Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.649
Filter
1.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article in English | MEDLINE | ID: mdl-38720939

ABSTRACT

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
2.
Int J Biol Macromol ; 266(Pt 2): 131277, 2024 May.
Article in English | MEDLINE | ID: mdl-38565366

ABSTRACT

Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging. Hence, there is a motivation to develop new synthetic dressings to improve bacteria-infected wound healing. Here, we fabricate a biocompatible sponge through the covalent crosslinking of collagen (Col), quaternized chitosan (QCS), and graphene oxide (GO). The resulting Col-QCS-GO sponge shows an elastic modulus of 1.93-fold higher than Col sponge due to enhanced crosslinking degree by GO incorporation. Moreover, the fabricated Col-QCS-GO sponge shows favorable porosity (84.30 ± 3.12 %), water absorption / retention (2658.0 ± 113.4 % / 1114.0 ± 65.7 %), and hemostasis capacities (blood loss <50.0 mg). Furthermore, the antibacterial property of the Col-QCS-GO sponge under near-infrared (NIR) irradiation is significantly enhanced (the inhibition rates are 99.9 % for S. aureus and 99.9 % for E. coli) due to the inherent antibacterial properties of QCS and the photothermal antibacterial capabilities of GO. Finally, the Col-QCS-GO+NIR sponge exhibits the lowest percentage of wound area (9.05 ± 1.42 %) at day 14 compared to the control group (31.61 ± 1.76 %). This study provides new insights for developing innovative sponges for bacteria-infected wound healing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Graphite , Hemostatics , Wound Healing , Animals , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Collagen/chemistry , Collagen/pharmacology , Escherichia coli/drug effects , Graphite/chemistry , Graphite/pharmacology , Hemostasis/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Porosity , Staphylococcus aureus/drug effects , Wound Healing/drug effects
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 789-797, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621883

ABSTRACT

This study aims to investigate the effect and mechanism of Fuyu Decoction(FYD) in the treatment of myocardial fibrosis in the rat model of heart failure(HF). Sixty Wistar rats were randomized into a modeling group(n=50) and a sham group(n=10). A post-myocardial infarction HF model was established by ligating the left anterior descending coronary artery in rats. The successfully modeled rats were assigned into model, low-dose(2.5 g·kg~(-1)) FYD(FYD-L), high-dose(5.0 g·kg~(-1)) FYD(FYD-H), and FYD+Nrf2 inhibitor(ML385, 30 mg·kg~(-1)) groups(n=10). FYD was administrated by gavage and ML385 by intraperitoneal injection. The rats in the sham and model groups were administrated with equal amounts of normal saline by gavage. After 8 weeks of intervention, the cardiac function indicators were measured, and the myocardial tissue morphology and collagen deposition were observed. The positive expression of collagens Ⅰ and Ⅲ, apoptosis, and oxidative stress were examined, and the levels of Fe~(2+) and reactive oxygen species(ROS) were determined. The protein levels of nuclear factor erythroid 2-related factor 2(Nrf2), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), and acyl-coenzyme A synthase long chain family member 4(ACSL4) in the myocardial tissue were determined. Compared with sham group, the model group showed decreased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), increased left ventricular end internal dimension in systole(LVIDs), left ventricular internal diameter in diastole(LVIDd), and myocardial collagen deposition, positive expression of collagens Ⅰ and Ⅲ, elevated apoptosis rate and malondialdehyde(MDA), Fe~(2+), and ROS levels, lowered superoxide dismutase(SOD) and glutathione peroxidase(GSH) levels, down-regulated protein levels of Nrf2, SLC7A11, and GPX4, and up-regulated protein level of ACSL4. Compared with the model group, the above indicators were restored by FYD. Moreover, ML385 reversed the protective effect of FYD on myocardial fibrosis in HF rats. In conclusion, FYD can inhibit ferroptosis by activating the Nrf2/GPX4 pathway, thereby ameliorating myocardial fibrosis in HF rats.


Subject(s)
Ferroptosis , Heart Failure , Rats , Animals , Rats, Sprague-Dawley , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Stroke Volume , Reactive Oxygen Species , Ventricular Function, Left , Rats, Wistar , Heart Failure/drug therapy , Fibrosis , Collagen/pharmacology
4.
Biomater Adv ; 160: 213847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657288

ABSTRACT

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Subject(s)
Cell Culture Techniques, Three Dimensional , Collagen , Drug Combinations , Epithelial Cells , Hydrogels , Laminin , Peptides , Proteoglycans , Laminin/pharmacology , Laminin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Proteoglycans/pharmacology , Proteoglycans/chemistry , Collagen/chemistry , Collagen/pharmacology , Peptides/pharmacology , Peptides/chemistry , Epithelial Cells/drug effects , Epithelial Cells/cytology , Humans , Female , Cell Culture Techniques, Three Dimensional/methods , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mammary Glands, Human/cytology , Organoids/drug effects , Organoids/cytology , Cell Culture Techniques/methods
5.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622264

ABSTRACT

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
6.
Mol Biol Rep ; 51(1): 482, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578512

ABSTRACT

BACKGROUND: Natural bone grafts are the highly preferred materials for restoring the lost bone, while being constrained of donor availability and risk of disease transmission. As a result, tissue engineering is emerging as an efficacious and competitive technique for bone repair. Bone tissue engineering (TE) scaffolds to support bone regeneration and devoid of aforesaid limitations are being vastly explored and among these the avian eggshell membrane has drawn attention for TE owing to its low immunogenicity, similarity with the extracellular matrix, and easy availability. METHODOLOGY AND RESULTS: In this study, the development of bone ingrowth support system from avian eggshell membrane derived collagen hydrolysates (Col-h) is reported. The hydrolysate, cross-linked with glutaraldehyde, was developed into hydrogels with poly-(vinyl alcohol) (PVA) by freeze-thawing and further characterized with ATR-FTIR, XRD, FESEM. The biodegradability, swelling, mechanical, anti-microbial, and biocompatibility evaluation were performed further for the suitability in bone regeneration. The presence of amide I, amide III, and -OH functional groups at 1639 cm- 1,1264 cm- 1, and 3308 cm- 1 respectively and broad peak between 16°-21° (2θ) in XRD data reinstated the composition and form. CONCLUSIONS: The maximum ratio of Col-h/PVA that produced well defined hydrogels was 50:50. Though all the hydrogel matrices alluded towards their competitive attributes and applicability towards restorative bone repair, the hydrogel with 40:60 ratios showed better mechanical strength and cell proliferation than its counterparts. The prominent E. coli growth inhibition by the hydrogel matrices was also observed, along with excellent biocompatibility with MG-63 osteoblasts. The findings indicate strongly the promising application of avian eggshell-derived Col-h in supporting bone regeneration.


Subject(s)
Egg Shell , Escherichia coli , Animals , Collagen/pharmacology , Tissue Scaffolds , Tissue Engineering/methods , Hydrogels , Bone Regeneration , Amides
7.
J Wound Care ; 33(Sup4a): cxi-cxvii, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38588055

ABSTRACT

OBJECTIVE: Scar tissue formation, as a normal part of wound healing, initiates in the proliferation phase, continues after the remodelling phase, and may cause an unpleasant appearance or disruption in normal functioning. This study investigated the effects of a topical gel on acute wound healing and reducing scars in a rat model. METHOD: ChitoScar (ChitoTech Company, Iran), a commercial scar-reducing gel based on chitosan, was analysed for antibacterial and antiviral activity through a quantitative suspension test. Its cytotoxic effect was investigated, and then irritation and delayed-type hypersensitivity tests were carried out on rabbits through direct application of the gel. Furthermore, the effect of the chitosan-based gel on wound healing and scar tissue formation was studied in rats with an acute wound in two groups: the treatment group (topical application of the chitosan-based gel); and the control group (without treatment). Histopathological examination was carried out based on the inflammatory cells, collagen fibre, keratinocytes and fibroblasts. RESULTS: Analysis revealed that the chitosan-based gel had no cytotoxicity and caused no erythema, oedema, local or other systemic adverse response. Wound healing occurred earlier in the treatment group, which was a result of a significant increase in re-epithelialisation, angiogenesis, fibroblast population and collagen fibre thickness (p<0.05). In the treatment group, wounds healed completely after 21 days and scars totally disappeared after 28 days, while in the control group, wound healing remained incomplete with distinct scar tissue. CONCLUSION: The results demonstrated the positive effect of the chitosan-based gel on the duration and quality of the wound healing process, as well as minimising the scar tissue formation in this in vivo study.


Subject(s)
Chitosan , Cicatrix , Rats , Rabbits , Animals , Chitosan/pharmacology , Chitosan/therapeutic use , Wound Healing , Skin , Collagen/pharmacology
8.
Biomed Pharmacother ; 174: 116515, 2024 May.
Article in English | MEDLINE | ID: mdl-38569276

ABSTRACT

Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.


Subject(s)
Arthritis, Experimental , Gastrointestinal Microbiome , Ginsenosides , Mesenchymal Stem Cells , Animals , Humans , Male , Rats , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/microbiology , Arthritis, Experimental/therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/microbiology , Arthritis, Rheumatoid/therapy , Exosomes/metabolism , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Umbilical Cord , Collagen/metabolism , Collagen/pharmacology
9.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38516910

ABSTRACT

Snake venom L-amino acid oxidases (LAAOs) are flavoenzymes with diverse physiological and pharmacological effects. These enzymes are found to showcase anticoagulant, antiplatelet, cytotoxicity and other biological effects in bite victims. However, the exact mechanism through which they exhibit several biological properties is not yet fully understood. The current study focussed on the purification of cobra venom LAAO and the functional characterization of purified LAAO. A novel L-amino acid oxidase NNLAAO70 with a molecular weight ~70 kDa was purified from the venom of an Indian spectacled cobra (Naja naja). NNLAAO70 showed high substrate specificity for L-His, L-Leu, and L-Arg during its LAAO activity. It inhibited adenosine di-phosphate (ADP) and collagen-induced platelet aggregation process in a dosedependent manner. About 60% inhibition of collagen-induced and 40% inhibition of ADP-induced platelet aggregation was observed with a 40 µg/ml dose of NNLAAO70. NNLAAO70 exhibited bactericidal activity on Bacillus subtilis, Escherichia coli, Bacillus megaterium, and Pseudomonas fluorescens. NNLAAO70 also showed cytotoxicity on A549 cells in vitro. It showed severe bactericidal activity on P. fluorescens and lysed 55% of cells. NNLAAO70 also exhibited drastic cytotoxicity on A549 cells. At 1 lg/ml dosage, it demonstrated a 60% reduction in A549 viability and induced apoptosis upon 24-h incubation. H2O2 released during oxidative deamination reactions played a major role in NNLAAO70-induced cytotoxicity. NNLAAO70 significantly increased intracellular reactive oxygen species (ROS) levels in A549 cells by six fold when compared to untreated cells. Oxidative stress-mediated cell injury is the primary cause of NNLAAO70-induced apoptosis in A549 cells and prolonged oxidative stress caused DNA fragmentation and activated cellular secondary necrosis.


Subject(s)
Elapidae , Neoplasms , Animals , Humans , Naja naja , L-Amino Acid Oxidase/genetics , L-Amino Acid Oxidase/pharmacology , L-Amino Acid Oxidase/chemistry , Hydrogen Peroxide/pharmacology , Elapid Venoms/pharmacology , Apoptosis , Necrosis , Collagen/pharmacology , Lung
10.
Invest Ophthalmol Vis Sci ; 65(3): 36, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38551585

ABSTRACT

Purpose: Symptomatic vitreous opacifications, so-called floaters, are difficult to objectively assess majorly limiting the possibility of in vitro studies. Forward light scattering was found previously to be increased in eyes with symptomatic floaters. Using an objective setup to measure forward light scattering, we studied the effects of enzymatically digesting the components of the vitreous body on straylight to develop an in vitro model of vitreous opacifications. Methods: Fifty-seven porcine vitreous bodies were digested using hyaluronidase, collagenase, trypsin, and bromelain, as well as using a combination of hyaluronidase + collagenase and hyaluronidase + bromelain. A modified C-Quant setup was used to objectively assess forward light scattering. Results: Depletion of hyaluronic acid majorly increased vitreous straylight (mean increase 34.4 deg2/sr; P = 0.01), whereas primarily digesting the vitreous gel with collagenase or trypsin did not significantly affect straylight. When collagenase or bromelain is applied in hyaluronic acid depleted vitreous gels, the increase in forward light scattering is reversed partially. Conclusions: The age-related loss of hyaluronic acid primarily drives the increase in vitreous gel straylight induced by conglomerates of collagen. This process can be reversed partially by digesting collagen. This in vitro model allows the objective quantification and statistical comparison of straylight burden caused by vitreous opacities and, thus, can serve as a first testing ground for pharmacological therapies, as demonstrated with bromelain.


Subject(s)
Bromelains , Light , Animals , Swine , Hyaluronoglucosaminidase/pharmacology , Hyaluronic Acid/pharmacology , Trypsin , Aging , Collagen/pharmacology , Collagenases/pharmacology , Scattering, Radiation
11.
Bioorg Chem ; 146: 107286, 2024 May.
Article in English | MEDLINE | ID: mdl-38537336

ABSTRACT

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction , Collagen/metabolism , Collagen/pharmacology , Collagen/therapeutic use , Fibrosis , Bleomycin/adverse effects
12.
Int J Biol Macromol ; 265(Pt 1): 130843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484819

ABSTRACT

BACKGROUND: Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS: Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS: Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION: Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.


Subject(s)
Chitosan , Exosomes , Mesenchymal Stem Cells , Humans , Mice , Animals , Hydrogels/pharmacology , Wound Healing , Chitosan/pharmacology , Cross-Sectional Studies , Collagen/pharmacology , Disease Models, Animal , Collagen Type I/pharmacology
13.
Biomater Adv ; 159: 213813, 2024 May.
Article in English | MEDLINE | ID: mdl-38428122

ABSTRACT

The ability of human tissues to self-repair is limited, which motivates the scientific community to explore new and better therapeutic approaches to tissue regeneration. The present manuscript provides a comparative study between a marine-based composite biomaterial, and another composed of well-established counterparts for bone tissue regeneration. Blue shark skin collagen was combined with bioapatite obtained from blue shark's teeth (mColl:BAp), while bovine collagen was combined with synthetic hydroxyapatite (bColl:Ap) to produce 3D composite scaffolds by freeze-drying. Collagens showed similar profiles, while apatite particles differed in their composition, being the marine bioapatite a fluoride-enriched ceramic. The marine-sourced biomaterials presented higher porosities, improved mechanical properties, and slower degradation rates when compared to synthetic apatite-reinforced bovine collagen. The in vivo performance regarding bone tissue regeneration was evaluated in defects created in femoral condyles in New Zealand rabbits twelve weeks post-surgery. Micro-CT results showed that mColl:BAp implanted condyles had a slower degradation and an higher tissue formation (17.9 ± 6.9 %) when compared with bColl:Ap implanted ones (12.9 ± 7.6 %). The histomorphometry analysis provided supporting evidence, confirming the observed trend by quantifying 13.1 ± 7.9 % of new tissue formation for mColl:BAp composites and 10.4 ± 3.2 % for bColl:Ap composites, suggesting the potential use of marine biomaterials for bone regeneration.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Humans , Animals , Rabbits , Cattle , Biocompatible Materials/therapeutic use , Apatites , Bone Regeneration , Collagen/pharmacology
14.
In Vitro Cell Dev Biol Anim ; 60(3): 287-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485818

ABSTRACT

The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1ß-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1ß, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1ß to simulate IVDD environment and divided into the control group, IL-1ß group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1ß, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1ß-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.


Subject(s)
Ginsenosides , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Rats , Aggrecans/genetics , Apoptosis , Collagen/pharmacology , Inflammation/pathology , Interleukin-6/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Matrix Metalloproteinase 3/metabolism , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
15.
PLoS One ; 19(3): e0295104, 2024.
Article in English | MEDLINE | ID: mdl-38478501

ABSTRACT

BACKGROUND: Melatonin (MEL) is an indole amine molecule primarily produced in the pineal gland. Melatonin has been shown in numerous studies to have antifibrotic effects on the kidney, liver, and other organs. However, it is still unclear how melatonin works in bladder fibrosis. We explored how melatonin affects animals with bladder fibrosis and the underlying mechanisms. MATERIALS AND METHODS: MEL was used to treat human bladder smooth muscle cells (HBdSMCs) after they were stimulated with transforming growth factor-ß1 (TGF-ß1) in vitro. Proteomic analysis and bioinformatic analysis of the altered expression of these proteins were subsequently performed on HBdSMCs from the different processing methods. To construct an in vivo bladder fibrosis model, we injected protamine sulfate (PS) and lipopolysaccharide (LPS) twice a week into the rat bladder for six weeks. After two weeks of PS/LPS treatment, the mice in the treatment group were treated with MEL (20 mg/kg/d) for 4 weeks. Finally, we detected the expression of fibrosis markers from different perspectives. The TGF-ß1/Smad pathway and epithelial-mesenchymal transition (EMT) in cell and bladder tissues were also identified. Further proteomic analysis was also performed. RESULTS: In vitro, we found that TGF-ß1 treatment enhanced the expression of the fibrosis markers collagen III and α-SMA in HBdSMCs. E-cadherin expression decreased while the TGF-ß1/Smad pathway was activated. Vimentin and N-cadherin expression was also elevated at the same time. Similar findings were observed in the LPS group. After MEL treatment, the expression of collagen III and α-SMA decreased, the expression of E-cadherin increased, and the expression of vimentin and N-cadherin also decreased. According to our quantitative proteomics analysis, CCN1 and SQLE may be important proteins involved in the development of bladder fibrosis. MEL decreased the expression of these genes, leading to the relief of bladder fibrosis. Bioinformatics analysis revealed that the extracellular space structure related to metabolic pathways, actin filament binding, and stress fibers can serve as a pivotal focus in the management of fibrosis. CONCLUSION: Melatonin attenuates bladder fibrosis by blocking the TGF-ß1/Smad pathway and EMT. CCN1 appears to be a possible therapeutic target for bladder fibrosis.


Subject(s)
Melatonin , Transforming Growth Factor beta1 , Rats , Humans , Mice , Animals , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Signal Transduction , Urinary Bladder/metabolism , Lipopolysaccharides/pharmacology , Proteomics , Fibrosis , Epithelial-Mesenchymal Transition , Collagen/pharmacology , Cadherins/metabolism
16.
ACS Biomater Sci Eng ; 10(4): 2385-2397, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38538611

ABSTRACT

Bone is a complex organic-inorganic composite tissue composed of ∼30% organics and ∼70% hydroxyapatite (HAp). Inspired by this, we used 30% collagen and 70% HAp extracted from natural bone using the calcination method to generate a biomimetic bone composite hydrogel scaffold (BBCHS). In one respect, BBCHS, with a fixed proportion of inorganic and organic components similar to natural bone, exhibits good physical properties. In another respect, the highly biologically active and biocompatible HAp from natural bone effectively promotes osteogenic differentiation, and type I collagen facilitates cell adhesion and spreading. Additionally, the well-structured porosity of the BBCHS provides sufficient growth space for bone marrow mesenchymal stem cells (BMSCs) while promoting substance exchange. Compared to the control group, the new bone surface of the defective location in the B-HA70+Col group is increased by 3.4-fold after 8 weeks of in vivo experiments. This strategy enables the BBCHS to closely imitate the chemical makeup and physical structure of natural bone. With its robust biocompatibility and osteogenic activity, the BBCHS can be easily adapted for a wide range of bone repair applications and offers promising potential for future research and development.


Subject(s)
Durapatite , Osteogenesis , Durapatite/pharmacology , Durapatite/chemistry , Tissue Scaffolds/chemistry , Biomimetics , Hydrogels/pharmacology , Collagen/pharmacology
17.
ACS Biomater Sci Eng ; 10(4): 2426-2441, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38549452

ABSTRACT

The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.


Subject(s)
Meniscus , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering , Aggrecans , Collagen Type I/pharmacology , Collagen/pharmacology , Regeneration
18.
Chem Asian J ; 19(9): e202400061, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38547362

ABSTRACT

The internal electric field of the human body plays a crucial role in regulating various biological processes, such as, cellular interactions, embryonic development and the healing process. Electrical stimulation (ES) modulates cytoskeleton and calcium ion activities to restore nervous system functioning. When exposed to electrical fields, stem cells respond similarly to neurons, muscle cells, blood vessel linings, and connective tissue (fibroblasts), depending on their environment. This study develops cost-effective electroconductive scaffolds for regenerative therapy. This was achieved by incorporating carboxy functionalized graphene nanoplatelets (GNPs) into a Polycaprolactone (PCL)-collagen matrix. ES was used to assess the scaffolds' propensity to boost neuronal differentiation from MSCs. This study reported that aligned GNP-reinforced PCL-Collagen scaffolds demonstrate substantial MSC differentiation with ES. This work effectively develops scaffolds using a simple, cost-effective synthesis approach. The direct coupling approach generated a homogeneous electric field to stimulate cells cultured on GNP-reinforced scaffolds. The scaffolds exhibited improved mechanical and electrical characteristics, as a result of the reinforcement with carbon nanofillers. In vitro results suggest that electrical stimulation helps differentiation of mesenchymal stem-like cells (MSC-like) towards neuronal. This finding holds great potential for the development of effective treatments for tissue injuries related to the nervous system.


Subject(s)
Cell Differentiation , Collagen , Electric Conductivity , Electric Stimulation , Graphite , Mesenchymal Stem Cells , Polyesters , Tissue Scaffolds , Cell Differentiation/drug effects , Collagen/chemistry , Collagen/pharmacology , Polyesters/chemistry , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Graphite/chemistry , Humans , Anisotropy , Animals , Cells, Cultured , Neurogenesis/drug effects , Neurons/cytology
19.
Int J Biol Macromol ; 266(Pt 1): 131233, 2024 May.
Article in English | MEDLINE | ID: mdl-38554907

ABSTRACT

Full-thickness wounds are severe cutaneous damages with destroyed self-healing function, which need efficient clinical interventions. Inspired by the hierarchical structure of natural skin, we have for the first time developed a biomimetic tri-layered artificial skin (TLAS) comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. The TLAS with the thickness of 3-7 mm displays a hierarchical nanostructure consisting of the top homogeneous silica gel film, the middle compact collagen membrane, and the bottom porous collagen scaffold, exquisitely mimicking the epidermis, basement membrane and dermis of natural skin, respectively. The 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide-dehydrothermal (EDC/NHS-DHT) dual-crosslinked collagen composite bilayer, with a crosslinking degree of 79.5 %, displays remarkable biocompatibility, bioactivity, and biosafety with no risk of hemolysis and pyrogen reactions. Notably, the extra collagen membrane layer provides a robust barrier to block the penetration of silica gel into the collagen porous scaffold, leading to the TLAS with enhanced biocompatibility and bioactivity. The full-thickness wound rat model studies have indicated the TLAS significantly facilitates the regeneration of full-thickness defects by accelerating re-epithelization, collagen deposition and migration of skin appendages. The highly biocompatible and bioactive tri-layered artificial skin provides an improved treatment for full-thickness wounds, which has great potential in tissue engineering.


Subject(s)
Biomimetic Materials , Collagen , Silica Gel , Skin, Artificial , Tissue Scaffolds , Wound Healing , Wound Healing/drug effects , Animals , Collagen/chemistry , Collagen/pharmacology , Porosity , Rats , Tissue Scaffolds/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Silica Gel/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomimetics/methods , Humans , Skin/drug effects , Skin/injuries , Male
20.
Bone Res ; 12(1): 13, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409111

ABSTRACT

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Subject(s)
Bone Remodeling , Osteocytes , Humans , Aged , Male , Animals , Mice , Bone Remodeling/physiology , Collagen/pharmacology , Aging , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...