Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 99(4): 547-557, 2021 04.
Article in English | MEDLINE | ID: mdl-33381861

ABSTRACT

SATB2-Associated syndrome (SAS) is an autosomal dominant, multisystemic, neurodevelopmental disorder due to alterations in SATB2 at 2q33.1. A limited number of individuals with 2q33.1 contiguous deletions encompassing SATB2 (ΔSAS) have been described in the literature. We describe 17 additional individuals with ΔSAS, review the phenotype of 33 previously published individuals with 2q33.1 deletions (n = 50, mean age = 8.5 ± 7.8 years), and provide a comprehensive comparison to individuals with other molecular mechanisms that result in SAS (non-ΔSAS). Individuals in the ΔSAS group were often underweight for age (20/41 = 49%) with a progressive decline in weight (95% CI = -2.3 to -1.1, p < 0.0001) and height (95% CI = -2.3 to -1.0, p < 0.0001) Z-score means from birth to last available measurement. ΔSAS individuals were often noted to have a broad spectrum of facial dysmorphism. A composite image of ΔSAS individuals generated by automated image analysis was distinct as compared to matched controls and non-ΔSAS individuals. We also present additional genotype-phenotype correlations for individuals in the ΔSAS group such as an increased risk for aortic root/ascending aorta dilation and primary pulmonary hypertension for those individuals with contiguous gene deletions that include COL3A1/COL5A2 and BMPR2, respectively. Based on these findings, we provide additional care recommendations for individuals with ΔSAS variants.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Matrix Attachment Region Binding Proteins/deficiency , Transcription Factors/deficiency , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 2/ultrastructure , Collagen Type III/deficiency , Collagen Type III/genetics , Collagen Type V/deficiency , Collagen Type V/genetics , Dwarfism/genetics , Face/abnormalities , Female , Genetic Association Studies , Gestational Age , Humans , Hypertension, Pulmonary/genetics , Infant , Male , Matrix Attachment Region Binding Proteins/genetics , Microcephaly/genetics , Phenotype , Thinness/genetics , Transcription Factors/genetics
2.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32621799

ABSTRACT

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Subject(s)
Cicatrix/metabolism , Collagen Type V/deficiency , Collagen Type V/metabolism , Heart Injuries/metabolism , Myocardial Contraction/genetics , Myofibroblasts/metabolism , Animals , Cicatrix/genetics , Cicatrix/physiopathology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Collagen Type V/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Fibrosis/genetics , Fibrosis/metabolism , Gene Expression Regulation/genetics , Integrins/antagonists & inhibitors , Integrins/genetics , Integrins/metabolism , Isoproterenol/pharmacology , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force/instrumentation , Microscopy, Electron, Transmission , Myocardial Contraction/drug effects , Myofibroblasts/cytology , Myofibroblasts/pathology , Myofibroblasts/ultrastructure , Principal Component Analysis , Proteomics , RNA-Seq , Single-Cell Analysis
3.
Am J Pathol ; 187(10): 2300-2311, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28734943

ABSTRACT

Classic Ehlers-Danlos syndrome (cEDS) is characterized by fragile, hyperextensible skin and hypermobile joints. cEDS can be caused by heterozygosity for missense mutations in genes COL5A2 and COL5A1, which encode the α2(V) and α1(V) chains, respectively, of collagen V, and is most often caused by COL5A1 null alleles. However, COL5A2 null alleles have yet to be associated with cEDS or other human pathologies. We previously showed that mice homozygous null for the α2(V) gene Col5a2 are early embryonic lethal, whereas haploinsufficiency caused aberrancies of adult skin, but not a frank cEDS-like phenotype, as skin hyperextensibility at low strain and dermal cauliflower-contoured collagen fibril aggregates, two cEDS hallmarks, were absent. Herein, we show that ubiquitous postnatal Col5a2 knockdown results in pathognomonic dermal cauliflower-contoured collagen fibril aggregates, but absence of skin hyperextensibility, demonstrating these cEDS hallmarks to arise separately from loss of collagen V roles in control of collagen fibril growth and nucleation events, respectively. Col5a2 knockdown also led to loss of dermal white adipose tissue (WAT) and markedly decreased abdominal WAT that was characterized by miniadipocytes and increased collagen deposition, suggesting α2(V) to be important to WAT development/maintenance. More important, Col5a2 haploinsufficiency markedly increased the incidence and severity of abdominal aortic aneurysms, and caused aortic arch ruptures and dissections, indicating that α2(V) chain deficits may play roles in these pathologies in humans.


Subject(s)
Adipose Tissue/abnormalities , Aortic Aneurysm, Thoracic/genetics , Collagen Type V/deficiency , Collagen/deficiency , Genetic Predisposition to Disease , Skin Abnormalities/metabolism , Skin/pathology , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Aortic Aneurysm, Thoracic/pathology , Collagen/metabolism , Collagen Type V/metabolism , Dermis/pathology , Disease Models, Animal , Ehlers-Danlos Syndrome/pathology , Fibrillar Collagens/metabolism , Gene Deletion , Gene Knockdown Techniques , Integrases/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Reproducibility of Results , Skin/drug effects , Skin/ultrastructure , Skin Abnormalities/pathology , Tamoxifen/pharmacology , Wound Healing/drug effects
4.
Am J Pathol ; 185(5): 1436-47, 2015 May.
Article in English | MEDLINE | ID: mdl-25797646

ABSTRACT

Collagen V mutations underlie classic Ehlers-Danlos syndrome, and joint hypermobility is an important clinical manifestation. We define the function of collagen V in tendons and ligaments, as well as the role of alterations in collagen V expression in the pathobiology in classic Ehlers-Danlos syndrome. A conditional Col5a1(flox/flox) mouse model was bred with Scleraxis-Cre mice to create a targeted tendon and ligament Col5a1-null mouse model, Col5a1(Δten/Δten). Targeting was specific, resulting in collagen V-null tendons and ligaments. Col5a1(Δten/Δten) mice demonstrated decreased body size, grip weakness, abnormal gait, joint laxity, and early-onset osteoarthritis. These gross changes were associated with abnormal fiber organization, as well as altered collagen fibril structure with increased fibril diameters and decreased fibril number that was more severe in a major joint stabilizing ligament, the anterior cruciate ligament (ACL), than in the flexor digitorum longus tendon. The ACL also had a higher collagen V content than did the flexor digitorum longus tendon. The collagen V-null ACL and flexor digitorum longus tendon both had significant alterations in mechanical properties, with ACL exhibiting more severe changes. The data demonstrate critical differential regulatory roles for collagen V in tendon and ligament structure and function and suggest that collagen V regulatory dysfunction is associated with an abnormal joint phenotype, similar to the hypermobility phenotype in classic Ehlers-Danlos syndrome.


Subject(s)
Collagen Type V/deficiency , Ehlers-Danlos Syndrome/pathology , Ehlers-Danlos Syndrome/physiopathology , Animals , Biomechanical Phenomena , Disease Models, Animal , Gait/physiology , Hand Strength/physiology , Immunoblotting , Immunohistochemistry , Joints , Ligaments/pathology , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Phenotype , Real-Time Polymerase Chain Reaction , Tendons/pathology
5.
Dev Dyn ; 235(12): 3295-305, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17029294

ABSTRACT

Genetic mutations in minor fibrillar collagen types Va1 (ColVa1) and XIa1 (ColXI) have been identified in connective tissue disorders including Ehlers-Danlos syndrome and chondrodysplasias. ColVa1+/- and ColXIa1-/- mutant mice recapitulate these human disorders and show aberrations in collagen fiber organization in connective tissue of the skin, cornea, cartilage, and tendon. In the heart, fibrous networks of collagen fibers form throughout the ventricular myocardium and heart valves, and alterations in collagen fiber homeostasis are apparent in many forms of cardiac disease associated with myocardial dysfunction and valvular insufficiency. There is increasing evidence for cardiac dysfunction in connective tissue disorders, but the mechanisms have not been addressed. ColVa1+/- and ColXIa1-/- mutant mice were used to identify roles for ColVa1 and ColXIa1 in ventricular myocardial morphogenesis and heart valve development. These affected cardiac structures show a compensatory increase in type I collagen deposition, similar to that previously described in valvular and cardiomyopathic disease. Morphological cardiac defects associated with changes in collagen fiber homeostasis identified in ColVa1+/- and ColXIa1-/- mice provide an insight into previously unappreciated forms of cardiac dysfunction associated with connective tissue disorders.


Subject(s)
Collagen Type IX/metabolism , Collagen Type V/metabolism , Fetal Heart/embryology , Fetal Heart/metabolism , Heart Valves/embryology , Heart Valves/metabolism , Animals , Base Sequence , Collagen Type I/metabolism , Collagen Type III/metabolism , Collagen Type IX/deficiency , Collagen Type IX/genetics , Collagen Type V/deficiency , Collagen Type V/genetics , DNA Primers/genetics , Disease Models, Animal , Ehlers-Danlos Syndrome/embryology , Ehlers-Danlos Syndrome/genetics , Exostoses, Multiple Hereditary/embryology , Exostoses, Multiple Hereditary/genetics , Female , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Male , Mice , Mice, Knockout , Mice, Mutant Strains , Pregnancy
6.
Mol Cell Biol ; 24(13): 6049-57, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15199158

ABSTRACT

Collagen V is a minor component of the heterotypic I/III/V collagen fibrils and the defective product in most cases of classical Ehlers Danlos syndrome (EDS). The present study was undertaken to elucidate the impact of collagen V mutations on skin development, the most severely affected EDS tissues, using mice harboring a targeted deletion of the alpha2(V) collagen gene (Col5a2). Contrary to the original report, our studies indicate that the Col5a2 deletion (a.k.a. the pN allele) represents a functionally null mutation that affects matrix assembly through a complex sequence of events. First the mutation impairs assembly and/or secretion of the alpha1(V)(2)alpha2(V) heterotrimer with the result that the alpha1(V) homotrimer is the predominant species deposited into the matrix. Second, the alpha1(V) homotrimer is excluded from incorporation into the heterotypic collagen fibrils and this in turn severely impairs matrix organization. Third, the mutant matrix stimulates a compensatory loop by the alpha1(V) collagen gene that leads to additional deposition of alpha1(V) homotrimers. These data therefore underscore the importance of the collagen V heterotrimer in dermal fibrillogenesis. Furthermore, reduced thickness of the basement membranes underlying the epidermis and increased apoptosis of the stromal fibroblasts in pN/pN skin strongly indicate additional roles of collagen V in the development of a functional skin matrix.


Subject(s)
Collagen Type V/metabolism , Skin/growth & development , Animals , Apoptosis , Basement Membrane/chemistry , Collagen Type V/deficiency , Collagen Type V/genetics , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology , Extracellular Matrix/chemistry , Fibroblasts/ultrastructure , Mice , Mice, Knockout , Mutation , Skin/chemistry , Skin/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...