Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
PLoS Genet ; 20(5): e1011229, 2024 May.
Article in English | MEDLINE | ID: mdl-38696518

ABSTRACT

Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.


Subject(s)
Collaborative Cross Mice , Methicillin-Resistant Staphylococcus aureus , Phenotype , Staphylococcal Infections , Animals , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Mice , Female , Male , Collaborative Cross Mice/genetics , Host-Pathogen Interactions/genetics , Quantitative Trait Loci , Disease Models, Animal
2.
Gut Microbes ; 16(1): 2341647, 2024.
Article in English | MEDLINE | ID: mdl-38659246

ABSTRACT

The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.


Subject(s)
Azoxymethane , Collaborative Cross Mice , Colorectal Neoplasms , Gastrointestinal Microbiome , Polymorphism, Single Nucleotide , Animals , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/chemically induced , Humans , Mice , Collaborative Cross Mice/genetics , Dual Oxidases/genetics , Dual Oxidases/metabolism , Genetic Predisposition to Disease , Male , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Disease Models, Animal , Female
3.
Animal Model Exp Med ; 7(1): 36-47, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356021

ABSTRACT

BACKGROUND: Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS: We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS: Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS: Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.


Subject(s)
Aspergillosis , Collaborative Cross Mice , Humans , Male , Mice , Animals , Collaborative Cross Mice/genetics , Chromosome Mapping , Aspergillus fumigatus/genetics , RNA-Seq , Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Aspergillosis/genetics , Body Weight/genetics
4.
Mamm Genome ; 35(1): 31-55, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37978084

ABSTRACT

A chronic metabolic illness, type 2 diabetes (T2D) is a polygenic and multifactorial complicated disease. With an estimated 463 million persons aged 20 to 79 having diabetes, the number is expected to rise to 700 million by 2045, creating a significant worldwide health burden. Polygenic variants of diabetes are influenced by environmental variables. T2D is regarded as a silent illness that can advance for years before being diagnosed. Finding genetic markers for T2D and metabolic syndrome in groups with similar environmental exposure is therefore essential to understanding the mechanism of such complex characteristic illnesses. So herein, we demonstrated the exclusive use of the collaborative cross (CC) mouse reference population to identify novel quantitative trait loci (QTL) and, subsequently, suggested genes associated with host glucose tolerance in response to a high-fat diet. In this study, we used 539 mice from 60 different CC lines. The diabetogenic effect in response to high-fat dietary challenge was measured by the three-hour intraperitoneal glucose tolerance test (IPGTT) test after 12 weeks of dietary challenge. Data analysis was performed using a statistical software package IBM SPSS Statistic 23. Afterward, blood glucose concentration at the specific and between different time points during the IPGTT assay and the total area under the curve (AUC0-180) of the glucose clearance was computed and utilized as a marker for the presence and severity of diabetes. The observed AUC0-180 averages for males and females were 51,267.5 and 36,537.5 mg/dL, respectively, representing a 1.4-fold difference in favor of females with lower AUC0-180 indicating adequate glucose clearance. The AUC0-180 mean differences between the sexes within each specific CC line varied widely within the CC population. A total of 46 QTL associated with the different studied phenotypes, designated as T2DSL and its number, for Type 2 Diabetes Specific Locus and its number, were identified during our study, among which 19 QTL were not previously mapped. The genomic interval of the remaining 27 QTL previously reported, were fine mapped in our study. The genomic positions of 40 of the mapped QTL overlapped (clustered) on 11 different peaks or close genomic positions, while the remaining 6 QTL were unique. Further, our study showed a complex pattern of haplotype effects of the founders, with the wild-derived strains (mainly PWK) playing a significant role in the increase of AUC values.


Subject(s)
Diabetes Mellitus, Type 2 , Quantitative Trait Loci , Male , Female , Mice , Animals , Quantitative Trait Loci/genetics , Collaborative Cross Mice/genetics , Diabetes Mellitus, Type 2/genetics , Glucose , Phenotype , Diet, High-Fat/adverse effects
5.
Sci Data ; 10(1): 522, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543624

ABSTRACT

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.


Subject(s)
Collaborative Cross Mice , Quantitative Trait Loci , Animals , Female , Male , Mice , Chromosome Mapping/methods , Collaborative Cross Mice/genetics , Gene Expression , Gene Expression Profiling/methods , Genomics
6.
J Bone Miner Res ; 38(9): 1350-1363, 2023 09.
Article in English | MEDLINE | ID: mdl-37436066

ABSTRACT

Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Collaborative Cross Mice , Mesenchymal Stem Cells , Mice , Animals , Collaborative Cross Mice/genetics , Cell Differentiation/genetics , Transcriptome/genetics , Genome-Wide Association Study , Single-Cell Gene Expression Analysis , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Stromal Cells/metabolism , Bone Marrow Cells
7.
Sci Rep ; 13(1): 9475, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301941

ABSTRACT

Atherogenesis is an insipidus but precipitating process leading to serious consequences of many cardiovascular diseases (CVD). Numerous genetic loci contributing to atherosclerosis have been identified in human genome-wide association studies, but these studies have limitations in the ability to control environmental factors and to decipher cause/effect relationships. To assess the power of hyperlipidemic Diversity Outbred (DO) mice in facilitating quantitative trait loci (QTL) analysis of complex traits, we generated a high-resolution genetic panel of atherosclerosis susceptible (DO-F1) mouse cohort by crossing 200 DO females with C57BL/6J males carrying two human genes: encoding apolipoprotein E3-Leiden and cholesterol ester transfer protein. We examined atherosclerotic traits including plasma lipids and glucose in the 235 female and 226 male progeny before and after 16 weeks of a high-fat/cholesterol diet, and aortic plaque size at 24 weeks. We also assessed the liver transcriptome using RNA-sequencing. Our QTL mapping for atherosclerotic traits identified one previously reported female-specific QTL on Chr10 with a narrower interval of 22.73 to 30.80 Mb, and one novel male-specific QTL at 31.89 to 40.25 Mb on Chr19. Liver transcription levels of several genes within each QTL were highly correlated with the atherogenic traits. A majority of these candidates have already known atherogenic potential in humans and/or mice, but integrative QTL, eQTL, and correlation analyses further pointed Ptprk as a major candidate of the Chr10 QTL, while Pten and Cyp2c67 of the Chr19 QTL in our DO-F1 cohort. Finally, through additional analyses of RNA-seq data we identified genetic regulation of hepatic transcription factors, including Nr1h3, contributes to atherogenesis in this cohort. Thus, an integrative approach using DO-F1 mice effectively validates the influence of genetic factors on atherosclerosis in DO mice and suggests an opportunity to discover therapeutics in the setting of hyperlipidemia.


Subject(s)
Atherosclerosis , Collaborative Cross Mice , Mice , Male , Humans , Female , Animals , Collaborative Cross Mice/genetics , Genome-Wide Association Study , Mice, Inbred C57BL , Atherosclerosis/genetics , Liver
8.
G3 (Bethesda) ; 13(4)2023 04 11.
Article in English | MEDLINE | ID: mdl-36735601

ABSTRACT

Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.


Subject(s)
Collaborative Cross Mice , Quantitative Trait Loci , Mice , Animals , Chromosome Mapping/methods , Genotype , Computer Simulation , Collaborative Cross Mice/genetics , Crosses, Genetic
9.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G232-G243, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36625475

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is characterized by substantial variations in case-level severity. In this study, we used a genetically diverse Collaborative Cross (CC) mouse population model to analyze the global transcriptome and clarify the molecular mechanisms involved in hepatic fat accumulation that determine the level and severity of NAFLD. Twenty-four strains of male CC mice were maintained on a high-fat/high-sucrose (HF/HS) diet for 12 wk, and their hepatic gene expression profiles were determined by next-generation RNA sequencing. We found that the development of the nonalcoholic fatty liver (NAFL) phenotype in CC mice coincided with significant changes in the expression of hepatic genes at the population level, evidenced by the presence of 724 differentially expressed genes involved in lipid and carbohydrate metabolism, cell morphology, vitamin and mineral metabolism, energy production, and DNA replication, recombination, and repair. Importantly, expression of 68 of these genes strongly correlated with the extent of hepatic lipid accumulation in the overall population of HF/HS diet-fed male CC mice. Results of partial least squares (PLS) modeling showed that these derived hepatic gene expression signatures help to identify the individual mouse strains that are highly susceptible to the development of NAFLD induced by an HF/HS diet. These findings imply that gene expression profiling, combined with a PLS modeling approach, may be a useful tool to predict NAFLD severity in genetically diverse patient populations.NEW & NOTEWORTHY Feeding male Collaborative Cross mice an obesogenic diet allows modeling NAFLD at the population level. The development of NAFLD coincided with significant hepatic transcriptomic changes in this model. Genes (724) were differentially expressed and expression of 68 genes strongly correlated with the extent of hepatic lipid accumulation. Partial least squares modeling showed that derived hepatic gene expression signatures may help to identify individual mouse strains that are highly susceptible to the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Transcriptome , Collaborative Cross Mice/genetics , Sucrose/metabolism , Liver/metabolism , Diet, High-Fat , Lipids , Mice, Inbred C57BL , Lipid Metabolism
10.
Neuropharmacology ; 226: 109409, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592885

ABSTRACT

The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Subject(s)
Cocaine , Mice , Male , Female , Animals , Collaborative Cross Mice/genetics , Glutamic Acid , RNA, Ribosomal, 16S/genetics , Administration, Intravenous
11.
PLoS Genet ; 18(12): e1010548, 2022 12.
Article in English | MEDLINE | ID: mdl-36574452

ABSTRACT

Variation in immune homeostasis, the state in which the immune system is maintained in the absence of stimulation, is highly variable across populations. This variation is attributed to both genetic and environmental factors. However, the identity and function of specific regulators have been difficult to identify in humans. We evaluated homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse genetic reference population. We found heritable variation in all antibody isotypes and subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL map to genome regions of known immunological significance (major histocompatibility and immunoglobulin heavy chain locus), Qih1 (associated with variation in IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus with B cell proportions in the spleen and identify Methyl-CpG binding domain protein 1 under this locus as a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting cells.


Subject(s)
Collaborative Cross Mice , Quantitative Trait Loci , Mice , Humans , Animals , Quantitative Trait Loci/genetics , Collaborative Cross Mice/genetics , Lymphocyte Activation , Immunoglobulin G/genetics , Homeostasis/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
12.
Curr Protoc ; 2(9): e547, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36066328

ABSTRACT

The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.


Subject(s)
Collaborative Cross Mice , Communicable Diseases , Animals , Collaborative Cross Mice/genetics , Communicable Diseases/genetics , Crosses, Genetic , Genome-Wide Association Study , Humans , Mice , Quantitative Trait Loci
13.
Bone ; 164: 116524, 2022 11.
Article in English | MEDLINE | ID: mdl-36028119

ABSTRACT

There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.


Subject(s)
Collaborative Cross Mice , Genome-Wide Association Study , Animals , Bone Density/genetics , Bone Regeneration/genetics , Bone and Bones , Collaborative Cross Mice/genetics , Female , Humans , Male , Mice , Phenotype
14.
PLoS Pathog ; 18(7): e1010649, 2022 07.
Article in English | MEDLINE | ID: mdl-35834486

ABSTRACT

Rift Valley fever (RVF) is an arboviral disease of humans and livestock responsible for severe economic and human health impacts. In humans, RVF spans a variety of clinical manifestations, ranging from an acute flu-like illness to severe forms of disease, including late-onset encephalitis. The large variations in human RVF disease are inadequately represented by current murine models, which overwhelmingly die of early-onset hepatitis. Existing mouse models of RVF encephalitis are either immunosuppressed, display an inconsistent phenotype, or develop encephalitis only when challenged via intranasal or aerosol exposure. In this study, the genetically defined recombinant inbred mouse resource known as the Collaborative Cross (CC) was used to identify mice with additional RVF disease phenotypes when challenged via a peripheral foot-pad route to mimic mosquito-bite exposure. Wild-type Rift Valley fever virus (RVFV) challenge of 20 CC strains revealed three distinct disease phenotypes: early-onset hepatitis, mixed phenotype, and late-onset encephalitis. Strain CC057/Unc, with the most divergent phenotype, which died of late-onset encephalitis at a median of 11 days post-infection, is the first mouse strain to develop consistent encephalitis following peripheral challenge. CC057/Unc mice were directly compared to C57BL/6 mice, which uniformly succumb to hepatitis within 2-4 days of infection. Encephalitic disease in CC057/Unc mice was characterized by high viral RNA loads in brain tissue, accompanied by clearance of viral RNA from the periphery, low ALT levels, lymphopenia, and neutrophilia. In contrast, C57BL/6 mice succumbed from hepatitis at 3 days post-infection with high viral RNA loads in the liver, viremia, high ALT levels, lymphopenia, and thrombocytopenia. The identification of a strain of CC mice as an RVFV encephalitis model will allow for future investigation into the pathogenesis and treatment of RVF encephalitic disease and indicates that genetic background makes a major contribution to RVF disease variation.


Subject(s)
Encephalitis , Hepatitis , Lymphopenia , Rift Valley Fever , Rift Valley fever virus , Animals , Collaborative Cross Mice/genetics , Genetic Variation , Humans , Mice , Mice, Inbred C57BL , RNA, Viral/genetics , Rift Valley Fever/pathology , Rift Valley fever virus/genetics
15.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35703938

ABSTRACT

The Collaborative Cross and the Diversity Outbred mouse populations are related multiparental populations, derived from the same 8 isogenic founder strains. They carry >50 M known genetic variants, which makes them ideal tools for mapping genetic loci that regulate phenotypes, including physiological and molecular traits. Mapping quantitative trait loci requires statistical and computational training, which can present a barrier to access for some researchers. The QTLViewer software allows users to graphically explore Collaborative Cross and Diversity Outbred quantitative trait locus mapping and related analyses performed through the R/qtl2 package. Additionally, the QTLViewer website serves as a repository for published Collaborative Cross and Diversity Outbred studies, increasing the accessibility of these genetic resources to the broader scientific community.


Subject(s)
Collaborative Cross Mice , Quantitative Trait Loci , Animals , Chromosome Mapping , Collaborative Cross Mice/genetics , Mice , Phenotype , Software
16.
Alcohol Clin Exp Res ; 46(6): 941-960, 2022 06.
Article in English | MEDLINE | ID: mdl-35383961

ABSTRACT

BACKGROUND: A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS: We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS: We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS: Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.


Subject(s)
Alcoholism , Collaborative Cross Mice , Alcoholism/genetics , Animals , Chromosome Mapping/methods , Collaborative Cross Mice/genetics , Ethanol/pharmacology , Genome-Wide Association Study , Male , Mice , Quantitative Trait Loci
17.
Epigenetics ; 17(11): 1462-1476, 2022 11.
Article in English | MEDLINE | ID: mdl-35324388

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease, and patient susceptibility to its onset and progression is influenced by several factors. In this study, we investigated whether altered hepatic DNA methylation in liver tissue correlates with the degree of severity of NAFLD-like liver injury induced by a high-fat and high-sucrose (HF/HS) diet in Collaborative Cross (CC) mice. Using genome-wide targeted bisulphite DNA methylation next-generation sequencing, we found that mice with different non-alcoholic fatty liver (NAFL) phenotypes could be distinguished by changes in hepatic DNA methylation profiles. Specifically, NAFL-prone male CC042 mice exhibited more prominent DNA methylation changes compared with male CC011 mice and female CC011 and CC042 mice that developed only a mild NAFL phenotype. Moreover, these mouse strains demonstrated different patterns of DNA methylation. While the HF/HS diet induced both DNA hypomethylation and DNA hypermethylation changes in all the mouse strains, the NAFL-prone male CC042 mice demonstrated a global predominance of DNA hypermethylation, whereas a more pronounced DNA hypomethylation pattern developed in the mild-NAFL phenotypic mice. In a targeted analysis of selected genes that contain differentially methylated regions (DMRs), we identified NAFL phenotype-associated differences in DNA methylation and gene expression of the Apoa4, Gls2, and Apom genes in severe NAFL-prone mice but not in mice with mild NAFL phenotypes. These changes in the expression of Apoa4 and Gls2 coincided with similar findings in a human in vitro cell model of diet-induced steatosis and in patients with NAFL. These results suggest that changes in the expression and DNA methylation status of these three genes may serve as a set of predictive markers for the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , DNA Methylation , Collaborative Cross Mice/genetics , Sucrose/metabolism , Liver/metabolism , Diet , DNA/metabolism , Gene Expression , Diet, High-Fat/adverse effects
18.
Elife ; 112022 02 03.
Article in English | MEDLINE | ID: mdl-35112666

ABSTRACT

The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen's ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen's genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.


Subject(s)
Collaborative Cross Mice/genetics , Genetic Predisposition to Disease , Genetic Variation , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Animals , Disease Models, Animal , Genotype , Male , Mice , Mycobacterium tuberculosis/pathogenicity , Phenotype
19.
Sci Rep ; 11(1): 13285, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168244

ABSTRACT

Growing evidence indicates that thirdhand smoke (THS) exposure induces many adverse health effects. However, it is unclear how THS exposure affects behavior and how host genetic background modulates phenotypic changes. Here we used the Collaborative Cross (CC) mouse population-based model to assess behavioral alterations immediately after THS exposure from 4 to 9 weeks of age. We first measured anxiety-like behavior in six strains using light/dark box combined with a custom multivariate mouse tracking system. We developed an anxiety risk scoring system based on anxiety-related traits and then evaluated the THS impact on them. THS exposure significantly decreased anxiety risk in CC019 (P = 0.002) and CC051 (P = 0.009), but increased anxiety risk in CC036 (P < 0.001), while the other three strains did not show significant changes in anxiety-related traits. Such differences were driven by female mice for the six measures of anxiety-like behavior. Memory potential was measured in the same cohort of mice using the passive avoidance assay. Both THS-exposed male and female CC019 mice displayed significant memory loss compared to controls while no significant changes were found in the other five strains. This study provides strong evidence that THS exposure leads to strain-dependent changes in anxiety-like behavior and memory, suggesting that host genetic variations play a critical role in individual susceptibility to THS-induced effects.


Subject(s)
Anxiety/etiology , Memory/drug effects , Tobacco Smoke Pollution/adverse effects , Animals , Anxiety/genetics , Collaborative Cross Mice/genetics , Female , Humans , Male , Risk Factors
20.
Physiol Genomics ; 53(5): 173-192, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33818129

ABSTRACT

Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.


Subject(s)
Collaborative Cross Mice/genetics , Collaborative Cross Mice/metabolism , Diet , Liver/physiology , Animals , Diet, Atherogenic/adverse effects , Female , Gene Expression Regulation , Gene Regulatory Networks , Genetic Background , Liver/metabolism , Methylamines/blood , Mice, Inbred C57BL , NADPH Oxidase 4/genetics , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...