Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Matrix Biol ; 83: 6-25, 2019 10.
Article in English | MEDLINE | ID: mdl-31220558

ABSTRACT

Osteoporosis is the most common degenerative bone disease that occurs when the balance of bone production and resorption is perturbed. Loss of bone mass or alteration in its quality leads to significant weakening of the bones and subsequently to higher fracture risk. Collagen XIII (ColXIII) is a conserved transmembrane protein expressed in many mesenchymal tissues. Here we show that ColXIII is a regulator of bone remodeling niche. In this study, we found that ColXIII expression is significantly upregulated in osteoporotic patients. In view of that, we studied bone homeostasis in ColXIII-overexpressing mice (Col13a1oe) up to 72 weeks of age and observed a cortical bone overgrowth followed by a drastic bone loss, together with increased bone vascularization. Moreover, our results demonstrate that the ColXIII-derived ectodomain enhances angiogenesis through ß1-integrins and the JNK pathway. Consequently, these data suggest that ColXIII has a role in age-dependent cortical bone deterioration with possible implications for osteoporosis and fracture risk.


Subject(s)
Collagen Type XIII/genetics , Collagen Type XIII/metabolism , Osteoblasts/cytology , Osteoporosis/metabolism , Up-Regulation , Animals , Cells, Cultured , Collagen Type XIII/chemistry , Disease Models, Animal , Humans , Integrin beta1/metabolism , MAP Kinase Signaling System , Mice , Mice, Transgenic , Osteoblasts/metabolism , Osteogenesis , Protein Domains
2.
J Biol Chem ; 282(20): 14898-905, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17344215

ABSTRACT

Type XIII collagen is a type II transmembrane protein with three collagenous (COL1-3) and four noncollagenous domains (NC1-4). The human alpha1(XIII) chain contains altogether eight cysteine residues. We introduced point mutations to six of the most N-terminal cysteine residues, and we show here that the two cysteines 117 and 119 at the end of the N-terminal noncollagenous domain (NC1) are responsible for linking the three alpha1(XIII) chains together by means of interchain disulfide bonds. In addition, the intracellular and transmembrane domains have an impact on trimer formation, whereas the cysteines in the transmembrane domain and the COL1, the NC2, and the C-terminal NC4 domains do not affect trimer formation. We also suggest that the first three noncollagenous domains (NC1-3) harbor repeating heptad sequences typical of alpha-helical coiled-coils, whereas the conserved NC4 lacks a coiled-coil probability. Prevention of the coiled-coil conformation in the NC3 domain is shown here to result in labile type XIII collagen molecules. Furthermore, a new subgroup of collagenous transmembrane proteins, the Rattus norvegicus, Drosophila melanogaster, and Caenorhabditis elegans colmedins, is enlarged to contain also Homo sapiens collomin, and Pan troglodytes, Mus musculus, Tetraodon nigroviridis, and Dano rerio proteins. We suggest that there is a structurally varied group of collagenous transmembrane proteins whose biosynthesis is characterized by a coiled-coil motif following the transmembrane domain, and that these trimerization domains appear to be associated with each of the collagenous domains. In the case of type XIII collagen, the trimeric molecule has disulfide bonds at the junction of the NC1 and COL1 domains, and the type XIII collagen-like molecules (collagen types XXIII and XXV) and the colmedins are similar in that they all have a pair of cysteines in the same location. Moreover, furin cleavage at the NC1 domain can be expected in most of the proteins.


Subject(s)
Collagen Type XIII/biosynthesis , Disulfides/metabolism , Amino Acid Motifs/genetics , Animals , Cell Line , Collagen Type XIII/chemistry , Collagen Type XIII/genetics , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Disulfides/chemistry , Evolution, Molecular , Furin/metabolism , Humans , Point Mutation , Protein Structure, Quaternary/genetics , Protein Structure, Tertiary/genetics
3.
Biochem J ; 393(Pt 1): 43-50, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16091016

ABSTRACT

Type XIII collagen is a transmembrane collagen, which is known to exist also as a soluble variant due to ectodomain shedding. Earlier studies with the recombinant ectodomain have shown it to interact in vitro with a number of extracellular matrix proteins, e.g. Fn (fibronectin). In view of its strong binding to Fn, we examined in the present study whether the released soluble ectodomain can bind to the fibrillar Fn matrix under cell-culture conditions and, if so, influence its assembly. In this study, we demonstrate that the type XIII collagen ectodomain of mammalian cells can associate with Fn fibres and may eventually hamper incorporation of the fibrillar Fn meshwork. The association between type XIII collagen and Fn was implicated to be mediated by the C-terminal end of type XIII collagen and the N-terminal end of Fn. The results presented here imply that the shedding of the type XIII collagen ectodomain results in a biologically active molecule capable of remodelling the structure of the pericellular matrix.


Subject(s)
Collagen Type XIII/chemistry , Collagen Type XIII/metabolism , Fibronectins/biosynthesis , Fibronectins/metabolism , Animals , Cattle , Cells, Cultured , Collagen Type XIII/genetics , Cricetinae , Extracellular Matrix/metabolism , Fibronectins/chemistry , Gene Deletion , Humans , Procollagen/metabolism , Protein Binding , Protein Structure, Tertiary , Up-Regulation
4.
J Biol Chem ; 278(39): 37590-9, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-12832406

ABSTRACT

Type XIII collagen is a homotrimeric transmembrane collagen composed of a short intracellular domain, a single membrane-spanning region, and an extracellular ectodomain with three collagenous domains (COL1-3) separated by short non-collagenous domains (NC1-4). Several collagenous transmembrane proteins have been found to harbor a conserved sequence next to their membrane-spanning regions, and in the case of type XIII collagen this sequence has been demonstrated to be important for chain association. We show here that this 21-residue sequence is necessary but not sufficient for NC1 association. Furthermore, the NC1 association region was predicted to form an alpha-helical coiled-coil structure, which may already begin at the membrane-spanning region, as is also predicted for the related collagen types XXIII and XXV. Interestingly, a second coiled-coil structure is predicted to be located in the NC3 domain of type XIII collagen and in the corresponding domains of types XXIII and XXV. It is found experimentally that the absence of the NC1 coiled-coil domain leads to a lack of disulfide-bonded trimers and misfolding of the membrane-proximal collagenous domain COL1, whereas the COL2 and COL3 domains are correctly folded. We suggest that the NC1 coiled-coil domain is important for association of the N-terminal part of the type XIII collagen alpha chains, whereas the NC3 coiled-coil domain is implicated in the association of the C-terminal part of the molecule. All in all, we propose that two widely separated coiled-coil domains of type XIII and related collagens function as independent oligomerization domains participating in the folding of distinct areas of the molecule.


Subject(s)
Collagen Type XIII/chemistry , Collagen/chemistry , Membrane Proteins/chemistry , Protein Folding , Amino Acid Motifs , Amino Acid Sequence , Animals , Disulfides/chemistry , Humans , Mice , Molecular Sequence Data , Pepsin A/pharmacology , Recombinant Proteins/chemistry
5.
J Biol Chem ; 277(25): 23092-9, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-11956183

ABSTRACT

Type XIII collagen consists of a short N-terminal intracellular domain, a transmembrane domain, and a collagenous ectodomain, and it is found at many sites of cell adhesion. We report on the characterization of recombinant type XIII collagen. The shed ectodomain was purified from insect cell culture medium and shown to form 240-kDa trimers with a T(m) of 42 degrees C. Correct chain association into a triple-helical conformation was confirmed by limited pepsin digestion and CD spectroscopy. Rotary shadowing electron microscopy of the ectodomain revealed it to be a 150-nm rod with two flexible hinges separating 31-, 52-, and 68-nm portions. The rods represent the collagenous domains 1-3, and the hinges coincide with the non-collagenous domains 2 and 3. By using surface plasmon resonance analysis, the ectodomain showed interaction with immobilized fibronectin, nidogen-2, and perlecan with K(D) values in the nanomolar range. The binding sites of type XIII collagen for fibronectin were localized to the collagenous domains, whereas the binding activities for nidogen-2 and perlecan resided in the pepsin-sensitive portions of the ectodomain. Furthermore, the ectodomain bound significantly to heparin, which also inhibited shedding of the ectodomain in insect cell cultures. The results reveal that type XIII collagen is notably distinct in its structure compared with other cell-surface proteins, and the in vitro binding with fibronectin, heparin, and two basement membrane components is indicative of multiple cell-matrix interactions in which this ubiquitously expressed protein participates.


Subject(s)
Carrier Proteins/chemistry , Collagen Type XIII/chemistry , Fibronectins/chemistry , Heparan Sulfate Proteoglycans/chemistry , Heparin/chemistry , Membrane Glycoproteins/chemistry , Amino Acid Sequence , Binding Sites , Calcium-Binding Proteins , Cell Adhesion Molecules , Circular Dichroism , Collagen/chemistry , Dimerization , Dose-Response Relationship, Drug , Glycoproteins/metabolism , Humans , Kinetics , Microscopy, Electron , Models, Biological , Molecular Sequence Data , Pepsin A/chemistry , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Temperature , Time Factors
6.
Am J Pathol ; 159(4): 1581-92, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11583983

ABSTRACT

Type XIII collagen is a type II transmembrane protein found at many sites of cell adhesion in tissues. Homologous recombination was used to generate a transgenic mouse line (Col13a1(N/N)) that expresses N-terminally altered type XIII collagen molecules lacking the short cytosolic and transmembrane domains but retaining the large collagenous ectodomain. The mutant molecules were correctly transported to focal adhesions in cultured fibroblasts derived from the Col13a1(N/N) mice, but the cells showed decreased adhesion when plated on type IV collagen. These mice were viable and fertile, and in immunofluorescence stainings the mutant protein was located in adhesive tissue structures in the same manner as normal alpha1(XIII) chains. In immunoelectron microscopy of wild-type mice type XIII collagen was detected at the plasma membrane of skeletal muscle cells whereas in the mutant mice the protein was located in the adjacent extracellular matrix. Affected skeletal muscles showed abnormal myofibers with a fuzzy plasma membrane-basement membrane interphase along the muscle fiber and at the myotendinous junctions, disorganized myofilaments, and streaming of z-disks. The findings were progressive and the phenotype was aggravated by exercise. Thus type XIII collagen seems to participate in the linkage between muscle fiber and basement membrane, a function impaired by lack of the cytosolic and transmembrane domains.


Subject(s)
Cell Membrane/metabolism , Collagen Type XIII/metabolism , Cytosol/metabolism , Muscular Diseases/etiology , Protein Structure, Tertiary , Amino Acid Sequence/genetics , Animals , Cell Adhesion/physiology , Cells, Cultured , Collagen Type XIII/chemistry , Collagen Type XIII/genetics , Disease Progression , Exons , Fibroblasts/physiology , Gene Deletion , Mice , Mice, Transgenic , Microscopy, Immunoelectron , Molecular Sequence Data , Motor Activity , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL