Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Ophthalmic Physiol Opt ; 44(6): 1058-1071, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39031795

ABSTRACT

PURPOSE: To evaluate whether colour vision normal (CVN) adults pass two Fletcher-Evans (CAM) lantern tests and to investigate the impact of imposed blur on Ishihara, CAM lantern and computerised colour discrimination test (colour assessment and diagnosis test [CAD] and Cambridge colour test [CCT]) results. METHODS: In a pilot experiment, 20 (16 CVN and 4 colour vision deficient [CVD]) participants with normal VA were tested with the CAM lantern. In the main experiment, the impact of imposed dioptric blur (up to +8.00 D) on visual acuity and the Ishihara test, CAM lantern, CAD and CCT was assessed for 15 CVN participants. RESULTS: CVN participants can fail the CAM lantern, with specificity of 81.25% (aviation mode) and 75% (clinical mode), despite following the test requirements of participants having at least 0.18 logMAR (6/9) in the better eye. With blur, test accuracy was affected. As expected, significant detrimental effects of blur on test results were found for logMAR VA and CAM lantern (aviation) with +1.00 D or higher. Ishihara, CAD and CCT results were not detrimentally affected until +8.00 D. Yellow-blue discrimination was more affected by blur for the CAD than the CCT, which was not explained by the different colour spaces used or vectors tested. CONCLUSION: False-positive findings on lantern colour vision tests with small apertures are likely to be increased in patients with blur due to uncorrected refractive error or ocular and visual pathway disease. Other colour vision tests with larger stimuli are more robust to blur.


Subject(s)
Color Perception Tests , Color Vision Defects , Color Vision , Visual Acuity , Humans , Color Perception Tests/methods , Adult , Male , Female , Visual Acuity/physiology , Color Vision Defects/diagnosis , Color Vision Defects/physiopathology , Color Vision/physiology , Young Adult , Pilot Projects , Color Perception/physiology , Middle Aged , Reproducibility of Results
2.
Optom Vis Sci ; 101(7): 477-484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39037723

ABSTRACT

SIGNIFICANCE: Imposing a time limit on the Farnsworth D15 test may prevent patients from compromising the test. PURPOSE: This study aimed to investigate the effect of test time on the Farnsworth D15 color vision test in unpracticed and practiced subjects and determine an optimal test time. METHODS: Twenty-one subjects (mean/standard deviation age, 33.1/9.3 years) with a range of congenital color vision deficiency participated in the study. Pseudoisochromatic plate screening, Farnsworth D15, and anomaloscope testing were performed for classification purposes. At each of 2 visits, 10 trials of the Farnsworth D15 were performed with a range in test times from 30 seconds to 10 minutes. Between visits, subjects practiced the test. Major crossovers were used as the outcome measure. A repeated-measures analysis of variance compared the scores across trials. Post hoc Dunnett's testing analyzed the pairwise data. RESULTS: Although no significant difference in the mean number of major crossovers was found across the 10 trials for the first visit ( F (9, 180) = 1.30, p=0.24), a significant difference was found for the second visit ( F (9, 180) = 4.77, p<0.001). The range of mean number of major crossovers for the second visit was 1.71 to 5.1, with the 30-second trial resulting in the largest number of major crossovers and the longest trial resulting in the smallest number of major crossovers. Analysis showed that a 2-minute time limit resulted in a Farnsworth D15 outcome that would be expected based on the anomaloscope for a majority of subjects. CONCLUSIONS: In this study, test time was found to affect performance in practiced subjects but not in unpracticed subjects. Based on this study, we recommend enforcing a time limit of 2 minutes to discourage those who try to pass the Farnsworth D15 through practice. Additional measures, such as recording patient behavior, can also be taken.


Subject(s)
Color Perception Tests , Color Vision Defects , Humans , Color Vision Defects/physiopathology , Color Vision Defects/diagnosis , Adult , Male , Female , Time Factors , Color Perception Tests/methods , Young Adult , Middle Aged , Reproducibility of Results , Color Perception/physiology , Follow-Up Studies , Color Vision/physiology
3.
Brain Res Bull ; 215: 111026, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971478

ABSTRACT

Achromatopsia is an inherited retinal disease that affects 1 in 30,000-50,000 individuals and is characterised by an absence of functioning cone photoreceptors from birth. This results in severely reduced visual acuity, no colour vision, marked sensitivity to light and involuntary oscillations of the eyes (nystagmus). In most cases, a single gene mutation prevents normal development of cone photoreceptors, with mutations in the CNGB3 or CNGA3 gene being responsible for ∼80 % of all patients with achromatopsia. There are a growing number of studies investigating recovery of cone function after targeted gene therapy. These studies have provided some promise for patients with the CNGA3 mutation, but thus far have found limited or no recovery for patients with the CNGB3 mutation. Here, we developed colour-calibrated visual stimuli designed to isolate cone photoreceptor responses. We combined these with adapted fMRI techniques and pRF mapping to identify if cortical responses to cone-driven signals could be detected in 9 adult patients with the CNGB3 mutation after receiving gene therapy. We did not detect any change in brain activity after gene therapy when the 9 patients were analysed as a group. However, on an individual basis, one patient self-reported a change in colour perception, corroborated by improved performance on a psychophysical task designed to selectively identify cone function. This suggests a level of cone sensitivity that was lacking pre-treatment, further supported by a subtle but reliable change in cortical activity within their primary visual cortex.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels , Genetic Therapy , Magnetic Resonance Imaging , Mutation , Retinal Cone Photoreceptor Cells , Humans , Adult , Color Vision Defects/genetics , Color Vision Defects/therapy , Color Vision Defects/physiopathology , Genetic Therapy/methods , Male , Magnetic Resonance Imaging/methods , Female , Mutation/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Retinal Cone Photoreceptor Cells/physiology , Middle Aged , Young Adult , Photic Stimulation/methods , Color Perception/physiology , Visual Cortex/diagnostic imaging
4.
BMC Med Genomics ; 17(1): 173, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956522

ABSTRACT

BACKGROUND: Autosomal recessive non-syndromic hearing loss (NSHL) and cone dystrophies (CODs) are highly genetically and phenotypically heterogeneous disorders. In this study, we applied the whole exome sequencing (WES) to find the cause of HL and COD in an Iranian consanguineous family with three affected individuals. METHODS: Three members from an Iranian consanguineous family who were suffering from NSHL and visual impairment were ascertained in this study. Comprehensive clinical evaluations and genetic analysis followed by bioinformatic and co-segregation studies were performed to diagnose the cause of these phenotypes. Data were collected from 2020 to 2022. RESULTS: All cases showed congenital bilateral NSHL, decreased visual acuity, poor color discrimination, photophobia and macular atrophy. Moreover, cornea, iris and anterior vitreous were within normal limit in both eyes, decreased foveal sensitivity, central scotoma and generalized depression of visual field were seen in three cases. WES results showed two variants, a novel null variant (p.Trp548Ter) in the PDE6C gene causing COD type 4 (Achromatopsia) and a previously reported variant (p.Ile84Thr) in the PDZD7 gene causing NSHL. Both variants were found in the cis configuration on chromosome 10 with a genetic distance of about 8.3 cM, leading to their co-inheritance. However, two diseases could appear independently in subsequent generations due to crossover during meiosis. CONCLUSIONS: Here, we could successfully determine the etiology of a seemingly complex phenotype in two adjacent genes. We identified a novel variant in the PDE6C gene, related to achromatopsia. Interestingly, this variant could cooperatively cause visual disorders: cone dystrophy and cone-rod dystrophy.


Subject(s)
Color Vision Defects , Cyclic Nucleotide Phosphodiesterases, Type 6 , Pedigree , Adult , Child , Female , Humans , Male , Color Vision Defects/genetics , Consanguinity , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Exome Sequencing , Eye Proteins , Hearing Loss/genetics , Iran , Mutation , Phenotype
5.
Int Ophthalmol ; 44(1): 265, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913194

ABSTRACT

BACKGROUND/AIM: Congenital color vision deficiency (CCVD) is an eye disease characterized by abnormalities in the cone cells in the photoreceptor layer. Visual evoked potentials (VEPs) are electrophysiological tests that physiologically examine the optic nerve, other visual pathways, and the visual cortex. The aim of this research was to determine whether there are VEP abnormalities in CCVD patients. METHODS: Patients with CCVD and healthy individuals were included in this prospective case-control study. Participants with eye disease or neurodegenerative disease were excluded from the study. Pattern reversal VEP (PVEP), flash VEP (FVEP), and optical coherence tomography were performed on all participants. RESULTS: Twenty healthy individuals (15 male) and 21 patients with CCVD (18 male) were included in the study. The mean ages of healthy individuals and patients with CCVD were 29.8 ± 9.6 and 31.1 ± 10.9 years (p = 0.804). Retinal nerve fiber layer thickness and central macular thickness values did not differ between the two groups. In PVEP, Right P100, Left N75, P100, N135 values were delayed in CCVD patients compared to healthy individuals (p = 0.001, p = 0.032, p = 0.003, p = 0.032). At least one PVEP and FVEP abnormality was present in nine (42.9%) and six (28.6%) of the patients, respectively. PVEP or FVEP abnormalities were found in 13 (61.9%) of the patients. CONCLUSION: This study indicated that there may be PVEP and FVEP abnormalities in patients with CCVD.


Subject(s)
Color Vision Defects , Evoked Potentials, Visual , Tomography, Optical Coherence , Humans , Evoked Potentials, Visual/physiology , Male , Female , Color Vision Defects/physiopathology , Color Vision Defects/diagnosis , Color Vision Defects/congenital , Prospective Studies , Adult , Tomography, Optical Coherence/methods , Case-Control Studies , Young Adult , Middle Aged , Adolescent , Visual Acuity/physiology
6.
Genes (Basel) ; 15(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927662

ABSTRACT

Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.


Subject(s)
Color Vision Defects , Cone-Rod Dystrophies , Retinal Cone Photoreceptor Cells , Humans , Color Vision Defects/genetics , Cone-Rod Dystrophies/genetics , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Cone Dystrophy/genetics , Blindness/genetics , Animals , Genetic Therapy/methods
7.
Vision Res ; 222: 108435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889504

ABSTRACT

In natural scenes, visual discrimination of colored surfaces by individuals with X-linked dichromacy is known to be only a little poorer than in normal trichromacy. This surprising result may be related to the properties of the colors of these scenes, like the shape and orientation of the color gamut, uneven frequency, and a considerable variation in lightness. It is unclear, however, how much each of these factors contributes to the small impairment in discrimination, in particular, what is the contribution of the orientation of the gamut. We measured the discrimination of colors from natural scenes by six normal trichromats and six dichromats. Colors were drawn either from the original color gamut of the scenes or from gamut-rotated versions of the scenes. Pairs of colors were randomly drawn from hyperspectral images of one rural and one urban environment and presented on a screen. As expected, dichromats were only a little poorer than normal trichromats at discrimination but the disadvantage varied systematically with the orientation of the color gamut by a factor of about three with a minimum around a yellow-green axis. Dichromats also took longer to respond, and the response times were modulated with the orientation of the color gamut in a similar way as the loss in discrimination. For the scenes tested here, these results imply an important impact of the orientation of the gamut on discrimination. They also indicate that the predominantly yellow-blue orientation of the gamut of natural scene might not be optimal for discrimination in dichromacy.


Subject(s)
Color Perception , Color Vision Defects , Discrimination, Psychological , Humans , Color Perception/physiology , Adult , Male , Color Vision Defects/physiopathology , Discrimination, Psychological/physiology , Female , Photic Stimulation/methods , Young Adult , Sensory Thresholds/physiology
8.
Int Ophthalmol ; 44(1): 276, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916772

ABSTRACT

PURPOSE: To evaluate mesopic and photopic contrast sensitivity in patients with congenital red-green color vision deficiency regarding with and without glare conditions and to compare these findings with age- and gender-matched healthy controls with normal color vision. METHODS: Patients with congenital red-green color vision deficiency and age- and gender-matched healthy controls were included in this cross-sectional comparative study. Contrast sensitivity measurements were taken from all subjects in 4 different conditions; binocular mesopic-without glare, mesopic-with glare, photopic-without glare, photopic-with glare, and the results were compared. RESULTS: Twenty one patients with color vision deficiency (13 deuteranopic, 8 protanopic) and 22 age- and gender-matched healthy controls were included in the study. The mean age was 35.2 ± 13.5 years in the protan group, 30.6 ± 7.7 years in the deutan group, 32.0 ± 8.8 years in the control group, and there was no significant difference in age between the groups (P > 0.05). The mean mesopic and photopic contrast sensitivity values of the groups at all spatial frequencies (1.5, 3, 6, 12, 18 cpd) were not statistically significant when evaluated by the multifactor repeated measures test of ANOVA to evaluate the effect of light conditions (with and without glare) (P > .05). CONCLUSION: Mesopic and photopic contrast sensitivity values of patients with congenital red-green color vision deficiency were similar to healthy controls regarding with and without glare conditions.


Subject(s)
Color Vision Defects , Color Vision , Contrast Sensitivity , Humans , Contrast Sensitivity/physiology , Color Vision Defects/physiopathology , Color Vision Defects/diagnosis , Female , Male , Cross-Sectional Studies , Adult , Color Vision/physiology , Young Adult , Middle Aged , Mesopic Vision/physiology , Glare , Visual Acuity , Adolescent
9.
Optom Vis Sci ; 101(6): 336-341, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38913502

ABSTRACT

SIGNIFICANCE: We report on photoaversion and patient-reported quality of life in Danish patients with achromatopsia and evaluate the best optical rehabilitation. Our results contribute to the evaluation of outcome measures in therapy trials and aid in providing the best optical rehabilitation for patients with this and clinically similar conditions. PURPOSE: This study aimed to investigate the vision-related quality of life, the impact of photoaversion on daily living, and the best optical rehabilitation in a cohort of achromatopsia patients, including testing the hypothesis that red light-attenuating filters are generally preferred. METHODS: Patients with genetically verified achromatopsia were recruited. Investigations included the 25-item Visual Function Questionnaire and supplementary questions regarding photoaversion and visual aids. Patients were evaluated by a low vision optometrist and given the choice between different light-attenuating filters. First, two specially designed red and gray filters both transmitting 6% light, and then a pre-defined broader selection of filters. Best-corrected visual acuity and contrast sensitivity were measured without filters and with the two trial filters. RESULTS: Twenty-seven patients participated. Median 25-item Visual Function Questionnaire composite score was 73, with the lowest median score in the subscale near vision (58) and the highest in ocular pain (100). The majority of patients (88%) reported that light caused them discomfort, and 92% used aid(s) to reduce light. Ninety-six percent (26 of 27) preferred the gray filter to the red indoors; 74% (20 of 27) preferred the gray filter. Contrast sensitivity was significantly better with the gray filter compared with no filter (p=0.003) and the red filter (p=0.002). CONCLUSIONS: Our cohort has a relatively high vision-related quality of life compared with other inherited retinal diseases, but photoaversion has a large impact on visual function. Despite what could be expected from a theoretical point of view, red filters are not generally preferred.


Subject(s)
Color Vision Defects , Quality of Life , Visual Acuity , Humans , Male , Female , Color Vision Defects/rehabilitation , Color Vision Defects/physiopathology , Visual Acuity/physiology , Adult , Middle Aged , Surveys and Questionnaires , Young Adult , Adolescent , Contrast Sensitivity/physiology , Aged , Activities of Daily Living , Eyeglasses , Child
10.
Doc Ophthalmol ; 149(1): 11-21, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871951

ABSTRACT

PURPOSE: The aim of this exploratory study is to investigate the role of S-cones in oscillatory potentials (OPs) generation by individuals with blue-cone monochromacy (BCM), retaining S-cones, and achromatopsia (ACHM), lacking cone functions. METHODS: This retrospective study analyzed data from 39 ACHM patients, 20 BCM patients, and 26 controls. Central foveal thickness was obtained using spectral-domain optical coherence tomography, while amplitude and implicit time (IT) of a- and b-waves were extracted from the ISCEV Standard dark-adapted 3 cd.s.m-2 full-field ERG (ffERG). Time-frequency analysis of the same measurement enabled the extraction of OPs, providing insights into the dynamic characteristics of the recorded signal. RESULTS: Both ACHM and BCM groups showed a significant reduction (p < .00001) of a- and b-wave amplitudes and ITs as well as the power of the OPs compared to the control groups. The comparison between ACHM and BCM didn't show any statistically significant differences in the electrophysiological parameters. The analysis of covariance revealed significantly reduced central foveal thickness in the BCM group compared to ACHM and controls (p < .00001), and in ACHM compared to controls (p < .00001), after age correction and Tukey post-hoc analysis. CONCLUSIONS: S-cones do not significantly influence OPs, and the decline in OPs' power is not solely due to a reduced a-wave. This suggests a complex non-linear network influenced by photoreceptor inputs. Morphological changes don't correlate directly with functional alterations, prompting further exploration of OPs' function and physiological role.


Subject(s)
Color Vision Defects , Electroretinography , Retinal Cone Photoreceptor Cells , Tomography, Optical Coherence , Humans , Color Vision Defects/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Retrospective Studies , Male , Female , Middle Aged , Adult , Visual Acuity/physiology , Young Adult , Aged , Dark Adaptation/physiology , Adolescent
11.
Prog Retin Eye Res ; 101: 101272, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761874

ABSTRACT

Objective assessment of the visual system can be performed electrophysiologically using the visual evoked potential (VEP). In many clinical circumstances, this is performed using high contrast achromatic patterns or diffuse flash stimuli. These methods are clinically valuable but they may only assess a subset of possible physiological circuitries within the visual system, particularly those involved in achromatic (luminance) processing. The use of chromatic VEPs (cVEPs) in addition to standard VEPs can inform us of the function or dysfunction of chromatic pathways. The chromatic VEP has been well studied in human health and disease. Yet, to date our knowledge of their underlying mechanisms and applications remains limited. This likely reflects a heterogeneity in the methodology, analysis and conclusions of different works, which leads to ambiguity in their clinical use. This review sought to identify the primary methodologies employed for recording cVEPs. Furthermore cVEP maturation and application in understanding the function of the chromatic system under healthy and diseased conditions are reviewed. We first briefly describe the physiology of normal colour vision, before describing the methodologies and historical developments which have led to our understanding of cVEPs. We thereafter describe the expected maturation of the cVEP, followed by reviewing their application in several disorders: congenital colour vision deficiencies, retinal disease, glaucoma, optic nerve and neurological disorders, diabetes, amblyopia and dyslexia. We finalise the review with recommendations for testing and future directions.


Subject(s)
Evoked Potentials, Visual , Humans , Evoked Potentials, Visual/physiology , Color Vision Defects/physiopathology , Color Vision/physiology , Color Perception/physiology
12.
Sci Rep ; 14(1): 9551, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664551

ABSTRACT

Primary congenital glaucoma is a rare disease that occurs in early birth and can lead to low vision. Evaluating affected children is challenging and there is a lack of studies regarding color vision in pediatric glaucoma patients. This cross-sectional study included 21 eyes of 13 children with primary congenital glaucoma who were assessed using the Farnsworth D-15 test to evaluate color vision discrimination and by spectral domain optical coherence tomography to measure retinal fiber layer thickness. Age, visual acuity, cup-to-disc ratio and spherical equivalent data were also collected. Global and sectional circumpapillary and macular retinal fiber layer thicknesses were measured and compared based on color vision test performance. Four eyes (19%) failed the color vision test with diffuse dyschromatopsia patterns. Only age showed statistical significance in color vision test performance. Global and sectional circumpapillary and macular retinal fiber layer thicknesses were similar between the color test outcomes dyschromatopsia and normal. While the color vision test could play a role in assessing children with primary congenital glaucoma, further studies are needed to correlate it with damage to retinal fiber layer thickness.


Subject(s)
Color Vision , Glaucoma , Tomography, Optical Coherence , Humans , Female , Male , Child , Cross-Sectional Studies , Tomography, Optical Coherence/methods , Glaucoma/congenital , Glaucoma/diagnostic imaging , Glaucoma/physiopathology , Glaucoma/pathology , Glaucoma/diagnosis , Child, Preschool , Color Vision/physiology , Visual Acuity , Adolescent , Color Vision Defects/physiopathology , Color Vision Defects/congenital , Color Perception/physiology , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Color Perception Tests
13.
Invest Ophthalmol Vis Sci ; 65(4): 16, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38587442

ABSTRACT

Purpose: Achromatopsia (ACHM) is an autosomal recessive retinal disease associated with reduced or absent cone function. There is debate regarding the extent to which cone structure shows progressive degeneration in patients with ACHM. Here, we used optical coherence tomography (OCT) images to evaluate outer nuclear layer (ONL) thickness and ellipsoid zone (EZ) integrity over time in individuals with ACHM. Methods: Sixty-three individuals with genetically confirmed ACHM with follow-up ranging from about 6 months to 10 years were imaged using either Bioptigen or Cirrus OCT. Foveal cone structure was evaluated by assessing EZ integrity and ONL thickness. Results: A total of 470 OCT images were graded, 243 OD and 227 OS. The baseline distribution of EZ grades was highly symmetrical between eyes (P = 0.99) and there was no significant interocular difference in baseline ONL thickness (P = 0.12). The EZ grade remained unchanged over the follow-up period for 60 of 63 individuals. Foveal ONL thickness showed a clinically significant change in only 1 of the 61 individuals analyzed, although detailed adaptive optics imaging revealed no changes in cone density in this individual. Conclusions: ACHM appears to be a generally stable condition, at least over the follow-up period assessed here. As cones are the cellular targets for emerging gene therapies, stable EZ and ONL thickness demonstrate therapeutic potential for ACHM, although other aspects of the visual system need to be considered when determining the best timing for therapeutic intervention.


Subject(s)
Color Vision Defects , Humans , Color Vision Defects/diagnostic imaging , Color Vision Defects/genetics , Tomography, Optical Coherence , Retinal Cone Photoreceptor Cells , Fovea Centralis , Retina
14.
Invest Ophthalmol Vis Sci ; 65(4): 3, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558093

ABSTRACT

Purpose: To describe and evaluate a novel method to determine the validity of measurements made using cycle-by-cycle (CxC) recording techniques in patients with advanced retinal degenerations (RD) having low-amplitude flicker electroretinogram (ERG) responses. Methods: The method extends the original CxC recording algorithm introduced by Sieving et al., retaining the original recording setup and the preliminary analysis of raw data. Novel features include extended use of spectrum analysis, reduction of errors due to known sources, and a comprehensive statistical assessment using three different tests. The method was applied to ERG recordings from seven patients with RD and two patients with CNGB3 achromatopsia. Results: The method was implemented as a Windows application to processes raw data obtained from a commercial ERG system, and it features a computational toolkit for statistical assessment of ERG recordings with amplitudes as low as 1 µV, commonly found in advanced RD patients. When recorded using conditions specific for eliciting cone responses, none of the CNGB3 patients had a CxC validated response, indicating that no signal artifacts were present with our recording conditions. A comparison of the presented method with conventional 30 Hz ERG was performed. Bland-Altman plots indicated good agreement (mean difference, -0.045 µV; limits of agreement, 0.193 to -0.282 µV) between the resulting amplitudes. Within-session test-retest variability was 15%, comparing favorably to the variability of standard ERG amplitudes. Conclusions: This novel method extracts highly reliable clinical recordings of low-amplitude flicker ERGs and effectively detects artifactual responses. It has potential value both as a cone outcome variable and planning tool in clinical trials on natural history and treatment of advanced RDs.


Subject(s)
Color Vision Defects , Retinal Degeneration , Humans , Electroretinography/methods , Retinal Degeneration/diagnosis , Retinal Cone Photoreceptor Cells/physiology , Photic Stimulation , Retina/physiology
15.
Yi Chuan ; 46(4): 346-354, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632096

ABSTRACT

Red-green colour blindness is a classic example for the teaching of X-linked recessive inheritance in genetics course. However, there are lots of types of color vision deficiencies besides red-green colour blindness. Different color vision deficiencies caused by different genes may have different modes of inheritance. In recent years, many research achievements on colour blindness have been made. These achievements could be used as teaching resources in genetics course. Here, we summarize the construction of genetics teaching resources related to colour blindness and their application in genetics teaching in several chapters such as introduction, cellular and molecular basis of genetics, sex-linked inheritance, chromosomal aberration, gene mutation and advances in genetics. Teacher could use the resources in class or after class with different teaching methods such as questioning teaching method and task method. It may expand students' academic horizons and inspire students' interest in genetics besides grasping basic genetic knowledge.


Subject(s)
Color Vision Defects , Genetics , Humans , Color Vision Defects/genetics , Mutation , Chromosome Aberrations , Teaching
17.
Vision Res ; 218: 108381, 2024 05.
Article in English | MEDLINE | ID: mdl-38522412

ABSTRACT

EnChroma filters are aids designed to improve color vision for anomalous trichromats. Their use is controversial because the results of lab-based assessments of their effectiveness have so far largely failed to agree with positive anecdotal reports. However, the effectiveness of EnChroma filters will vary depending on the conditions of viewing, including whether the stimuli are broadband reflective surfaces or colors presented on RGB displays, whether illumination spectra are broadband or narrowband, the transmission spectra of particular filters, and the cone spectral sensitivity functions of the observer. We created a model of anomalous trichromatic color vision to predict the effects of EnChroma filters on the color signals impaired in anomalous trichromacy. Using the model we varied illumination, filter type and observer cone sensitivity functions, and tested the effect of presenting colors as broadband reflective surfaces or on RGB displays. We also used hyperspectral images to assess the impact of the filters on anomalous trichromats' color vision for natural scenes. Model results predicted that the filters should be broadly effective at enhancing anomalous trichromats' equivalent to L/(L + M) chromatic contrasts under a range of viewing conditions, but are substantially more effective for deuteranomals than for protanomals. The filters are predicted to be more effective for broadband reflective surfaces presented under broadband illuminants than for surfaces presented under narrowband illuminants or for colors presented on RGB displays. Since the potential impacts of contrast adaptation and perceptual learning are not considered in the model, it needs to be empirically validated. Results of empirical tests of the effects of EnChroma filters on deuteranomalous color vision in comparison with model predictions are presented in an accompanying paper (Somers et al., in prep.).


Subject(s)
Color Vision Defects , Color Vision , Humans , Color Perception , Color Perception Tests/methods , Retinal Cone Photoreceptor Cells , Color
18.
Vision Res ; 218: 108390, 2024 05.
Article in English | MEDLINE | ID: mdl-38531192

ABSTRACT

Manufacturers of notch filter-based aids for color vision claim that their products can enhance color perception for people with anomalous trichromacy, a form of color vision deficiency (CVD). Anecdotal reports imply that people with CVD can have radically enhanced color vision when using the filters. However, existing empirical research largely focussed on the effect of notch filters on performance on diagnostic tests for CVD has not found that they have any substantial effect. Informed by a model of anomalous trichromatic color vision, we selected stimuli predicted to reveal the effects of EnChroma filters. Using these stimuli, we tested the ability of EnChroma filters to enhance color vision for 10 deuteranomalous trichromats in three experiments: 1. asymmetric color matching between test and control filter conditions, 2. color discrimination measured using four alternative forced-choice, and 3. color appearance measured using dissimilarity ratings to reconstruct subjective color spaces using multidimensional scaling. To investigate potential effects of long-term adaptation or perceptual learning, participants completed all three experiments at two time points, on first exposure to the filters, and after a week of regular use. We found a significant effect of the filters on color matches in the direction predicted by the model at both time points, implying that the filters can enhance the anomalous trichromatic color gamut. However, we found minimal effect of the filters on color discrimination at threshold. We found a significant effect of the filters in enhancing the appearance of colors along the red-green axis at the first time point, and a trend in the same direction at the second time point. Our results provide the first quantitative experimental evidence that notch filters can enhance color perception for anomalous trichromats.


Subject(s)
Cardiovascular Diseases , Color Vision Defects , Color Vision , Humans , Color Perception Tests/methods , Color Perception , Color
19.
Ophthalmic Genet ; 45(2): 153-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419580

ABSTRACT

BACKGROUND: ATF6-associated Achromatopsia (ACHM) is a rare autosomal recessive disorder characterized by reduction of visual acuity, photophobia, nystagmus, and poor color vision. METHODS: Detailed ophthalmological examinations were performed in a Chinese patient with ACHM. Whole exome sequencing and Sanger sequencing were performed to detect the disease-causing gene in the patient. RESULTS: A 6-year-old girl presented photophobia, low vision and reduced color discrimination. Small yellow lesion in the macula of both eyes was observed. FAF demonstrated hypofluorescence in the macular fovea. OCT images revealed interruption of ellipsoid and interdigitation zone in the foveal area and a loss of the foveal pit. ERG showed relatively normal rod responses and unrecordable cone responses. Sequencing result identified a novel splicing variant c.354 + 6T>C in the ATF6 gene (NM_007348.4). CONCLUSIONS: We reported detailed clinical features and genetic analysis of a new Chinese ATF6-associated patient with ACHM.


Subject(s)
Color Vision Defects , Child , Female , Humans , Activating Transcription Factor 6/genetics , China , Color Vision Defects/diagnosis , Photophobia/diagnosis , Photophobia/pathology , Retinal Cone Photoreceptor Cells/pathology , Tomography, Optical Coherence/methods
20.
N Engl J Med ; 390(6): 492-495, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38314808
SELECTION OF CITATIONS
SEARCH DETAIL