods , Flocculation , Water Pollutants, Chemical/analysis
15.
Water Sci Technol ; 88(1): 106-122, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37452537

ABSTRACT

Coking wastewater is a typical organic refractory wastewater characterized by high chemical oxygen demand (COD), NH4+-N, and total organic carbon (TOC). Herein, coking wastewater was treated using a heterogeneous electro-Fenton (EF) system comprising a novel iron-loaded needle coke composite cathode (Fe-NCCC) and a dimensionally stable anode. The response surface methodology was used to optimize the reaction conditions. The predicted and actual COD removal rates were 92.13 and 89.96% under optimum conditions of an applied voltage of 4.92 V, an electrode spacing of 2.29 cm, and an initial pH of 3.01. The optimized removal rate of NH4+-N and TOC was 84.12 and 73.44%, respectively. The color of coking wastewater decreased from 250-fold to colorless, and the BOD5/COD increased from 0.126 to 0.34. Gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy show that macromolecular heterocyclic organic compounds decomposed into straight-chain small molecules and even completely mineralized. The energy consumption of the EF process was 23.5 RMB Yuan per cubic meter of coking wastewater. The EF system comprising the Fe-NCCC can effectively remove pollutants from coking wastewater, has low electricity consumption, and can simultaneously reduce various pollution indicators with potential applications in the treatment of high-concentration and difficult-to-degrade organic wastewater.


Subject(s)
Coke , Environmental Pollutants , Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Coke/analysis , Electrodes , Environmental Pollutants/analysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/chemistry
16.
Environ Pollut ; 331(Pt 1): 121855, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37211230

ABSTRACT

Coke oven emissions (COEs) exposure leads to oxidative stress, an imbalance between oxidant production and antioxidant defence in the body, which then leads to shortened relative telomere length (RTL) and reduced mitochondrial DNA copy number (mtDNAcn), ultimately leading to ageing and disease. By analysing the relationship among COEs, oxidative stress, RTL and mtDNAcn, we investigated the chain-mediating effects of oxidative stress and telomeres on mitochondrial damage and mitochondria on telomere damage in coke oven workers. A total of 779 subjects were included in the study. Cumulative COEs exposure concentrations were estimated, and the RTL and mtDNAcn of peripheral blood leukocytes were measured using real-time fluorescence quantitative PCR. Total antioxidant capacity (T-AOC) was measured to reflect the level of oxidative stress. The data were statistically analysed using SPSS 21.0 software and discussed using mediation effect analysis. After adjusting for age, sex, smoking, drinking and BMI, generalised linear model revealed dose-response associations between COEs and T-AOC, RTL and mtDNAcn, respectively. (Ptrend < 0.05). The results of chain-mediating effect showed that the proportion of the chain-mediating effect of "CED-COEs→T-AOC→ RTL→mtDNAcn" was 0.82% (ß = -0.0005, 95% CI = [-0.0012, -0.0001]), and the proportion of the chain-mediating effect of "CED-COEs→T-AOC→ mtDNAcn → RTL ″ was 2.64% (ß = -0.0013, 95% CI = [-0.0025, -0.0004]). After oxidative stress is induced by COEs, mitochondria and telomeres may interact with each other while leading further to potential bodily damage. This study provides clues to explore the association between mitochondria and telomeres.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Antioxidants/analysis , Coke/analysis , DNA, Mitochondrial/genetics , Mitochondria/genetics , Occupational Exposure/analysis , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/analysis , Telomere
17.
Environ Sci Pollut Res Int ; 30(23): 64486-64498, 2023 May.
Article in English | MEDLINE | ID: mdl-37071357

ABSTRACT

Bacterial communities play an important role in maintaining the normal functioning of ecosystems; therefore, it is important to understand the effects of polycyclic aromatic hydrocarbons (PAHs) on the bacterial community. In addition, understanding the metabolic potential of bacterial communities for PAHs is important for the remediation of PAH-contaminated soils. However, the deep relationship between PAHs and bacterial community in coking plants is not clear. In this study, we determined the bacterial community and the concentration of PAHs in three soil profiles contaminated by coke plants in Xiaoyi Coking Park, Shanxi, China, using 16S rRNA and gas chromatography coupled with mass spectrometry, respectively. The results show that 2 ~ 3 rings PAHs are the main PAHs and Acidobacteria (23.76%) was the dominant bacterial community in three soil profiles. Statistical analysis showed that there were significant differences in the composition of bacterial communities at different depths and different sites. Redundancy analysis (RDA) and variance partitioning analysis (VPA) illustrate the influence of environmental factors (including PAHs, soil organic matter (SOM), and pH) on the vertical distribution of soil bacterial community, and PAHs were the main factors affecting the bacterial community in this study. The co-occurrence networks further indicated correlations between bacterial community and PAHs and found that Nap has the greatest effect on bacterial community compared with other PAHs. In addition, some operational taxonomic units (OTUs, OTU2, and OTU37) have the potential to degrade PAHs. PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used for further study on the potential of microbial PAHs degradation from a genetic perspective, which showed that different PAH metabolism genes were present in the genomes of bacterial communities in the three soil profiles, and a total of 12 PAH degradation-related genes were isolated, mainly dioxygenase and dehydrogenase genes.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Ecosystem , Phylogeny , RNA, Ribosomal, 16S , Gas Chromatography-Mass Spectrometry , Soil Pollutants/analysis , Bacteria , Soil Microbiology
18.
Environ Pollut ; 329: 121614, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37087084

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) can interfere with testosterone levels, and low levels of testosterone are associated with increased cardiovascular events. To explore the role of testosterone in PAHs exposure and cardiovascular health, we used data from the 2011-2016 National Health and Nutrition Examination Survey (NHANES) and a longitudinal database of 332 male coke oven workers from China. The urine PAHs, tobacco metabolites and plasma testosterone levels of coke oven workers were measured. There were inverse associations between serum (plasma) testosterone concentrations and the risk of dysarteriotony and dyslipidemia among the NHANES participants and coke oven workers. The results of the cross-lagged panel analysis among workers showed that the decrease in testosterone preceded the increase in diastolic blood pressure (DBP), and the absolute value of the path coefficient from baseline testosterone to follow-up DBP (ß2 = -8.162, P = 0.077) was significantly larger than the absolute value of the path coefficient from baseline DBP to follow-up testosterone (ß1 = -0.001, P = 0.781). Results from the half-longitudinal mediation analysis showed that baseline hydroxyfluorene predicted significant decreases in plasma testosterone from baseline to follow-up (path a: 0.71, 95% CI: 1.26, -0.16), whereas plasma testosterone at baseline also predicted significant increments in DBP from baseline to follow-up (path b: 9.22, 95% CI: 17.24, -1.19). The indirect effect of PAHs on DBP via plasma testosterone level was marginally significant (test for indirect effects a*b (P = 0.08)). In conclusion, testosterone level is a longitudinal precursor to increased DBP and plays an essential role in the association between PAHs exposure and damage to the cardiovascular system. Coke oven workers with low plasma testosterone levels are more likely to experience adverse changes in blood pressure and lipid levels after exposure to PAHs.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Male , Polycyclic Aromatic Hydrocarbons/analysis , Coke/analysis , Nutrition Surveys , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Blood Pressure , Longitudinal Studies , Testosterone , Pyrenes/analysis
19.
Environ Health ; 22(1): 27, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927494

ABSTRACT

BACKGROUND: Aging represents a serious health and socioeconomic concern for our society. However, not all people age in the same way and air pollution has been shown to largely impact this process. We explored whether polycyclic aromatic hydrocarbons (PAHs), excellent fossil and wood burning tracers, accelerate biological aging detected by lymphocytes DNA methylation age (DNAmAge) and telomere length (TL), early nuclear DNA (nDNA) hallmarks of non-mitotic and mitotic cellular aging, and mitochondrial DNA copy number (mtDNAcn). METHODS: The study population consisted of 49 male noncurrent-smoking coke-oven workers and 44 matched controls. Occupational and environmental sources of PAH exposures were evaluated by structured questionnaire and internal dose (urinary 1-pyrenol). We estimated Occup_PAHs, the product of 1-pyrenol and years of employment as coke-oven workers, and Environ_PAHs, from multiple items (diet, indoor and outdoor). Biological aging was determined by DNAmAge, via pyrosequencing, and by TL and mtDNAcn, via quantitative polymerase chain reaction. Genomic instability markers in lymphocytes as target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei), gene-specific (p53, IL6 and HIC1) and global (Alu and LINE-1 repeats) DNA methylation, and genetic polymorphisms (GSTM1) were also evaluated in the latent variable nDNA_changes. Structural equation modelling (SEM) analysis evaluated these multifaceted relationships. RESULTS: In univariate analysis, biological aging was higher in coke-oven workers than controls as detected by higher percentage of subjects with biological age older than chronological age (AgeAcc ≥ 0, p = 0.007) and TL (p = 0.038), mtDNAcn was instead similar. Genomic instability, i.e., genotoxic and epigenetic alterations (LINE-1, p53 and Alu) and latent variable nDNA_changes were higher in workers (p < 0.001). In SEM analysis, DNAmAge and TL were positively correlated with Occup_PAHs (p < 0.0001). Instead, mtDNAcn is positively correlated with the latent variable nDNA_changes (p < 0.0001) which is in turn triggered by Occup_PAHs and Environ_PAHs. CONCLUSIONS: Occupational PAHs exposure influences DNAmAge and TL, suggesting that PAHs target both non-mitotic and mitotic mechanisms and made coke-oven workers biologically older. Also, differences in mtDNAcn, which is modified through nDNA alterations, triggered by environmental and occupational PAH exposure, suggested a nuclear-mitochondrial core-axis of aging. By decreasing this risky gerontogenic exposure, biological aging and the consequent age-related diseases could be prevented.


Subject(s)
Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Male , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Biomarkers , Coke/analysis , Tumor Suppressor Protein p53 , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Aging
20.
Huan Jing Ke Xue ; 44(2): 807-815, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775604

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), as a highly toxic persistent organic pollutant, are commonly found in soil and water environments. In recent years, the pollution of PAHs in groundwater has attracted wide attention from scientists. To study the pollution characteristics and sources of polycyclic aromatic hydrocarbon in groundwater of the coking site, 16 PAHs priorly controlled by the US EPA were analyzed and discussed. In this study, we identified the contamination characteristics of PAHs in groundwater, analyzed the pollution sources of PAHs, and evaluated the ecological risk of PAHs in the coking site by combining statistical techniques, the positive matrix factorization (PMF) model, and risk quotient (RQ) methods. The results indicated that the total detection rate of PAHs in groundwater of the coking plant was 46.7%. The concentrations of PAHs in groundwater of the coking plant ranged from below the detection limit to 444.9 µg·L-1, with the average value of 1.88 µg·L-1. The concentration of PAHs in the groundwater of different production workshops was significantly different. The most polluted workshop was in the tar-refining area, and the concentration of 16 PAHs was 444.9 µg·L-1. Based on the PMF model, we identified the two primary contamination sources of PAHs in groundwater of the coking plant:① oil combustion and ② coal and biomass combustion and oil leakage. The contribution ratios of the two sources to PAHs of groundwater were 38.6% and 61.4%, respectively. The results of the ecological risk assessment indicated that Σ16PAHs in groundwater of the coking plant had high ecological risk, and the ecological risk of single PAHs in 53.4% of the groundwater sampling site was at a high ecological risk level. In conclusion, it is urgent to carry out the treatment and restoration of the groundwater environment in the coking plant site.


Subject(s)
Coke , Groundwater , Polycyclic Aromatic Hydrocarbons , Coke/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods , Risk Assessment , China
SELECTION OF CITATIONS
SEARCH DETAIL
...