Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.427
Filter
1.
J Cosmet Dermatol ; 22(4): 1213-1219, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36575891

ABSTRACT

OBJECTIVE: Poly-L-Lactic Acid (PLLA) is a synthetic polymer which possesses biocompatible and biodegradable properties, and is widely used in the clinical filler material. This study focuses on the potential role of PLLA on the collagen production of dermal fibroblasts and its mechanism. METHODS: The dermal fibroblast Hs60 was treated with different concentration of PLLA. RT-qPCR was conducted for the determination of mRNA levels of collagen type I (COL1) alpha 1 (COL1A1), COL1 alpha 2 (COL1A2), elastin, matrix metalloproteinase 1 (MMP-1), tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2. Procollagen Type I C-peptide (PIP) enzyme immunoassay (EIA) Kit assay was carried out to analyze procollagen production. Western Blot was employed to examine the effect of PLLA and transforming frown factor (TGF-ß) receptor-specific inhibitor (SB431542) on protein levels of COL1A1 and TGF-ß/Smad signaling pathway related proteins. RESULTS: With the increase of PLLA concentration, the production of procollagen gradually increased, and both protein and mRNA levels of COL1A1 and COL1A2 gradually increased (p < 0.001). Elevated PLLA concentrations increased elastin, TIMP-1, and TIMP-2 levels and attenuated MMP-1 expression. PLLA increased TGF-ß levels in a dose-dependently manner. p-Smad2 and p-Smad3 protein levels were also increased by PLLA, but the influences were reversed by SB431542 (p < 0.001). Similarly, increased levels of COL1A1, COL1A2, TIMP-1, and TIMP-2 caused by PLLA were significantly inhibited by SB431542, whereas MMP-1 was typically elevated (p < 0.001). CONCLUSION: Poly-L-Lactic Acid promotes the collagen production of dermal fibroblasts by activating the TGF-ß/Smad signaling pathway. The findings may lay a foundation for clinical material applications of PLLA.


Subject(s)
Collagen , Polyesters , Humans , Cells, Cultured , Collagen/drug effects , Collagen/genetics , Collagen Type I/metabolism , Elastin/metabolism , Fibroblasts/drug effects , Gene Expression , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Procollagen/metabolism , RNA, Messenger/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/pharmacology , Transforming Growth Factor beta/metabolism , Polyesters/pharmacology , Smad Proteins/drug effects , Smad Proteins/metabolism
2.
Respir Res ; 23(1): 61, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303880

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease with limited treatment options. A phase 2 trial (NCT01766817) showed that twice-daily treatment with BMS-986020, a lysophosphatidic acid receptor 1 (LPA1) antagonist, significantly decreased the slope of forced vital capacity (FVC) decline over 26 weeks compared with placebo in patients with IPF. This analysis aimed to better understand the impact of LPA1 antagonism on extracellular matrix (ECM)-neoepitope biomarkers and lung function through a post hoc analysis of the phase 2 study, along with an in vitro fibrogenesis model. METHODS: Serum levels of nine ECM-neoepitope biomarkers were measured in patients with IPF. The association of biomarkers with baseline and change from baseline FVC and quantitative lung fibrosis as measured with high-resolution computed tomography, and differences between treatment arms using linear mixed models, were assessed. The Scar-in-a-Jar in vitro fibrogenesis model was used to further elucidate the antifibrotic mechanism of BMS-986020. RESULTS: In 140 patients with IPF, baseline ECM-neoepitope biomarker levels did not predict FVC progression but was significantly correlated with baseline FVC and lung fibrosis measurements. Most serum ECM-neoepitope biomarker levels were significantly reduced following BMS-986020 treatment compared with placebo, and several of the reductions correlated with FVC and/or lung fibrosis improvement. In the Scar-in-a-Jar in vitro model, BMS-986020 potently inhibited LPA1-induced fibrogenesis. CONCLUSIONS: BMS-986020 reduced serum ECM-neoepitope biomarkers, which were previously associated with IPF prognosis. In vitro, LPA promoted fibrogenesis, which was LPA1 dependent and inhibited by BMS-986020. Together these data elucidate a novel antifibrotic mechanism of action for pharmacological LPA1 blockade. Trial registration ClinicalTrials.gov identifier: NCT01766817; First posted: January 11, 2013; https://clinicaltrials.gov/ct2/show/NCT01766817 .


Subject(s)
Collagen/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Respiratory System Agents/administration & dosage , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Collagen/metabolism , Epitopes/blood , Female , Humans , Idiopathic Pulmonary Fibrosis/pathology , In Vitro Techniques , Male , Middle Aged , Models, Biological , Vital Capacity/drug effects
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163433

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered to be therapeutics in cancer prevention because of their inhibitory effect on cyclooxygenases (COX), which are frequently overexpressed in many types of cancer. However, it was also demonstrated that NSAIDs provoked a proapoptotic effect in COX knocked-out cancer cells. Here, we suggest that this group of drugs may provoke antineoplastic activity through the activation of PPARγ, which induces proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that catalyzes proline degradation, during which ATP or reactive oxygen species (ROS) are generated. We have found that NSAIDs induced PRODH/POX and PPARγ expressions (as demonstrated by Western Blot or immunofluorescence analysis) and cytotoxicity (as demonstrated by MTT, cytometric assay, and DNA biosynthesis assay) in breast cancer MCF7 cells. Simultaneously, the NSAIDs inhibited collagen biosynthesis, supporting proline for PRODH/POX-induced ROS-dependent apoptosis (as demonstrated by an increase in the expression of apoptosis markers). The data suggest that targeting proline metabolism and the PRODH/POX-PPARγ axis can be considered a novel approach for breast cancer treatment.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , PPAR gamma/metabolism , Proline Oxidase/metabolism , Apoptosis , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen/biosynthesis , Collagen/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Oxidative Phosphorylation/drug effects , PPAR gamma/agonists , Proline/metabolism , Reactive Oxygen Species/metabolism
4.
Eur J Pharmacol ; 916: 174484, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34508752

ABSTRACT

Treprostinil palmitil (TP) is a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE). In this study, TP was delivered by inhalation (treprostinil palmitil inhalation suspension, TPIS) in a rat Sugen 5416 (Su)/hypoxia (Hx) model of pulmonary arterial hypertension (PAH) to evaluate its effects on hemodynamics, pulmonary vascular remodeling, and cardiac performance and histopathology. Male Sprague-Dawley rats received Su (20 mg/kg, s.c), three weeks of Hx (10% O2) and 5 or 10 weeks of normoxia (Nx). TPIS was given during the 5-10 week Nx period after the Su/Hx challenge. Su/Hx increased the mean pulmonary arterial blood pressure (mPAP) and right heart size (Fulton index), reduced cardiac output (CO), stroke volume (SV) and heart rate (HR), and increased the thickness and muscularization of the pulmonary arteries along with obliteration of small pulmonary vessels. In both the 8- and 13-week experiments, TPIS at inhaled doses ranging from 39.6 to 134.1 µg/kg, QD, dose-dependently improved pulmonary vascular hemodynamics, reduced the increase in right heart size, enhanced cardiac performance, and attenuated most of the histological changes induced by the Su/Hx challenge. The PDE5 inhibitor sildenafil, administered at an oral dose of 50 mg/kg, BID for 10 weeks, was not as effective as TPIS. These results in Su/Hx challenged rats demonstrate that inhaled TPIS may have superior effects to oral sildenafil. We speculate that the improvement of the pathobiology in this PAH model induced by TPIS involves effects on pulmonary vascular remodeling due to the local effects of TRE in the lungs.


Subject(s)
Epoprostenol/analogs & derivatives , Heart/drug effects , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery/drug effects , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacology , Administration, Inhalation , Administration, Oral , Animals , Collagen/drug effects , Disease Models, Animal , Epoprostenol/administration & dosage , Epoprostenol/pharmacokinetics , Epoprostenol/pharmacology , Hemodynamics/drug effects , Hypoxia/metabolism , Indoles/toxicity , Male , Myocardium/pathology , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/pharmacology , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Pyrroles/toxicity , Rats, Sprague-Dawley , Sildenafil Citrate/administration & dosage , Sildenafil Citrate/pharmacology , Vascular Remodeling/drug effects , Vasodilator Agents/pharmacokinetics
5.
Aging (Albany NY) ; 13(23): 25342-25364, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34890367

ABSTRACT

This study aimed to investigate the mechanism underlying the protective effects of galangin against H2O2/UVB-induced damage using in vitro and in vivo models of photodamage. Moreover, we identified the involvement of miRNA regulation in this process. The H2O2/UVB-treated HS68 human dermal fibroblasts and UVB-induced C57BL/6J nude mice were used as in vitro and in vivo models of photodamage. The results showed that galangin treatment alleviated H2O2/UVB-induced reduction in cell viability, TGFß/Smad signaling impairment, and dermal aging. Based on the results of microRNA array analyses and database searches, hsa-miR-4535 was identified as a potential candidate miRNA that targets Smad4. In vitro, galangin treatment activated Smad2/3/4 complex and inhibited hsa-miR-4535 expression in H2O2/UVB-exposed cells. In vivo, topical application of low (12 mg/kg) and high doses (24 mg/kg) of galangin to the dorsal skin of C57BL/6J nude mice significantly alleviated UVB-induced skin photodamage by promoting TGFß/Smad collagen synthesis signaling, reducing epidermal hyperplasia, wrinkle formation, and skin senescence, as well as inhibiting hsa-miR-4535 expression. Taken together, our findings indicate a link between hsa-miR-4535 and TGFß/Smad collagen synthesis signaling and suggest these factors to be involved in the photo-protective mechanism of galangin in dermal fibroblasts against H2O2/UVB-induced aging. The evidence indicated that galangin with anti-aging properties can be considered as a supplement in skin care products.


Subject(s)
Collagen/metabolism , Flavonoids/pharmacology , Hydrogen Peroxide/adverse effects , MicroRNAs/metabolism , Radiation-Protective Agents/pharmacology , Signal Transduction , Skin/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Collagen/drug effects , Collagen/radiation effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Signal Transduction/drug effects , Signal Transduction/radiation effects , Skin/metabolism , Skin/radiation effects , Skin Aging/drug effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
6.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34768882

ABSTRACT

Benzophenone-3 (BP-3) is one of the most widely used chemical sunscreens. The results of many in vitro and in vivo tests confirm its high percutaneous penetration and systemic absorption, which question the safety of its wide use. The aim of our research was to assess the effect of this compound on components of the skin extracellular matrix, and to investigate whether rosmarinic acid (RA) could reduce BP-3-induced changes in human skin fibroblasts. BP-3 used at concentrations of 0.1-100 µM caused a number of unfavorable changes in the level of type I collagen, decorin, sulfated glycosaminoglycans, hyaluronic acid, elastin, and expression or activity of matrix metalloproteinases (MMP-1, MMP-2), elastase and hyaluronidase. Moreover, the intracellular retention of collagen was accompanied by changes in the expression of proteins modifying and controlling the synthesis and secretion of this protein. Most importantly, RA at a concentration of 100 µM significantly reduced or completely abolished the adverse effects of BP-3. Based on these findings, it can be concluded that this polyphenol may provide effective protection against BP-3-induced disturbances in skin cells, which may have important clinical implications.


Subject(s)
Benzophenones/adverse effects , Cinnamates/pharmacology , Depsides/pharmacology , Fibroblasts/metabolism , Benzophenones/metabolism , Cell Line , Cells, Cultured , Cinnamates/metabolism , Collagen/drug effects , Collagen/metabolism , Decorin/metabolism , Depsides/metabolism , Elastin/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fibroblasts/drug effects , Glycosaminoglycans/metabolism , Humans , Hyaluronoglucosaminidase/metabolism , Matrix Metalloproteinases/metabolism , Skin/drug effects , Skin/metabolism , Rosmarinic Acid
7.
Front Endocrinol (Lausanne) ; 12: 734485, 2021.
Article in English | MEDLINE | ID: mdl-34777244

ABSTRACT

The importance of the early diagnosis and treatment of diabetes and its cutaneous complications has become increasingly recognized. When diabetic non-injured skin was stained with Masson's trichrome, its dermal collagen was found to be disordered, its density was variable, and it was dispersed or arranged in vague fascicles. The collagen type I sequencing results of RNA sequencing-based transcriptome analysis of three primary human skin cell types-dermal fibroblasts, dermal microvascular endothelial cells, and epidermal keratinocytes-under high glucose were analyzed. The results showed that both COL1A1 and COL1A2 mRNA expressions were reduced in human dermal fibroblasts (HDFs). The ratio of matrix metalloproteinase (MMP)-2/tissue inhibitors of metalloproteinase (TIMP)-2 and MMP-9/TIMP-1 in HDFs increased when treated with high glucose. By inhibiting MMP-2 and MMP-9 with SB-3CT, collagen deposition disorder of the skin in streptozotocin-induced diabetes mice was alleviated. The imbalance of MMP2/TIMP2 and MMP9/TIMP1 contributes to the non-injured skin disorder of collagen deposition in diabetes, suggesting a possibility for early treatment of diabetes skin complications.


Subject(s)
Collagen Diseases/etiology , Collagenases/genetics , Diabetes Mellitus, Experimental/complications , Skin/pathology , Tissue Inhibitor of Metalloproteinases/genetics , Animals , Cells, Cultured , Collagen/drug effects , Collagen/genetics , Collagen/metabolism , Collagen Diseases/genetics , Collagen Diseases/metabolism , Collagen Diseases/pathology , Collagenases/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression/drug effects , Glucose/pharmacology , Humans , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Skin/metabolism , Streptozocin , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism
8.
Mol Biol Rep ; 48(12): 7775-7785, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34643929

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is characterized by progressive lung tissue remodeling and disproportionate deposition of collagenous proteins with limited therapeutic interventions. The purpose of this study was to determine whether curcumin inhibits bleomycin (BLM)-induced increases in synthesis, degradation and cross-linking of lung collagen in rats. METHODS AND RESULTS: Following a single intratracheal instillation of BLM to rats (0.75 U/100 g, sacrificed 3, 5, 7, 14 and 28 days post-BLM), lung collagen synthesis (determined by incorporation of 3H-proline) and deposition (determined by lung hydroxyproline content) progressively increased at days 7, 14 and 28 post-BLM injection. Lung lavage fluid hydroxyproline and collagenase levels (a measure of collagen turnover) were increased in BLM rats compared with control groups. In addition, BLM instillation resulted in increased concentrations of collagenase and collagenolytic cathepsin in the lungs. Furthermore, increased cross-linking (as determined by aldehyde content of acid soluble collagen), and decreased susceptibility of fibrotic lung insoluble collagen to denaturing agents occurred in BLM-injured lungs. Significant increases in alveolar macrophage (AM) release of transforming growth factor-ß1 (TGF-ß1) were noted at various time points (days 3, 5, 7, 14 and 28 post-BLM) during the development and progression of lung fibrosis in rats. Curcumin treatment to BLM rats (300 mg/kg 10 days before and daily thereafter throughout the experimental time period) was associated with marked reductions in lung collagen synthesis and deposition, BALF and lung collagenase activity, BALF hydroxyproline content and lung collagenolytic levels. Additionally, reduced levels of collagen cross-linking and enhanced susceptibility of insoluble lung collagen to denaturing agents were observed in curcumin-treated BLM rats. Finally, curcumin inhibited BLM-induced increases in AM production of TGF-ß1. CONCLUSIONS: Our data demonstrate for the first time that curcumin prevents fibrotic deposits by modulating collagen turnover, assembly and deposition in BLM-instilled rat lungs, and that curcumin treatment protects against BLM activation of macrophages by suppressing the release of TGF-ß1.


Subject(s)
Collagen/biosynthesis , Collagen/drug effects , Curcumin/pharmacology , Animals , Bleomycin/adverse effects , Bleomycin/pharmacology , Bronchoalveolar Lavage Fluid , Collagen/metabolism , Curcumin/metabolism , Extracellular Matrix/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/drug effects , Lung/pathology , Macrophages, Alveolar/metabolism , Male , Rats , Rats, Wistar , Transforming Growth Factor beta/metabolism
9.
Mar Drugs ; 19(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34356821

ABSTRACT

Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.


Subject(s)
Collagen/drug effects , Protein Hydrolysates/pharmacology , Salmon , Wound Healing/drug effects , Animals , Chemokines/metabolism , Dietary Supplements , Male , Mice , Mice, Inbred C57BL , Models, Animal , Protein Hydrolysates/administration & dosage
10.
Carbohydr Polym ; 270: 118387, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364628

ABSTRACT

This study demonstrates the development of a nitric oxide (NO)-releasing hydrogel wound dressing and its efficacy at accelerating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. A DETA/NONOate-doped alginate (Alg-DETA/NO) hydrogel was synthesized using alginate as a hydrogel-forming wound dressing material and diethylenetriamine/diazeniumdiolate (DETA/NONOate) as an NO donor. Alg-DETA/NO exhibited a prolonged NO release profile over a period of 4 days. The rheological properties of Alg-DETA/NO did not differ significantly from those of pure alginate. Importantly, Alg-DETA/NO showed potent antibacterial activity against MRSA, with minimal toxicity to mouse fibroblasts. The application of Alg-DETA/NO to MRSA-infected wounds in a mouse model showed a favorable wound healing with accelerated wound-size reduction and reduced skin bacterial infection. Additionally, histological examination revealed that Alg-DETA/NO reduced inflammation at the wound site and promoted re-epithelialization, angiogenesis, and collagen deposition. Thus, Alg-DETA/NO presented herein could serve as a safe and potent hydrogel dressing for the treatment of MRSA-infected wounds.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nitric Oxide/pharmacology , Polyamines/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Bandages , Collagen/drug effects , Mice , Mice, Inbred ICR , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology , Peroxidase/metabolism , Polyamines/chemistry , Re-Epithelialization/drug effects
11.
Front Endocrinol (Lausanne) ; 12: 721506, 2021.
Article in English | MEDLINE | ID: mdl-34421828

ABSTRACT

Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.


Subject(s)
Collagen/metabolism , Glucagon-Like Peptide 2/pharmacology , Osteoblasts/metabolism , Animals , CHO Cells , Cells, Cultured , Collagen/drug effects , Cricetulus , Gastrointestinal Hormones/genetics , Gastrointestinal Hormones/metabolism , Gene Expression/drug effects , Glucagon/pharmacology , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide-2 Receptor/genetics , Glucagon-Like Peptide-2 Receptor/metabolism , Mice , Osteoblasts/drug effects , Protein Multimerization/drug effects
12.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443468

ABSTRACT

Collagen and its peptides are natural ingredients used in food supplements and nutricosmetics with the claim of providing benefits for skin health and beauty. In this context, the aim of the present study was to evaluate the clinical efficacy of oral supplementation with hydrolyzed fish cartilage for the improvement of chronological and photoaging-induced skin changes. A total of 46 healthy females aged 45 to 59 years were enrolled and divided into two groups: G1-placebo and G2-oral treatment with hydrolyzed fish cartilage. Measurements of skin wrinkles, dermis echogenicity and thickness, and morphological and structural characteristics of the skin were performed in the nasolabial region of the face before and after a 90-day period of treatment using high-resolution imaging, ultrasound, and reflectance confocal microscopy image analyses. A significant reduction in wrinkles and an increase of dermis echogenicity were observed after a 90-day period of treatment with hydrolyzed fish cartilage compared to the placebo and baseline values. In addition, reflectance confocal microscopy (RCM) image analysis showed improved collagen morphology and reduced elastosis after treatment with hydrolyzed fish cartilage. The present study showed the clinical benefits for the skin obtained with oral supplementation with a low dose of collagen peptides from hydrolyzed fish cartilage.


Subject(s)
Cartilage , Dietary Supplements , Skin Aging/drug effects , Skin/drug effects , Administration, Oral , Animals , Collagen/drug effects , Double-Blind Method , Female , Fishes , Humans , Middle Aged , Skin/diagnostic imaging , Skin/radiation effects
13.
Clin Transl Sci ; 14(6): 2267-2277, 2021 11.
Article in English | MEDLINE | ID: mdl-34121338

ABSTRACT

Low-dose methotrexate (MTX) is a first-line therapy for the treatment of arthritis. However, there is considerable interindividual variability in MTX exposure following standard dosing. Polymorphisms in SLCO1B1 significantly effect MTX clearance, altering therapeutic response. One decreased function variant, rs4149056 (c.521T>C, Val174Ala), slows MTX clearance and in vitro uptake of MTX. This phenotype was recapitulated in a mouse model using a knockout (KO) of the murine orthologue, Slco1b2. Our objective was to investigate the impact of this phenotype on the pharmacokinetics and therapeutic outcomes of low-dose MTX in a murine model of collagen-induced arthritis (CIA). We evaluated response to MTX in mice with CIA using wildtype (WT), heterozygous, and KO Slco1b2 mice on a DBA1/J background. Arthritis was macroscopically evaluated daily to quantify disease progression. Mice received 2 mg/kg or a pharmacogenetically guided MTX dose subcutaneously 3 times a week for 2 weeks. MTX concentrations were collected at the end of the study and exposure (day*µM) was estimated using a two-compartment model. Mice displayed a seven-fold range in MTX exposure and revealed a significant exposure-response relationship (p = 0.0027). KO mice receiving the 2 mg/kg dosing regimen had 2.3-fold greater exposure to MTX (p < 0.0001) and a 66% reduction in overall disease progression (p = 0.011) compared to WT mice. However, exposure and response were equivalent when pharmacogenetically guided dosing was used. These studies demonstrate that an exposure-response relationship exists for MTX and that Slco1b2 genotype affects MTX exposure and therapeutic response. Such evidence supports the use of SLCO1B1-pharmacogenetic dosing of low-dose MTX for patients with arthritis.


Subject(s)
Antirheumatic Agents/administration & dosage , Arthritis/drug therapy , Liver-Specific Organic Anion Transporter 1 , Methotrexate/administration & dosage , Mice, Knockout , Pharmacogenomic Testing , Animals , Antirheumatic Agents/pharmacology , Collagen/drug effects , Collagen/metabolism , Genotype , Humans , Male , Methotrexate/pharmacology , Mice , Pharmacogenetics
14.
Biomolecules ; 11(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919331

ABSTRACT

Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether ß-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that ß-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, ß-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of ß-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.


Subject(s)
Norisoprenoids/metabolism , Norisoprenoids/pharmacology , Skin/metabolism , Aging/drug effects , Aging/metabolism , Cell Line , Cells, Cultured , Collagen/drug effects , Collagen/metabolism , Collagen Type I/drug effects , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Dexamethasone/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/physiology , Humans , Hyaluronic Acid/metabolism , Signal Transduction/drug effects , Skin/drug effects , Skin Aging/drug effects , Transforming Growth Factor beta/metabolism , Ultraviolet Rays
15.
Int Immunopharmacol ; 96: 107660, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862553

ABSTRACT

Alpinetin is the major active ingredient of Alpiniakatsumadai Hayata. As a kind of novel plant-derived flavonoid, alpinetin has shown potent hepatoprotective effect against many liver diseases such as non-alcoholic fatty liver and lipopolysaccharide/d-Galactosamine-induced liver injury. However, its roles in liver fibrosis remain to be determined. The aim of the current study was to investigate the effect of alpinetin in mice with carbon tetrachloride (CCl4)-induced liver fibrosis, and to elucidate the underlying mechanisms of action. Alpinetin ameliorated the CCl4-induced liver injury and fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker proteins. Alpinetin suppressed the inflammation and oxidative stress in fibrotic livers of mice, as evidenced by decreased levels of proinflammatory factors, the decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the increased activities of antioxidant enzymes. In addition, alpinetin attenuated the angiogenesis in fibrotic livers of the test animals. Mechanistically, alpinetin inhibited the CCl4-induced expression of NLRP3, ASC, cleaved caspase-1, mature (cleaved-) IL-1ß, and IL-18 in livers of mice. Furthermore, alpinetin resulted in an increased in the nuclear expression and a decrease in the cytoplasmic expression of Nrf2, as well as increased protein expression of downstream target enzymes, GCLC, HO-1, NQO1, and GCLM, thus exerting the antioxidant effect. Overall, these findings suggested that the anti-fibrotic effect of alpinetin can be attributed to the inhibition of NLRP3-mediated anti-inflammatory activities and Nrf2-mediated anti-oxidative activities, in addition to the decrement of hepatic angiogenesis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Flavanones/pharmacology , Liver Cirrhosis/drug therapy , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Carbon Tetrachloride/toxicity , Collagen/drug effects , Collagen/metabolism , Disease Models, Animal , Flavanones/therapeutic use , Inflammasomes/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Neovascularization, Pathologic/chemically induced , Oxidative Stress/drug effects , Oxidoreductases/drug effects , Oxidoreductases/metabolism , Signal Transduction/drug effects
16.
Adv Skin Wound Care ; 34(7): 1-6, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33851936

ABSTRACT

ABSTRACT: Vascular Ehlers-Danlos syndrome (EDSv) can present with life-threatening surgical complications. The article describes the case of a patient with EDSv who developed total abdominal wound dehiscence and multiple enterocutaneous fistulas. Treatment with IV allogeneic mesenchymal stromal cells (MSCs) and high-dose vitamin C was trialed with success. Near-complete wound healing of the abdominal dehiscence with a 94% reduction in the size of the wound bed occurred. Maturation of the enterocutaneous fistulas also ensued.There is no current consensus on the management of large cutaneous wounds in EDSv. This article discusses the pathophysiology of wound healing with regard to nutrition requirements and growth factors with special reference to collagen deficits in EDSv. A potential therapy with IV vitamin C supplementation and MSCs is proposed following the patient's positive outcome. Medium-dose MSCs and high-dose IV vitamin C may offer significant benefits to complex and problematic wounds.


Subject(s)
Ascorbic Acid/therapeutic use , Ehlers-Danlos Syndrome/complications , Mesenchymal Stem Cells , Wound Healing/drug effects , Abdomen/physiopathology , Adult , Collagen/drug effects , Collagen/metabolism , Ehlers-Danlos Syndrome/physiopathology , Humans , Male
17.
Sci Rep ; 11(1): 6541, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753854

ABSTRACT

The collagen gel droplet-embedded drug sensitivity test (CD-DST) was revealed to be useful for predicting the effect of S-1 adjuvant chemotherapy for pancreatic ductal adenocarcinoma (PDAC). However, collection of an adequate number of PDAC cells is difficult due to the surrounding fibroblasts. Thus, the aim of this study was to discover novel biomarkers to predict chemosensitivity based on the CD-DST results. Proteomics analysis was performed using liquid chromatography tandem mass spectrometry (LC-MS/MS). Candidate proteins were validated in patients with 5-FU CD-DST results via immunohistochemistry (IHC). The relationships between the candidate proteins and the effect of the adjuvant S-1 were investigated via IHC. Among the 2696 proteins extracted by LC-MS/MS, C1TC and SAHH could accurately predict the CD-DST results. Recurrence-free survival (RFS) was significantly improved in the IHC-positive group compared with the IHC-negative group in both factors. The negative group did not show a significant difference from the group that did not receive S-1. The double-positive group was associated with significantly prolonged RFS compared to the no adjuvant chemotherapy group. C1TC and SAHH have been shown to be useful biomarkers for predicting 5-FU sensitivity as a substitute for the CD-DST in adjuvant chemotherapy for PDAC.


Subject(s)
Adenocarcinoma/drug therapy , Adenosylhomocysteinase/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Drug Resistance, Neoplasm/genetics , Tensins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Pharmacological/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Chromatography, Liquid , Collagen/chemistry , Collagen/drug effects , Disease-Free Survival , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Proteomics , Tandem Mass Spectrometry
18.
FASEB J ; 35(3): e21422, 2021 03.
Article in English | MEDLINE | ID: mdl-33638895

ABSTRACT

Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-ß such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.


Subject(s)
Apoptosis/drug effects , Bleomycin/pharmacology , DNA Damage/drug effects , Lung/drug effects , Nanoparticles/therapeutic use , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Collagen/drug effects , Collagen/metabolism , Humans , Lung/metabolism , Oxidative Stress/drug effects , Peptides/pharmacology
19.
Sci Rep ; 11(1): 4115, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603041

ABSTRACT

Endometriosis is a painful gynecological condition characterized by ectopic growth of endometrial cells. Little is known about its pathogenesis, which is partially due to a lack of suitable experimental models. Here, we use endometrial stromal (St-T1b), primary endometriotic stromal, epithelial endometriotic (12Z) and co-culture (1:1 St-T1b:12Z) spheroids to mimic the architecture of endometrium, and either collagen I or Matrigel to model ectopic locations. Stromal spheroids, but not single cells, assumed coordinated directional migration followed by matrix remodeling of collagen I on day 5 or 7, resembling ectopic lesions. While generally a higher area fold increase of spheroids occurred on collagen I compared to Matrigel, directional migration was not observed in co-culture or in 12Z cells. The fold increase in area on collagen I was significantly reduced by MMP inhibition in stromal but not 12Z cells. Inhibiting ROCK signalling responsible for actomyosin contraction increased the fold increase of area and metabolic activity compared to untreated controls on Matrigel. The number of protrusions emanating from 12Z spheroids on Matrigel was decreased by microRNA miR-200b and increased by miR-145. This study demonstrates that spheroid assay is a promising pre-clinical tool that can be used to evaluate small molecule drugs and microRNA-based therapeutics for endometriosis.


Subject(s)
Cell Movement/drug effects , Collagen Type I/pharmacology , Endometriosis/drug therapy , Stromal Cells/drug effects , Cell Line , Cell Proliferation/drug effects , Collagen/drug effects , Collagen/metabolism , Drug Combinations , Endometriosis/metabolism , Endometrium/drug effects , Endometrium/metabolism , Female , Humans , Laminin/drug effects , Laminin/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , MicroRNAs/metabolism , Proteoglycans/drug effects , Proteoglycans/metabolism
20.
Cell Prolif ; 54(3): e13004, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33543561

ABSTRACT

OBJECTIVES: Endoscopic submucosal dissection (ESD), a preferential approach for early oesophageal neoplasms, inevitably results in oesophageal strictures in patients. Clinical use of glucocorticoids through submucosal injection is beneficial for inhibiting oesophageal stricture following injury; however, it also has limitations, such as dose loss and perforation. Hence, alternatives to glucocorticoid therapy should be developed. METHODS: A novel porous composite scaffold, ChCo-TAMS, composed of chitosan, collagen-I and triamcinolone acetonide (TA) loaded into poly (lactic-co-glycolic) acid (PLGA) microspheres (TAMS), was successfully constructed and subjected to biological testing to ameliorate oesophageal ESD-related stenosis. RESULTS: The synthesized biomaterials displayed unique properties in inhibiting the activation of macrophages, chemokine-mediated cell recruitment and fibrogenesis of fibroblasts. Further application of the scaffolds in the rat dermal defect and porcine oesophageal ESD model showed that these novel scaffolds played a robust role in inhibiting wound contracture and oesophageal ESD strictures. CONCLUSIONS: The developed composite scaffolds provide a promising clinical medical device for the prevention of post-operative oesophageal stricture.


Subject(s)
Chitosan/pharmacology , Collagen/drug effects , Constriction, Pathologic/pathology , Esophageal Neoplasms/drug therapy , Esophageal Stenosis/drug therapy , Animals , Biocompatible Materials/metabolism , Chitosan/metabolism , Collagen/metabolism , Constriction, Pathologic/etiology , Esophageal Neoplasms/pathology , Esophageal Stenosis/prevention & control , Mice , Microspheres , Triamcinolone/metabolism , Triamcinolone Acetonide/administration & dosage , Triamcinolone Acetonide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...