Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.618
Filter
1.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692246

ABSTRACT

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Subject(s)
Cell Proliferation , Collagen , Fibroblasts , Hyaluronoglucosaminidase , Myofibroblasts , Periodontal Ligament , Transforming Growth Factor beta , Animals , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Hyaluronoglucosaminidase/pharmacology , Rats , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Collagen/metabolism , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Hyaluronic Acid/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , Actins/metabolism , Blotting, Western , In Vitro Techniques , Collagen Type I/metabolism , Biomarkers/metabolism , Real-Time Polymerase Chain Reaction , Male , RNA, Messenger/metabolism
2.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article in English | MEDLINE | ID: mdl-38720423

ABSTRACT

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
3.
PLoS One ; 19(5): e0301216, 2024.
Article in English | MEDLINE | ID: mdl-38743641

ABSTRACT

Non-thermal atmospheric-pressure plasma (NTAPP) has been widely studied for clinical applications, e.g., disinfection, wound healing, cancer therapy, hemostasis, and bone regeneration. It is being revealed that the physical and chemical actions of plasma have enabled these clinical applications. Based on our previous report regarding plasma-stimulated bone regeneration, this study focused on Achilles tendon repair by NTAPP. This is the first study to reveal that exposure to NTAPP can accelerate Achilles tendon repair using a well-established Achilles tendon injury rat model. Histological evaluation using the Stoll's and histological scores showed a significant improvement at 2 and 4 weeks, with type I collagen content being substantial at the early time point of 2 weeks post-surgery. Notably, the replacement of type III collagen with type I collagen occurred more frequently in the plasma-treated groups at the early stage of repair. Tensile strength test results showed that the maximum breaking strength in the plasma-treated group at two weeks was significantly higher than that in the untreated group. Overall, our results indicate that a single event of NTAPP treatment during the surgery can contribute to an early recovery of an injured tendon.


Subject(s)
Achilles Tendon , Plasma Gases , Tendon Injuries , Wound Healing , Animals , Achilles Tendon/injuries , Rats , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Wound Healing/drug effects , Tendon Injuries/therapy , Male , Helium/pharmacology , Rats, Sprague-Dawley , Collagen Type I/metabolism , Tensile Strength , Atmospheric Pressure , Collagen Type III/metabolism
4.
Mol Biol Rep ; 51(1): 529, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637422

ABSTRACT

BACKGROUND: TGF-ß1 and SMAD3 are particularly pathogenic in the progression of renal fibrosis. AIM: This study aimed to evaluate the kidney protective potentials of silymarin (SM) and exosomes of mesenchymal stem cells against the nephrotoxin thioacetamide (TAA) in rats. METHODS: 32 female rats were randomly assigned into four groups: the control group, the TAA group, the TAA + SM group, and the TAA + Exosomes group. The kidney homogenates from all groups were examined for expression levels of TGF-ß receptors I and II using real-time PCR, expression levels of collagen type I and CTGF proteins using ELISA, and the expression levels of nuclear SMAD2/3/4, cytoplasmic SMAD2/3, and cytoplasmic SMAD4 proteins using the western blot technique. RESULTS: Compared to the control group, the injection of TAA resulted in a significant increase in serum levels of urea and creatinine, gene expression levels of TßRI and TßRII, protein expression levels of both collagen I and CTGF proteins, cytoplasmic SMAD2/3 complex, and nuclear SMAD2/3/4 (p-value < 0.0001), with significantly decreased levels of the co-SMAD partner, SMAD4 (p-value < 0.0001). Those effects were reversed considerably in both treatment groups, with the superiority of the exosomal treatment regarding the SMAD proteins and the expression levels of the TßRI gene, collagen I, and CTGF proteins returning to near-control values (p-value > 0.05). CONCLUSION: Using in vitro and in vivo experimental approaches, the research discovered a reno-protective role of silymarin and exosomes of BM-MSCs after thioacetamide-induced renal fibrosis in rats, with the advantage of exosomes.


Subject(s)
Exosomes , Kidney Diseases , Silymarin , Rats , Female , Animals , Transforming Growth Factor beta/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Silymarin/pharmacology , Exosomes/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism , Kidney Diseases/pathology , Collagen Type I/metabolism , Smad Proteins/metabolism
5.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650149

ABSTRACT

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Subject(s)
Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
6.
Soft Matter ; 20(16): 3483-3498, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38587658

ABSTRACT

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 µm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.


Subject(s)
Alginates , Extracellular Matrix , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Alginates/chemistry , Cell Culture Techniques, Three Dimensional , Viscosity , Stromal Cells/cytology , Stromal Cells/metabolism , Elasticity , Tissue Scaffolds/chemistry , Collagen Type I/chemistry , Collagen Type I/metabolism , Biomechanical Phenomena , Rheology , Models, Biological , Bayes Theorem
7.
Biochem Biophys Res Commun ; 709: 149833, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38574608

ABSTRACT

In people living with diabetes, impaired wound healing is a major concern as the formation of ulcerated wounds can drastically reduce both the effectiveness of the healing process and the quality of life of the patient. The healing of dermal wounds in particular involves a patient's fibroblasts building up a strong extracellular matrix of mostly collagen I and collagen III fibers, which the cells of diabetic patients struggle to do. Extracellular matrix stiffness, and growth substrate stiffness in general, have already been shown to have a significant effect on the growth and development of already existent cells, and in diabetic dermal fibroblasts, morphological and physiological characteristics associated with the healing process appear to be altered from their healthy state. In this study we utilized a PDMS surface with a stiffness comparable to a wound environment (16 kPa) and a softer surface (0.2 kPa) to study the effects on diabetic and normal fibroblasts. We found diabetic fibroblast morphology became more fibroblast like when placed on the softer surfaces. This was demonstrated by a 15.6% decrease in the aspect ratio and a 16.4% increase in the circularity. The presence of the stress fibers was decreased by 19.4% in diabetic fibroblasts when placed on a softer surface. The proliferation rate of the diabetic fibroblasts was unaffected by the change in stiffness, but the metabolic activity greatly decreased (76%) on the softer surface. The results suggest that the softer surface may have a therapeutic effect on diabetic fibroblast metabolic activity. Further studies could focus on investigating this relationship and utilize it in tunable biomaterials to facilitate and accelerate the healing process for diabetic wounds.


Subject(s)
Diabetes Mellitus, Type 2 , Quality of Life , Humans , Fibroblasts/metabolism , Collagen Type I/metabolism , Diabetes Mellitus, Type 2/metabolism , Phenotype
8.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38670633

ABSTRACT

Mutations in Cl-/H+ antiporter ClC-5 cause Dent's disease type 1 (DD1), a rare tubulopathy that progresses to renal fibrosis and kidney failure. Here, we have used DD1 human cellular models and renal tissue from DD1 mice to unravel the role of ClC-5 in renal fibrosis. Our results in cell systems have shown that ClC-5 deletion causes an increase in collagen I (Col I) and IV (Col IV) intracellular levels by promoting their transcription through the ß-catenin pathway and impairing their lysosomal-mediated degradation. Increased production of Col I/IV in ClC-5-depleted cells ends up in higher release to the extracellular medium, which may lead to renal fibrosis. Furthermore, our data have revealed that 3-mo-old mice lacking ClC-5 (Clcn5 +/- and Clcn5 -/- ) present higher renal collagen deposition and fibrosis than WT mice. Altogether, we describe a new regulatory mechanism for collagens' production and release by ClC-5, which is altered in DD1 and provides a better understanding of disease progression to renal fibrosis.


Subject(s)
Chloride Channels , Fibrosis , Lysosomes , Mice, Knockout , beta Catenin , Animals , Chloride Channels/metabolism , Chloride Channels/genetics , Lysosomes/metabolism , Humans , Mice , beta Catenin/metabolism , Fibrosis/metabolism , Kidney/metabolism , Kidney/pathology , Collagen Type I/metabolism , Dent Disease/metabolism , Dent Disease/genetics , Proteolysis , Signal Transduction
9.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673812

ABSTRACT

Here, we report on the development of a cost-effective, well-characterized three-dimensional (3D) model of bone homeostasis derived from commonly available stocks of immortalized murine cell lines and laboratory reagents. This 3D murine-cell-derived bone organoid model (3D-mcBOM) is adaptable to a range of contexts and can be used in conjunction with surrogates of osteoblast and osteoclast function to study cellular and molecular mechanisms that affect bone homeostasis in vitro or to augment in vivo models of physiology or disease. The 3D-mcBOM was established using a pre-osteoblast murine cell line, which was seeded into a hydrogel extracellular matrix (ECM) and differentiated into functional osteoblasts (OBs). The OBs mineralized the hydrogel ECM, leading to the deposition and consolidation of hydroxyapatite into bone-like organoids. Fourier-transform infrared (FTIR) spectroscopy confirmed that the mineralized matrix formed in the 3D-mcBOM was bone. The histological staining of 3D-mcBOM samples indicated a consistent rate of ECM mineralization. Type I collagen C-telopeptide (CTX1) analysis was used to evaluate the dynamics of OC differentiation and activity. Reliable 3D models of bone formation and homeostasis align with current ethical trends to reduce the use of animal models. This functional model of bone homeostasis provides a cost-effective model system using immortalized cell lines and easily procured supplemental compounds, which can be assessed by measuring surrogates of OB and OC function to study the effects of various stimuli in future experimental evaluations of bone homeostasis.


Subject(s)
Cell Differentiation , Extracellular Matrix , Organoids , Osteoblasts , Osteogenesis , Animals , Mice , Organoids/cytology , Organoids/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Extracellular Matrix/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Line , Collagen Type I/metabolism , Hydrogels/chemistry , Calcification, Physiologic , Cell Culture Techniques, Three Dimensional/methods , Models, Biological
10.
Elife ; 122024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564479

ABSTRACT

Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Collagen/metabolism , Collagen Type I/metabolism , Disease Models, Animal , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Mice, Obese , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Small Interfering/metabolism
11.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 453-462, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38636999

ABSTRACT

Objective: To investigate the mechanism of proanthocyanidin (PA) in regulating the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs), and to explore the effects of PA on the expression and nuclear translocation of transcription factor EB (TFEB) and on the autophagy-lysosome pathway. Methods: PDLSCs were divided into control group and PA group, which were subjected to RNA sequencing analysis (RNA Seq) to detect differentially expressed genes. The osteogenic differentiation ability and autophagy level were observed by real-time fluorescence quantitative PCR (RT-qPCR) analysis, alkaline phosphatase (ALP) staining and transmission electron microscope (TEM), respectively. Scratch assay and Transwell assay were used to detect the migration ability of PDLSCs. Lysotracker and immunofluorescence staining were used to detect the biogenesis of lysosomes. The total protein expression of transcription factor EB (TFEB) as well as that in cytoplasm and nucleus were detected by Western blotting. Confocal laser scanning microscope (CLSM) was used to observe the nuclear translocation of TFEB. The PDLSCs were treated with small interfering RNA (siRNA) technology to knock down the expression levels of TFEB gene with or without PA treatment. Western blotting was used to analyze the expressions of autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3 (LC3B), as well as osteogenic-related proteins runt-related transcription factor 2 (RUNX2), ALP, and osteocalcin in PDLSCs. Results: Compared with the control group, the osteogenic-related and autophagy-related genes showed differential expression in PDLSCs after PA treatment (P<0.05). The mRNA expression levels of osteogenic-related genes RUNX2 (2.32±0.15) and collagen type Ⅰ alpha 1 (COL1α1) (1.80±0.18), as well as the autophagy related genes LC3B (1.87±0.08) and Beclin1 (1.63±0.08) were significantly increased in the PA group, compared with the control group (1.01±0.16, 1.00±0.10, 1.00±0.07, 1.00±0.06, respectively, all P<0.01). Compared with the control group, the PA group had higher ALP activity, and more autophagosomes and autophagolysosomes observed by TEM. PA promoted the migration of PDLSCs (P<0.05) and the increased number of lysosomes and the expression of lysosomal associated membrane protein 1 (LAMP1). In the PA group, the relative expression level of total TFEB protein (1.49±0.07) and the nuclear/cytoplasmic expression of TFEB protein (1.52±0.12) were significantly higher than the control group (1.00±0.11, 1.00±0.13, respectively) (t=6.43, P<0.01; t=5.07, P<0.01). The relative nuclear/cytoplasmic fluorescence intensity of TFEB in the PA group (0.79±0.09) was increased compared with the control group (0.11±0.08) (t=8.32, P<0.01). Knocking down TFEB significantly reduced the expression of TFEB (1.00±0.15 vs 0.64±0.04), LAMP1 (1.00±0.10 vs 0.69±0.09), Beclin1 (1.00±0.05 vs 0.60±0.05), and LC3B Ⅱ/Ⅰ (1.00±0.06 vs 0.73±0.07) in PDLSCs (P<0.05, P<0.05, P<0.01, P<0.01). When TFEB gene was knocked down, the expression levels of Beclin1 (1.05±0.11), LC3B Ⅱ/Ⅰ (1.02±0.09), RUNX2 (1.04±0.10), ALP (1.04±0.16), and osteocalcin (1.03±0.15) proteins were significantly decreased in the PA group compared with the pre-knockdown period (1.28±0.03, 1.44±0.11, 1.38±0.11, 1.62±0.11, 1.65±0.17, respectively) (P<0.05, P<0.01, P<0.05, P<0.01, and P<0.01, respectively). Conclusions: PA promotes the osteogenic differentiation of PDLSCs through inducing the expression and nuclear translocation of TFEB and activating the autophagy-lysosome pathway.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Lysosomes , Osteogenesis , Periodontal Ligament , Proanthocyanidins , Stem Cells , Humans , Osteogenesis/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Lysosomes/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Proanthocyanidins/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Alkaline Phosphatase/metabolism , Collagen Type I/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Microtubule-Associated Proteins/metabolism
12.
Biochem Biophys Res Commun ; 710: 149884, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38598901

ABSTRACT

In the clinical setting, chemotherapy is the most widely used antitumor treatment, however, chemotherapy resistance significantly limits its efficacy. Reduced drug influx is a key mechanism of chemoresistance, and inhibition of the complexity of the tumor microenvironment (TME) may improve chemotherapy drug influx and therapeutic efficiency. In the current study, we identified that the major extracellular matrix protein collagen I is more highly expressed in lung cancer tissues than adjacent tissues in patients with lung cancer. Furthermore, Kaplan-Meier analysis suggested that COL1A1 expression was negatively correlated with the survival time of patients with lung cancer. Our previous study demonstrated that miR-29a inhibited collagen I expression in lung fibroblasts. Here, we investigated the effect of miR-29a on collagen I expression and the cellular behavior of lung cancer cells. Our results suggest that transfection with miR-29a could prevent Lewis lung carcinoma (LLC) migration by downregulating collagen I expression, but did not affect the proliferation, apoptosis, and cell cycle of LLC cells. In a 3D tumoroid model, we demonstrated that miR-29a transfection significantly increased cisplatin (CDDP) permeation and CDDP-induced cell death. Furthermore, neutral lipid emulsion-based miR-29a delivery improved the therapeutic effect of cisplatin in an LLC spontaneous tumor model in vivo. In summary, this study shows that targeting collagen I expression in the TME contributes to chemotherapy drug influx and improves therapeutic efficacy in lung cancer.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Collagen Type I/genetics , Collagen Type I/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism , MicroRNAs/pharmacology , Permeability , Tumor Microenvironment
13.
Am J Physiol Cell Physiol ; 326(5): C1482-C1493, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525537

ABSTRACT

Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-ß on collagen type I synthesis without affecting that of IL-1ß on the expression of matrix metalloproteinase-1. This effect of SP on TGF-ß-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-ß-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-ß on collagen type I synthesis without affecting that of interleukin-1ß on the expression of matrix metalloproteinase-1.


Subject(s)
Fibroblasts , Interleukin-1beta , Substance P , Transforming Growth Factor beta , p38 Mitogen-Activated Protein Kinases , Humans , Substance P/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Transforming Growth Factor beta/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Cells, Cultured , Interleukin-1beta/metabolism , Collagen Type I/metabolism , Collagen Type I/biosynthesis , Receptors, Neurokinin-1/metabolism , Cornea/metabolism , Cornea/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Collagen/metabolism , Collagen/biosynthesis , Signal Transduction/drug effects , Corneal Stroma/metabolism , Corneal Stroma/drug effects , Corneal Keratocytes/metabolism , Corneal Keratocytes/drug effects
14.
J Bone Miner Res ; 39(2): 177-189, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477760

ABSTRACT

Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.


Subject(s)
Bone and Bones , Collagen Type I , Disease Models, Animal , Osteogenesis Imperfecta , Osteogenesis Imperfecta/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/genetics , Animals , Mice , Bone and Bones/pathology , Bone and Bones/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , RNA, Messenger/metabolism , RNA, Messenger/genetics , Osteoclasts/metabolism , Osteoclasts/pathology , Puberty , Osteoblasts/metabolism , Osteoblasts/pathology , Biomarkers/metabolism , Osteogenesis
15.
Differentiation ; 136: 100757, 2024.
Article in English | MEDLINE | ID: mdl-38437764

ABSTRACT

Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.


Subject(s)
Collagen Type I , Osteogenesis Imperfecta , Animals , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Calcification, Physiologic/genetics , Collagen/metabolism , Osteogenesis Imperfecta/genetics , Bone and Bones , Mutation , Mammals/metabolism
16.
Int Urogynecol J ; 35(4): 881-891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488886

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to investigate the correlation between endogenous vaginal microecological alterations and female pelvic organ prolapse (POP). METHODS: Patients who underwent vaginal hysterectomy were retrospectively analyzed as the POP group (n = 30) and the non-POP group (n = 30). The vaginal microbial metabolites and enzyme levels were tested using the dry chemoenzymatic method. The mRNA and protein expression were tested using real-time quantitative PCR and immunohistochemistry. SPSS version 25.0 and GraphPad Prism 8.0 were performed for statistical analysis. RESULTS: Compared with the non-POP group, the vaginal pH, H2O2 positivity and leukocyte esterase positivity were higher in patients with POP (all p < 0.05). Further analysis showed that patients with pelvic organ prolapse quantification (POP-Q) stage IV had higher rates of vaginal pH, H2O2 positivity and leukocyte esterase positivity than those with POP-Q stage III. Additionally, the mRNA expression of decorin (DCN), transforming growth factor beta 1 (TGF-ß1), and matrix metalloproteinase-3 (MMP-3) in uterosacral ligament tissues were higher, whereas collagen I and III were lower. Similarly, the positive expression of MMP-3 in uterosacral ligament tissue was significantly upregulated in the POP group compared with the non-POP group (p = 0.035), whereas collagen I (p = 0.004) and collagen III (p = 0.019) in uterosacral ligament tissue were significantly downregulated in the POP group. Correlation analysis revealed that there was a significant correlation between vaginal microecology and collagen metabolism. In addition, MMP-3 correlated negatively with collagen I and collagen III (p = 0.002, r = -0.533; p = 0.002, r = -0.534 respectively), whereas collagen I correlated positively with collagen III (p = 0.001, r = 0.578). CONCLUSIONS: Vaginal microecological dysbiosis affects the occurrence of female POP, which could be considered a novel therapeutic option.


Subject(s)
Pelvic Organ Prolapse , Vagina , Female , Humans , Pelvic Organ Prolapse/metabolism , Middle Aged , Retrospective Studies , Matrix Metalloproteinase 3/metabolism , Decorin/metabolism , Decorin/genetics , Aged , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Hysterectomy, Vaginal , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Collagen Type III/genetics , RNA, Messenger/metabolism , Ligaments/metabolism , Microbiota , Adult
17.
Cells ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38534372

ABSTRACT

Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of ß-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear ß-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear ß-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.


Subject(s)
Collagen Type I , HSP47 Heat-Shock Proteins , Mice , Animals , Collagen Type I/metabolism , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/genetics , HSP47 Heat-Shock Proteins/metabolism , Endoribonucleases/metabolism , beta Catenin/metabolism , Protein Serine-Threonine Kinases/metabolism , Collagen/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism
18.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Article in English | MEDLINE | ID: mdl-38501098

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Collagen Type I/metabolism , Glutaminase/metabolism , Glutamine/metabolism , Hepatic Stellate Cells/metabolism , Hypoxia/metabolism , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , YAP-Signaling Proteins
19.
Front Immunol ; 15: 1363962, 2024.
Article in English | MEDLINE | ID: mdl-38515758

ABSTRACT

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods: In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results: Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion: Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.


Subject(s)
Adenocarcinoma , Extracellular Traps , Pancreatic Neoplasms , Animals , Mice , Bacterial Proteins , Extracellular Traps/metabolism , Collagen/metabolism , Antigens, Bacterial/metabolism , Collagen Type I/metabolism , Streptococcus pyogenes , Peroxidase/metabolism
20.
Stem Cell Res Ther ; 15(1): 75, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475906

ABSTRACT

BACKGROUND: Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS: The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-ß and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-ß and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS: Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-ß and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-ß and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION: MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Male , Rats , Animals , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Insulin-Like Growth Factor I/metabolism , Matrix Metalloproteinase 13 , Aggrecans/metabolism , Rats, Sprague-Dawley , Diskectomy , Mesenchymal Stem Cells/metabolism , Collagen Type I/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...