Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Br J Ophthalmol ; 108(3): 343-348, 2024 02 21.
Article in English | MEDLINE | ID: mdl-36746614

ABSTRACT

PURPOSE: Corneal biomechanical failure is the hallmark of keratoconus (KC); however, the cause of this failure remains elusive. Collagen type XII (COL12A1), which localises to Bowman's layer (BL), is thought to function in stress-bearing areas, such as BL. Given the putative protective role of COL12A1 in biomechanical stability, this study aims to characterise COL12A1 expression in all corneal layers involved in KC. METHODS: TaqMan quantitative PCR was performed on 31 corneal epithelium samples of progressive KC and myopic control eyes. Tissue microarrays were constructed using full-thickness corneas from 61 KC cases during keratoplasty and 18 non-KC autopsy eyes and stained with an antibody specific to COL12A1. Additionally, COL12A1 was knocked out in vitro in immortalised HEK293 cells. RESULTS: COL12A1 expression was reduced at transcript levels in KC epithelium compared with controls (ratio: 0.58, p<0.03). Immunohistochemical studies demonstrated that COL12A1 protein expression in BL was undetectable, with reduced expression in KC epithelium, basement membrane and stroma. CONCLUSIONS: The apparent absence of COL12A1 in KC BL, together with the functional importance that COL12A1 is thought to have in stress bearing areas, suggests that COL12A1 may play a role in the pathogenesis of KC. Further studies are necessary to investigate the mechanisms that lead to COL12A1 dysregulation in KC.


Subject(s)
Epithelium, Corneal , Keratoconus , Humans , Keratoconus/metabolism , Collagen Type XII/genetics , Collagen Type XII/metabolism , HEK293 Cells , Cornea/pathology , Epithelium, Corneal/pathology
2.
Immun Inflamm Dis ; 11(7): e919, 2023 07.
Article in English | MEDLINE | ID: mdl-37506150

ABSTRACT

BACKGROUND: The expression of cytoplasmic poly (A) binding protein-1 (PABPC1) has been reported in multiple cancer types. This protein is known to modulate cancer progression. However, the effects of PABPC1 expression in pancreatic adenocarcinoma (PAAD) have not been investigated. Here, we investigate the regulatory targets and molecular mechanisms of PABPC1 in PAAD. METHODS: PABPC1 and collagen type XII α1 chain (COL12A1) expression in PAAD and their role in tumor prognosis and tumor stage were investigated using The Cancer Genome Atlas database analysis. After silencing PABPC1, messenger RNA sequencing and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression of differentially expressed genes (DEGs), cell viability, apoptosis, and cell migration and invasion were explored using reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8 assay, flow cytometry assay, and transwell assay, respectively. The relationship between PABPC1 and COL12A1 expression was assessed by Pearson's correlation analysis. The regulatory function of COL12A1 in PABPC1-affected BXPC3 cell behavior was studied after COL12A1 was overexpressed. RESULTS: PABPC1 and COL12A1 expression was upregulated in patients with PAAD and was linked to poor prognosis. Four hundred and seventy-four DEGs were observed in BXPC3 cells after PABPC1 silencing. GO and KEGG analyses revealed that the top 10 DEGs were enriched in cell adhesion pathways. Additionally, PABPC1 silencing inhibited cell viability, migration, and invasion and accelerated apoptosis in BXPC3 cells. PABPC1 silencing increased AZGP1 and ARHGAP30 expression and decreased CAV1 and COL12A1 expression in BXPC3 cells. PABPC1 positively mediated COL12A1 expression, whereas PABPC1 knockdown induced the inhibition of BXPC3 cell proliferation, migration, and invasion. CONCLUSION: The results of this study indicate that PABPC1 may function as a tumor promoter in PAAD, accelerating BXPC3 cell proliferation and metastasis by regulating COL12A1 expression.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Proliferation/genetics , Collagen Type XII/genetics , Collagen Type XII/metabolism , GTPase-Activating Proteins , Pancreatic Neoplasms/genetics , Prognosis , Poly(A)-Binding Protein I/metabolism , Pancreatic Neoplasms
3.
Mol Biol Rep ; 50(9): 7427-7435, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37458870

ABSTRACT

BACKGROUND: Mutations within the COL12A1 gene have been linked with the onset of congenital Ullrich muscular dystrophy 2 (UCMD2) and Bethlem myopathy. The severity of the symptoms exhibited is dependent on the mutation's type and whether it is heterozygous or homozygous. METHODS: We used whole-exome sequencing to identify disease-causing variants in a nine-year-old Iranian patient who had weakness, joint contractures, delayed motor development, and other symptoms. We confirmed the pathogenicity of the identified variant using in silico tools and verified its novelty using various databases. We also performed a co-segregation study and confirmed the presence of the variant in the patient's parents by Sanger sequencing. RESULTS: Our analysis identified a novel homozygous missense variant in the affected patient in COL12A1 (c.8828 C > T; p.Pro2943Leu). This is the second reported family with UCMD2 caused by a mutation in COL12A1. Our findings confirm that this mutation results in significantly more severe symptoms than Bethlem myopathy. CONCLUSION: Our investigation contributes to the expanding body of evidence that links mutations in COL12A1 with UCMD2. Our findings confirm that the homozygous mutation in COL12A1 caused this condition and suggest that genetic testing for this mutation may be useful for diagnosing patients with this disease.


Subject(s)
Muscular Dystrophies , Humans , Child , Exome Sequencing , Iran , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics , Mutation/genetics , Collagen Type XII/genetics
4.
Am J Med Genet A ; 191(10): 2631-2639, 2023 10.
Article in English | MEDLINE | ID: mdl-37353357

ABSTRACT

Myopathic Ehlers-Danlos syndrome (mEDS) is a subtype of EDS that is caused by abnormalities in COL12A1. Up-to-date, 24 patients from 15 families with mEDS have been reported, with 14 families showing inheritance in an autosomal dominant manner and one family in an autosomal recessive manner. We encountered an additional patient with autosomal recessive mEDS. The patient is a 47-year-old Japanese man, born to consanguineous parents with no related features of mEDS. After birth, he presented with hypotonia, weak spontaneous movements, scoliosis, and torticollis. He had soft palms but no skin hyperextensibility or fragility. Progressive scoliosis, undescended testes, and muscular torticollis required surgery. During adulthood, he worked normally and had no physical concerns. Clinical exome analysis revealed a novel homozygous variant in COL12A1 (NM_004370.6:c.395-1G > A) at the splice acceptor site of exon 6, leading to in-frame skipping of exon 6. The patient was diagnosed with mEDS. The milder manifestations in the current patient compared with previously reported patients with mEDS might be related to the site of the variant. The variant is located in the genomic region encoding the first von Willebrand factor A domain, which affects only the long isoform of collagen XII, in contrast to the variants in previously reported mEDS patients that affected both the long and short isoforms. Further studies are needed to delineate comprehensive genotype-phenotype correlation of the disorder.


Subject(s)
Ehlers-Danlos Syndrome , Scoliosis , Torticollis , Humans , Male , Middle Aged , Collagen/genetics , Collagen Type XII/genetics , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Mutation , von Willebrand Factor/genetics
5.
Endocr Relat Cancer ; 30(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36877531

ABSTRACT

Immunotherapy has shown promising efficacy for breast cancer (BC) patients. Yet the predictive biomarkers for immunotherapy response remain lacking. Based on two GEO datasets, 53 differentially expressed genes associated with durvalumab treatment response were identified. Using least absolute shrinkage and selection operator (LASSO) and univariate Cox regression, four genes (COL12A1, TNN, SCUBE2, and FDCSP) revealed prognostic value in the TCGA BC cohort. COL12A1 outperformed the others, without overlap in its survival curve. Survival analysis by Kaplan-Meier plotter demonstrated that COL12A1 was negatively associated with BC patients' prognosis. A COL12A1-based nomogram was further developed to predict the overall survival in BC patients. The calibration plot revealed an optimal agreement between nomogram prediction and actual observation. Moreover, COL12A1 expression was significantly up-regulated in BC tissues and COL12A1 knockdown impaired the proliferation of MDA-MB-231 and BT549 cells. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment analysis pathway indicated that the function of COL12A1 was related to immunity-related pathways. Immunological analyses illustrated that COL12A1 was correlated with M2 macrophage infiltration and M2 macrophage markers (transforming growth factor beta 1 (TGFB1), interleukin-10, colony stimulating factor 1 receptor (CSF1R) and CD163) in BC. Immunohistochemistry staining further revealed a highly positive relationship of COL12A1 with TGF-ß1. The co-incubated models of BC cells and M2 macrophges showed COL12A1 knockdown suppressed M2 macrophage infiltration. Additionally, silencing COL12A1 suppressed TGF-B1 protein expression, and treating with TGFB1 could reverse the inhibitory effects on M2 macrophage infiltration by COL12A1 knockdown. Using immunotherapy datasets, we also found elevated expression of COL12A1 predicted poor response to anti-PD-1/PD-L1 therapy. These results reinforce the current understanding of COL12A1's roles in tumorigenesis and immunotherapy response in BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Prognosis , Breast , Immunotherapy , Carcinogenesis , Calcium-Binding Proteins , Adaptor Proteins, Signal Transducing , Collagen Type XII
6.
PLoS One ; 18(1): e0280331, 2023.
Article in English | MEDLINE | ID: mdl-36630412

ABSTRACT

Omidenepag isopropyl (OMDI) is an intraocular pressure (IOP)-lowering drug used to treat glaucoma. The active form of OMDI, omidenepag (OMD), lowers elevated IOP, the main risk factor for glaucoma, by increasing the aqueous humor outflow; however, a detailed understanding of this mechanism is lacking. To clarify the IOP-lowering mechanism of OMDI, the effects of OMD on the mRNA expression of the extracellular matrix, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) were evaluated in human trabecular meshwork cells. Under 2D culture conditions, the mRNA expression of FN1, COL1A1, COL1A2, COL12A1, and COL13A1 decreased in a concentration-dependent manner after 6 or 24 h treatment with 10 nM, 100 nM, and 1 µM OMD, while that of COL18A1 decreased after 6 h treatment with 1 µM OMD. Significant changes in expression were observed for many MMP and TIMP genes. Under 3D culture conditions, the extracellular matrix-related genes COL12A1 and COL13A1 were downregulated by OMD treatment at all three concentrations. Under both 2D and 3D culture conditions, COL12A1 and COL13A1 were downregulated following OMD treatment. Reduction in the extracellular matrix contributes to the decrease in outflow resistance, suggesting that the downregulation of the two related genes may be one of the factors influencing the IOP-lowering effect of OMDI. Our findings provide insights for the use of OMDI in clinical practice.


Subject(s)
Glaucoma , Trabecular Meshwork , Humans , Trabecular Meshwork/metabolism , Down-Regulation , Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/metabolism , Intraocular Pressure , Aqueous Humor/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Collagen Type XII/metabolism
7.
Cancer ; 129(3): 331-332, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36602937
8.
Clin Epigenetics ; 15(1): 13, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36694230

ABSTRACT

BACKGROUND: Collagen type XII alpha 1 chain (COL12A1) is associated with human cancer progression. Nevertheless, the expression pattern and the function of COL12A1 in intrahepatic cholangiocarcinoma (iCCA) remain unknown. The present study was performed to assess the role of COL12A1 in iCCA. RESULTS: A total of 1669 genes, differentially expressed between iCCA and nontumor liver tissue samples, were identified as potential tumor-specific biomarkers for iCCA patients. Of these, COL12A1 was significantly upregulated in clinical iCCA tissue samples and correlated with epithelial-mesenchymal transition gene set enrichment score and advanced tumor stage in clinical iCCA. COL12A1-high expression was associated with the poor prognoses of iCCA patients (n = 421) from four independent cohorts. Promoter hypermethylation-induced downregulation of miR-424-5p resulted in COL12A1 upregulation in clinical iCCA. Experimental knockout of COL12A1 inhibited the proliferation, invasiveness and growth of iCCA cells. MiR-424-5p had a therapeutic potential in iCCA via directly targeting COL12A1. CONCLUSIONS: Promoter hypermethylation-induced miR-424-5p downregulation contributes to COL12A1 upregulation in iCCA. COL12A1 is a promising druggable target for epigenetic therapy of iCCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Collagen Type XII , Epigenesis, Genetic , MicroRNAs , Humans , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Collagen Type XII/genetics , Collagen Type XII/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Up-Regulation , Prognosis
9.
Neurol India ; 71(6): 1257-1259, 2023.
Article in English | MEDLINE | ID: mdl-38174471

ABSTRACT

Collagen XII, a member of a protein family called fibril associated collagen with interrupted triple helices (FACIT), is an important component of extracellular matrix and is essential for bridging the neighbouring fibrils. Mutations in collagen XII have been recently described to cause a rare extracellular matrix-related myopathy in those whose phenotype resembles collagen VI-related dystrophies and were negative for pathogenic variants in COL6A genes. The authors report a 4-year old girl presented with a phenotype mimicking Ullrich congenital muscular dystrophy and genetically confirmed to have pathogenic variants in COL12A1 gene thus, expanding the phenotypic spectrum of COL12A1-related myopathy.


Subject(s)
Muscular Diseases , Muscular Dystrophies , Female , Humans , Child, Preschool , Collagen Type XII/genetics , Collagen Type XII/metabolism , Muscular Diseases/pathology , Muscular Dystrophies/congenital , Collagen/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Mutation/genetics
10.
Nat Biomed Eng ; 6(10): 1105-1117, 2022 10.
Article in English | MEDLINE | ID: mdl-36229661

ABSTRACT

Treatments for osteoarthritis would benefit from the enhanced visualization of injured articular cartilage and from the targeted delivery of disease-modifying drugs to it. Here, by using ex vivo human osteoarthritic cartilage and live rats and minipigs with induced osteoarthritis, we report the application of collagen-binding peptides, identified via phage display, that are home to osteoarthritic cartilage and that can be detected via magnetic resonance imaging when conjugated with a superparamagnetic iron oxide. Compared with the use of peptides with a scrambled sequence, hyaluronic acid conjugated with the collagen-binding peptides displayed enhanced retention in osteoarthritic cartilage and better lubricated human osteoarthritic tissue ex vivo. Mesenchymal stromal cells encapsulated in the modified hyaluronic acid and injected intra-articularly in rats showed enhanced homing to osteoarthritic tissue and improved its regeneration. Molecular docking revealed WXPXW as the consensus motif that binds to the α1 chain of collagen type XII. Peptides that specifically bind to osteoarthritic tissue may aid the diagnosis and treatment of osteoarthritic joints.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Humans , Rats , Swine , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Hyaluronic Acid/metabolism , Lubrication , Collagen Type XII/metabolism , Molecular Docking Simulation , Swine, Miniature , Osteoarthritis/metabolism , Regeneration , Peptides/metabolism
11.
Nat Commun ; 13(1): 4587, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933466

ABSTRACT

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Subject(s)
Breast Neoplasms , Collagen Type XII/metabolism , Neoplasm Metastasis , Tumor Microenvironment , Breast Neoplasms/pathology , Collagen , Collagen Type I , Extracellular Matrix/pathology , Female , Humans , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/pathology , Proteomics
12.
Am J Med Genet A ; 188(5): 1556-1561, 2022 05.
Article in English | MEDLINE | ID: mdl-35019233

ABSTRACT

Autosomal dominant and recessive mutations in COL12A1 cause the Ehlers-Danlos/myopathy overlap syndrome. Here, we describe a boy with fetal hypokinesia, severe neonatal weakness, striking hyperlaxity, high arched palate, retrognathia, club feet, and pectus excavatum. His motor development was initially delayed but muscle strength improved with time while hyperlaxity remained very severe causing recurrent joint dislocations. Using trio exome sequencing and a copy number variation (CNV) analysis tool, we identified an in-frame de novo heterozygous deletion of the exons 45 to 54 in the COL12A1 gene. Collagen XII immunostaining on cultured skin fibroblasts demonstrated intracellular retention of collagen XII, supporting the pathogenicity of the deletion. The phenotype of our patient is slightly more severe than other cases with dominantly acting mutations, notably with the presence of fetal hypokinesia. This case highlights the importance of CNVs analysis in the COL12A1 gene in patients with a phenotype suggesting Ehlers-Danlos/myopathy overlap syndrome.


Subject(s)
Ehlers-Danlos Syndrome , Muscular Diseases , Collagen Type XII/genetics , DNA Copy Number Variations , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Exons , Humans , Hypokinesia/genetics , Male , Muscular Diseases/genetics , Mutation
13.
Am J Pathol ; 192(2): 308-319, 2022 02.
Article in English | MEDLINE | ID: mdl-34774848

ABSTRACT

Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-ß activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-ß latency and activity in vivo was investigated. Functional quantification of latent TGF-ß in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-ß. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-ß activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-ß storage in the extracellular matrix and that collagen XII down-regulates active TGF-ß. Collagen XII dictates stromal structure and function by regulating TGF-ß activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-ß activation and decreased latent storage.


Subject(s)
Collagen Type XII/metabolism , Corneal Stroma/metabolism , Keratinocytes/metabolism , Transforming Growth Factor beta/metabolism , Animals , Collagen Type XII/genetics , Corneal Stroma/pathology , Keratinocytes/pathology , Mice , Mice, Knockout , Transforming Growth Factor beta/genetics
14.
Bioengineered ; 12(2): 10491-10500, 2021 12.
Article in English | MEDLINE | ID: mdl-34723759

ABSTRACT

An early diagnosis and effective prognostic factors would greatly reduce the mortality rate of colorectal cancer (CRC). This research is intended to complete the evaluation of the prognostic value and potential role of miR-1180-3p in CRC. The miR-1180-3p levels were reduced in CRC patients' tissues, blood, and human CRC cell lines. The ability of miR-1180-3p was explored in discrimination of CRC patients and healths and the value in overall survival estimate. The effect of miR-1180-3p dysregulation on the CRC cellular function was investigated. miR-1180-3p is downregulated in CRC tissues, blood and cells than normal ones. This lower expression was correlated with vascular invasion, lymph node metastasis, and TNM stage. With the use of ROC curve, miR-1180-3p showed discriminating ability in CRC patients and healthy subjects. With the result of Kaplan-Meier analysis and multi-multivariate Cox analysis, miR-1180-3p was an independent predictor for CRC patients' overall survival. Utilizing CCK-8, Transwell and matrigel assays, overexpression of miR-1180-3p reduced cancer cell proliferation and mobility, but induced apoptosis, by targeting COL12A1. miR-1180-3p might function as a suppressor in CRC progression and allowed the discovery of a new biomarker for diagnosis, prognosis and therapy target for CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , MicroRNAs/metabolism , Apoptosis/genetics , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Collagen Type XII/metabolism , Colorectal Neoplasms/blood , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Multivariate Analysis , ROC Curve , Risk Factors , Survival Analysis
15.
Math Biosci Eng ; 18(5): 5921-5942, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34517516

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is one of the most common malignant tumors with high mortality rates and a poor prognosis. There is an urgent need to determine the molecular mechanism of PAAD tumorigenesis and identify promising biomarkers for the diagnosis and targeted therapy of the disease. METHODS: Three GEO datasets (GSE62165, GSE15471 and GSE62452) were analyzed to obtain differentially expressed genes (DEGs). The PPI networks and hub genes were identified through the STRING database and MCODE plugin in Cytoscape software. GO and KEGG enrichment pathways were analyzed by the DAVID database. The GEPIA database was utilized to estimate the prognostic value of hub genes. Furthermore, the roles of MMP14 and COL12A1 in immune infiltration and tumor-immune interaction and their biological functions in PAAD were explored by TIMER, TISIDB, GeneMANIA, Metascape and GSEA. RESULTS: A total of 209 common DEGs in the three datasets were obtained. GO function analysis showed that the 209 DEGs were significantly enriched in calcium ion binding, serine-type endopeptidase activity, integrin binding, extracellular matrix structural constituent and collagen binding. KEGG pathway analysis showed that DEGs were mainly enriched in focal adhesion, protein digestion and absorption and ECM-receptor interaction. The 14 genes with the highest degree of connectivity were defined as the hub genes of PAAD development. GEPIA revealed that PAAD patients with upregulated MMP14 and COL12A1 expression had poor prognoses. In addition, TIMER analysis revealed that MMP14 and COL12A1 were closely associated with the infiltration levels of macrophages, neutrophils and dendritic cells in PAAD. TISIDB revealed that MMP14 was strongly positively correlated with CD276, TNFSF4, CD70 and TNFSF9, while COL12A1 was strongly positively correlated with TNFSF4, CD276, ENTPD1 and CD70. GSEA revealed that MMP14 and COL12A1 were significantly enriched in epithelial mesenchymal transition, extracellular matrix receptor interaction, apical junction, and focal adhesion in PAAD development. CONCLUSIONS: Our study revealed that overexpression of MMP14 and COL12A1 is significantly correlated with PAAD patient poor prognosis. MMP14 and COL12A1 participate in regulating tumor immune interactions and might become promising biomarkers for PAAD.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/genetics , B7 Antigens , Biomarkers, Tumor/genetics , Collagen Type XII/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Matrix Metalloproteinase 14/genetics , OX40 Ligand , Pancreatic Neoplasms/genetics , Protein Interaction Maps
16.
J Transl Med ; 19(1): 294, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34233716

ABSTRACT

OBJECTIVE: Diabetic retinopathy, a common complication of diabetes mellitus and a major cause of blindness. circRNAs spongs target miRNA and thus influencing mRNA expression in DR. We investigated the mechanism of circ_001209 in regulating diabetic retinal vascular dysfunction. METHODS: QRT-PCR analysis was performed to detect the expression of miR-15b-5p, COL12A1 and circ_001209 in human retinal vascular endothelial cells (HRVECs) under high glucose conditions. Western blot assay, wound healing assay, transwell assay and tube formation were used to explore the roles of circ_001209/miR-15b-5p/COL12A1 in retinal vascular dysfunction. Bioinformatics analysis and luciferase reporter, RNA-FISH, and overexpression assays were performed to reveal the mechanisms of the circ_001209/miR-15b-5p/COL12A1 interaction. TUNEL staining and H&E staining were used to evaluate the pathological changes in streptozotocin (STZ)-induced DR in rats. RESULTS: Downregulation of miR-15b-5p under HG conditions promoted proliferation, migration, and tube formation of HRVECs. QRT-PCR and western blot results revealed that miR-15b-5p affected the HRVECs function through targeting COL12A1. Under HG conditions, circ_001209, which acts as a sponge of miR-15b-5p, is upregulated. Besides, overexpression of circ_001209 can affect HRVEC function and aggravate retinal injury in diabetic rats. CONCLUSION: Upregulation of circ_001209 contributes to vascular dysfunction in diabetic retinas through regulating miR-15b-5p and COL12A1, providing a potential treatment strategy for diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , MicroRNAs , Animals , Cell Proliferation , Collagen Type XII , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetic Retinopathy/genetics , Endothelial Cells , MicroRNAs/genetics , Rats
17.
Genes (Basel) ; 12(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34062975

ABSTRACT

Temporomandibular disorders (TMDs) may affect up to 25% of the population, with almost 70% of these TMD cases developing malpositioning of the disc over time in what is known as internal derangement (ID). Despite significant efforts, the molecular mechanism underlying disease progression is not yet very well known. In this study, the role of COL12A1 rs970547 and rs240736 polymorphisms as potential genetic factors regulating ID was investigated. The study included 124 Caucasian patients of both sexes after disc displacement without reduction (DDwoR) in either one or two temporomandibular joints (TMJs), either of which meet the criteria for this condition. All patients underwent clinical examination and 3D digital imaging. The COL12A1 rs970547 and rs240736 polymorphisms were evaluated. There were no statistically significant differences in the chi-square test between the study group and healthy controls. The examined COL12A1 rs240736 and rs970547 polymorphisms do not contribute to DDwoR in Polish Caucasians.


Subject(s)
Collagen Type XII/genetics , Polymorphism, Single Nucleotide , Temporomandibular Joint Disorders/genetics , Adult , Female , Humans , Male , Middle Aged , Phenotype , Temporomandibular Joint Disc/pathology , Temporomandibular Joint Disorders/pathology
18.
Matrix Biol ; 95: 52-67, 2021 01.
Article in English | MEDLINE | ID: mdl-33096204

ABSTRACT

Tendons have a uniaxially aligned structure with a hierarchical organization of collagen fibrils crucial for tendon function. Collagen XII is expressed in tendons and has been implicated in the regulation of fibrillogenesis. It is a non-fibrillar collagen belonging to the Fibril-Associated Collagens with Interrupted Triple Helices (FACIT) family. Mutations in COL12A1 cause myopathic Ehlers Danlos Syndrome with a clinical phenotype involving both joints and tendons supporting critical role(s) for collagen XII in tendon development and function. Here we demonstrate the molecular function of collagen XII during tendon development using a Col12a1 null mouse model. Col12a1 deficiency altered tenocyte shape, formation of interacting cell processes, and organization resulting in impaired cell-cell communication and disruption of hierarchal structure as well as decreased tissue stiffness. Immuno-localization revealed that collagen XII accumulated on the tenocyte surface and connected adjacent tenocytes by building matrix bridges between the cells, suggesting that collagen XII regulates intercellular communication. In addition, there was a decrease in fibrillar collagen I in collagen XII deficient tenocyte cultures compared with controls suggesting collagen XII signaling specifically alters tenocyte biosynthesis. This suggests that collagen XII provides feedback to tenocytes regulating extracellular collagen I. Together, the data indicate dual roles for collagen XII in determination of tendon structure and function. Through association with fibrils it functions in fibril packing, fiber assembly and stability. In addition, collagen XII influences tenocyte organization required for assembly of higher order structure; intercellular communication necessary to coordinate long range order and feedback on tenocytes influencing collagen synthesis. Integration of both regulatory roles is required for the acquisition of hierarchal structure and mechanical properties.


Subject(s)
Collagen Type XII/genetics , Ehlers-Danlos Syndrome/genetics , Fibrillar Collagens/genetics , Tendons/metabolism , Animals , Cell Communication/genetics , Collagen/genetics , Disease Models, Animal , Ehlers-Danlos Syndrome/pathology , Humans , Mice , Tendons/growth & development , Tendons/pathology , Tenocytes/metabolism , Tenocytes/pathology
19.
Gene ; 768: 145266, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33129849

ABSTRACT

Mutations in collagen XII have been recently described to cause modifications in the connective tissue which phenotypic demonstration resembles that of collagen VI related myopathies. We describe a Caucasian 14-year old girl who complained to her doctor about not being able to practice schools' sports due to recurrent clavicle dislocation when trying to throw a ball. In addition, when questioned, she also reported a notion of lower strength in the upper limbs when compared to same age peers. Based on the clinical exam performed, a joint hypermobility with a slight reduction of the muscular strength of the upper limbs diagnosis was noted. Targeted sequencing identified a heterozygous missense mutation in COL12A1 - c.8336G > A (p. Arg2779His). Algorithms developed to predict the effect of the changes on the protein structure and function do not agree on the potential impact of this modification. This case shows the importance to consider collagen XII-related disorders when in presence of patients with an overlapping phenotype with both muscle and connective tissue abnormalities, once mutations in collagen VI have been excluded.


Subject(s)
Collagen Type XII/genetics , Connective Tissue Diseases/genetics , Joint Instability/genetics , Muscle Strength/genetics , Muscular Diseases/genetics , Adolescent , Female , Humans , Molecular Diagnostic Techniques/methods
20.
Biomed Res Int ; 2020: 8859826, 2020.
Article in English | MEDLINE | ID: mdl-33381592

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. There are great geographical differences in the incidence of GC, and somatic mutation rates of driver genes are also different. The present study is aimed at screening core prognosis-related candidate genes in Chinese gastric cancer population based on integrated bioinformatics for the early diagnosis and prognosis of GC. METHODS: In the present study, the differentially expressed genes (DEGs) in GC were identified using four microarray datasets from the Gene Expression Omnibus (GEO) database. The samples of these datasets were all from China. Functional enrichment analysis of DEGs was conducted to evaluate the underlying molecular mechanisms involved in GC. Protein-protein interaction (PPI) network and cytoHubba were performed to determine hub genes associated with GC. Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) were performed to validate the hub genes. RESULTS: A total of 240 DEGs were obtained through the RRA method, including 80 upregulated genes and 160 downregulated genes. Upregulated genes were mainly enriched in extracellular matrix organization, extracellular matrix, and extracellular matrix structural constituent. The downregulated genes were mainly enriched in digestion, extracellular space, and oxidoreductase activity. The KEGG pathway enrichment analysis showed that the upregulated genes were mainly associated with ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. And downregulated genes were mainly associated with the metabolism of xenobiotics by cytochrome P450, metabolic pathways, and gastric acid secretion. The transcriptional and translational expression levels of the genes including COL1A1, COL5A2, COL12A1, and VCAN were higher in GC tissues than normal tissues. CONCLUSION: A total of four genes including COL1A1, COL5A2, COL12A1, and VCAN were considered potential GC biomarkers in the Chinese population. And ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway were revealed to be important mechanisms of GC. Our findings provide novel insights into the occurrence and progression of GC in the Chinese population.


Subject(s)
Computational Biology/methods , Mutation , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics , China/epidemiology , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Collagen Type V/genetics , Collagen Type XII/genetics , Geography , Humans , Oligonucleotide Array Sequence Analysis , Prognosis , Protein Interaction Mapping , Proteins/chemistry , Signal Transduction , Stomach Neoplasms/diagnosis , Versicans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...