Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.140
Filter
1.
Neuroimage ; 291: 120571, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38518829

ABSTRACT

DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.


Subject(s)
Contrast Media , Deep Learning , Humans , Contrast Media/pharmacokinetics , Computer Simulation , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Algorithms , Reproducibility of Results
2.
J Ultrasound Med ; 43(6): 1063-1080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440926

ABSTRACT

BACKGROUND: Acoustically activatable perfluoropropane droplets (PD) can be formulated from commercially available microbubble preparations. Diagnostic transthoracic ultrasound frequencies have resulted in acoustic activation (AA) predominately within myocardial infarct zones (IZ). OBJECTIVE: We hypothesized that the AA area following acute coronary ischemia/reperfusion (I/R) would selectively enhance the developing scar zone, and target bioeffects specifically to this region. METHODS: We administered intravenous PD in 36 rats and 20 pigs at various stages of myocardial scar formation (30 minutes, 1 day, and 7 days post I/R) to determine what effect infarct age had on the AA within the IZ. This was correlated with histology, myeloperoxidase activity, and tissue nitrite activity. RESULTS: The degree of AA within the IZ in rats was not associated with collagen content, neutrophil infiltration, or infarct age. AA within 24 hours of I/R was associated with increased nitric oxide utilization selectively within the IZ (P < .05 compared with remote zone). The spatial extent of AA in pigs correlated with infarct size only when performed before sacrifice at 7 days (r = .74, P < .01). CONCLUSIONS: Acoustic activation of intravenous PD enhances the developing scar zone following I/R, and results in selective tissue nitric oxide utilization.


Subject(s)
Fluorocarbons , Myocardial Infarction , Animals , Fluorocarbons/pharmacokinetics , Swine , Rats , Myocardial Infarction/diagnostic imaging , Male , Contrast Media/pharmacokinetics , Nanoparticles , Rats, Sprague-Dawley , Myocardium/metabolism , Disease Models, Animal , Myocardial Reperfusion Injury/diagnostic imaging , Microbubbles , Female , Ultrasonography/methods
3.
Magn Reson Imaging ; 109: 238-248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508292

ABSTRACT

PURPOSE: Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied. METHODS: The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution. RESULTS: The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data. Further increasing of the sampling intervals led to systematic distortions, such as lowering and broadening of the 1st pass peak. The resulting perfusion-parameter estimation error was below 10% for the sampling intervals up to 3 s (synthetic data), in line with the real data perfusion-parameter boxplots which remained unchanged up to the sampling interval 3.6 s. CONCLUSION: We show that use of blind deconvolution decreases the demands on temporal resolution in DCE-MRI from about 1.5 s (in case of measured arterial input functions) to 3-4 s. This can be exploited in increased spatial resolution or larger organ coverage.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Perfusion , Time Factors , Algorithms
4.
J Control Release ; 368: 728-739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493951

ABSTRACT

Despite the potential of the enhanced permeability and retention (EPR) effect in tumor passive targeting, many nanotherapeutics have failed to produce meaningful clinical outcomes due to the variable and challenging nature of the tumor microenvironment (TME) and EPR effect. This EPR variability across tumors and inconsistent translation of nanomedicines from preclinical to clinical settings necessitates a reliable method to assess its presence in individual tumors. This study aimed to develop a reliable and non-invasive approach to estimate the EPR effect in tumors using a clinically compatible quantitative magnetic resonance imaging (qMRI) technique combined with a nano-sized MRI contrast agent. A quantitative MR imaging was developed using a dynamic contrast-enhanced (DCE) MRI protocol. Then, the permeability and retention of the nano-sized MRI contrast agent were evaluated in three different ovarian xenograft tumor models. Results showed significant differences in EPR effects among the tumor models, with tumor growth influencing the calculated parameters of permeability (Ktrans) and retention (Ve) based on Tofts pharmacokinetic (PK) modeling. Our data indicate that the developed quantitative DCE-MRI method, combined with the Tofts PK modeling, provides a robust and non-invasive approach to screen tumors for their responsiveness to nanotherapeutics. These results imply that the developed qMRI method can be beneficial for personalized cancer treatments by ensuring that nanotherapeutics are administered only to patients with tumors showing sufficient EPR levels.


Subject(s)
Contrast Media , Ovarian Neoplasms , Female , Humans , Contrast Media/pharmacokinetics , Nanomedicine , Models, Theoretical , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Tumor Microenvironment
5.
Med Eng Phys ; 123: 104092, 2024 01.
Article in English | MEDLINE | ID: mdl-38365330

ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used to assess tissue vascularization, particularly in oncological applications. However, the most widely used pharmacokinetic (PK) models do not account for contrast agent (CA) diffusion between neighboring voxels, which can limit the accuracy of the results, especially in cases of heterogeneous tumors. To address this issue, previous works have proposed algorithms that incorporate diffusion phenomena into the formulation. However, these algorithms often face convergence problems due to the ill-posed nature of the problem. In this work, we present a new approach to fitting DCE-MRI data that incorporates CA diffusion by using Physics-Informed Neural Networks (PINNs). PINNs can be trained to fit measured data obtained from DCE-MRI while ensuring the mass conservation equation from the PK model. We compare the performance of PINNs to previous algorithms on different 1D cases inspired by previous works from literature. Results show that PINNs retrieve vascularization parameters more accurately from diffusion-corrected tracer-kinetic models. Furthermore, we demonstrate the robustness of PINNs compared to other traditional algorithms when faced with noisy or incomplete data. Overall, our results suggest that PINNs can be a valuable tool for improving the accuracy of DCE-MRI data analysis, particularly in cases where CA diffusion plays a significant role.


Subject(s)
Algorithms , Neural Networks, Computer , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods
6.
Invest Radiol ; 59(3): 252-258, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37493284

ABSTRACT

OBJECTIVES: Gadolinium-based contrast agents (GBCAs) are indispensable in contrast-enhanced magnetic resonance imaging. A higher risk of gadolinium deposition in linear GBCAs required the introduction of macrocyclic GBCAs with a stable molecular structure. We conducted the first-in-human study to evaluate the safety, tolerability, and pharmacokinetics (PKs) of HNP-2006, a novel macrocyclic GBCA, in healthy male subjects. MATERIALS AND METHODS: A randomized, placebo-controlled, double-blind, single-ascending dose study was conducted. Subjects received either a single intravenous bolus injection of HNP-2006 or its matching placebo with a treatment-to-placebo ratio of 6:2 at the dose level of 0.02, 0.05, 0.1, 0.2, and 0.3 mmol/kg. Safety was assessed through routine clinical assessments. Blood sampling and urine collection were performed up to 72 hours postdose for PK assessments. Noncompartmental methods were used to calculate PK parameters, and a population PK model was constructed. RESULTS: Overall, 40 subjects completed the study. Fourteen subjects reported 22 treatment-emergent adverse events (TEAEs). The severity of all TEAEs was mild, and the HNP-2006 dose was associated with the incidence of TEAEs. The most common TEAEs included nausea and dizziness, which occurred within an hour of administration. HNP-2006 was rapidly eliminated by urinary excretion with a half-life of 1.8-2.0 hours and showed a dose-proportional PK. A 2-compartment model had the best fit with the population PK analysis. CONCLUSIONS: A single intravenous dose of HNP-2006 was well-tolerated and safe up to 0.30 mmol/kg. HNP-2006 was rapidly excreted in urine and exhibited dose-independent PK profiles.


Subject(s)
Contrast Media , Gadolinium , Humans , Male , Contrast Media/pharmacokinetics , Gadolinium/pharmacokinetics , Healthy Volunteers , Magnetic Resonance Imaging , Area Under Curve , Double-Blind Method , Dose-Response Relationship, Drug
7.
Magn Reson Med ; 91(5): 1774-1786, 2024 May.
Article in English | MEDLINE | ID: mdl-37667526

ABSTRACT

PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Contrast Media/pharmacokinetics , Reproducibility of Results , Magnetic Resonance Imaging/methods , Perfusion , Perfusion Imaging/methods
8.
Invest Radiol ; 59(2): 124-130, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37812485

ABSTRACT

ABSTRACT: This review describes the pharmacokinetics, efficacy, and safety of gadopiclenol, a new macrocyclic gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration at the dose of 0.05 mmol/kg. Gadopiclenol is a high relaxivity contrast agent that shares similar pharmacokinetic characteristics with other macrocyclic GBCAs, including a predominant renal excretion. In pediatric patients aged 2-17 years, the pharmacokinetic parameters (assessed through a population pharmacokinetics model) were comparable to those observed in adults, indicating no need for age-based dose adjustment. For contrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) and body indications, gadopiclenol at 0.05 mmol/kg was shown to be noninferior to gadobutrol at 0.1 mmol/kg in terms of 3 lesion visualization parameters (ie, lesion border delineation, internal morphology, and contrast enhancement). Moreover, for contrast-enhanced MRI of the CNS, compared with gadobenate dimeglumine at 0.1 mmol/kg, gadopiclenol exhibited superior contrast-to-noise ratio at 0.1 mmol/kg and comparable contrast-to-noise ratio at 0.05 mmol/kg. A pooled safety analysis of 1047 participants showed a favorable safety profile for gadopiclenol. Comparative studies showed that the incidence and nature of adverse drug reactions with gadopiclenol were comparable to those observed with other GBCAs. Importantly, no significant safety concerns were identified in pediatric and elderly patients, as well as in patients with renal impairment. Overall, these findings support the clinical utility and safety of gadopiclenol for MRI in adult and pediatric patients aged 2 years and older in CNS and body indications.


Subject(s)
Contrast Media , Organometallic Compounds , Adult , Aged , Child , Humans , Central Nervous System/diagnostic imaging , Contrast Media/adverse effects , Contrast Media/pharmacokinetics , Gadolinium/adverse effects , Gadolinium/pharmacokinetics , Magnetic Resonance Imaging/methods , Meglumine , Child, Preschool , Adolescent
9.
Invest Radiol ; 59(2): 140-149, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37921759

ABSTRACT

OBJECTIVES: Gadolinium (Gd)-based contrast agents are well established in clinical routine and have been proven safe and effective. However, there is a need for "next-generation" Gd-based contrast agents that would allow lowering the Gd dose used for routine contrast-enhanced magnetic resonance imaging procedures. The objective of this first-in-human study was to investigate the pharmacokinetic profile, safety, and tolerability of gadoquatrane, a novel high-relaxivity Gd-based contrast agent. MATERIALS AND METHODS: This study was conducted in 2018/2019 as a prospective, randomized, single-blind, single-dose, placebo-controlled, escalating-dose study. Healthy volunteers were randomly assigned (6:2) to intravenous administration of gadoquatrane (0.025 to 0.2 mmol Gd/kg body weight) or placebo. Study procedures included collection of blood samples and excreta for pharmacokinetic analyses and safety assessments. RESULTS: Forty-nine healthy study participants (mean age ± SD, 35 ± 6.3 years; 24 female) were evaluated. The effective half-life of gadoquatrane in plasma was short and similar in all dose groups (1.4-1.7 hours). Plasma concentrations around the lower quantitation limit (0.0318 µmol Gd/L) were reached 15-72 hours after administration. The volume of distribution at steady state was ~0.2 L/kg in all dose groups. The clearance (total and renal) was ~0.1 L/h per kilogram in all groups. Across dose groups, the exposure of gadoquatrane increased dose-proportionally. Metabolite profiling revealed no hint of degradation in vivo or release of free Gd. Seven of 36 participants (19.4%) receiving gadoquatrane and 4 of 13 participants (30.8%) receiving placebo experienced mild or moderate treatment-emergent adverse events. No serious adverse events occurred. The analysis of the Gd concentration-QTc interval relationship indicated no risk of QT/QTc prolongation (>10 milliseconds) with gadoquatrane at clinical dose levels. CONCLUSIONS: Gadoquatrane with its high-relaxivity, pharmacokinetic similarity to established Gd-based contrast agents and high tolerability is a promising "next-generation" contrast agent for magnetic resonance imaging.


Subject(s)
Contrast Media , Gadolinium , Adult , Female , Humans , Male , Contrast Media/adverse effects , Contrast Media/pharmacokinetics , Double-Blind Method , Gadolinium/adverse effects , Gadolinium/pharmacokinetics , Magnetic Resonance Imaging , Prospective Studies , Single-Blind Method
10.
Magn Reson Imaging ; 105: 46-56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939968

ABSTRACT

OBJECTIVE: Gadolinium-based contrast agent needs time to leak into the extravascular-extracellular space, leak back into the vascular space, and reach an equilibrium state. For this reason, acquisition times of <10 min may cause inaccurate estimation of pharmacokinetic parameters. Since no studies have been conducted on the influence of long scan times on DCE-MRI parameters in brain tumors, the aim of this study is to investigate the variation of DCE-MRI-derived kinetic parameters as a function of acquisition time, from 5 to 10 min in brain tumors. MATERIALS AND METHODS: Fifty-two patients with histologically confirmed brain tumors were enrolled in this retrospective study, and examination at 3 T, DCE-MRI, with scan duration of 10 min, was used for retrospective generation of 6 sets of quantitative DCE-MRI maps (Ktrans, Ve and Kep) from 5 to 10 min. Features were extracted from the DCE-MRI maps in contrast enhancement (CE) volumes. Kruskal-Wallis with post-hoc correction and coefficient of variation (CoV) were used as statistical test to compare DCE-MRI maps obtained from 6 data sets. SIGNIFICANCE: p < 0.05. RESULTS: No differences in Ktrans features in CE volumes between different scan durations. Ve, Kep features in CE volumes were influenced by different data length. The highest number of significantly different Ve and Kep features in CE volumes were between 5 min and 10 min (p < 0.013), 5 min and 9 min (p < 0.044), 6 min and 10 min (p < 0.040). CoV of Kep was reduced from 5 min to 10 min, going from highly variable (CoV = 0.70) to mildly variable (CoV = 0.42). CONCLUSION: Kep and Ve were time-dependent in brain tumors, so a longer scan time is needed to obtain reliable parameter values. Ktrans was found to be time-independent, as it remains the same in all 6 acquisition times and is the only reliable parameter with short acquisition times.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Contrast Media/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging
11.
Phys Med Biol ; 68(24)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37983902

ABSTRACT

Objective. Tracer kinetic models allow for estimating pharmacokinetic (PK) parameters, which are related to pathological characteristics, from breast dynamic contrast-enhanced magnetic resonance imaging. However, existing tracer kinetic models subject to inaccuracy are time-consuming for PK parameters estimation. This study aimed to accurately and efficiently estimate PK parameters for predicting molecular subtypes based on convolutional neural network (CNN).Approach. A CNN integrating global and local features (GL-CNN) was trained using synthetic data where known PK parameters map was used as the ground truth, and subsequently used to directly estimate PK parameters (volume transfer constantKtransand flux rate constantKep) map. The accuracy assessed by the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and concordance correlation coefficient (CCC) was compared between the GL-CNN and Tofts-based PK parameters in synthetic data. Radiomic features were calculated from the PK parameters map in 208 breast tumors. A random forest classifier was constructed to predict molecular subtypes using a discovery cohort (n= 144). The diagnostic performance evaluated on a validation cohort (n= 64) using the area under the receiver operating characteristic curve (AUC) was compared between the GL-CNN and Tofts-based PK parameters.Main results. The average PSNR (48.8884), SSIM (0.9995), and CCC (0.9995) between the GL-CNN-basedKtransmap and ground truth were significantly higher than those between the Tofts-basedKtransmap and ground truth. The GL-CNN-basedKtransobtained significantly better diagnostic performance (AUCs = 0.7658 and 0.8528) than the Tofts-basedKtransfor luminal B and HER2 tumors. The GL-CNN method accelerated the computation by speed approximately 79 times compared to the Tofts method for the whole breast of all patients.Significance. Our results indicate that the GL-CNN method can be used to accurately and efficiently estimate PK parameters for predicting molecular subtypes.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Neural Networks, Computer , ROC Curve , Magnetic Resonance Imaging/methods , Contrast Media/pharmacokinetics
12.
Int J Nanomedicine ; 18: 4431-4444, 2023.
Article in English | MEDLINE | ID: mdl-37555188

ABSTRACT

Purpose: BSA-biomineralized Gd nanoparticles (Gd@BSA NPs) have been recognized as promising nanoscale MR contrast agents. The aim of this study was to carry out a preclinical evaluation of these NPs in a middle-sized animal model (rabbits). Methods: New Zealand white rabbits were treated intravenously with Gd@BSA NPs (0.02 mmol Gd/kg) via a clinically-used high-pressure injector, with commercial Gd-diethylene triamine pentaacetate (Gd-DTPA)-injected group as control. Then MR angiography was performed according to the standard clinical protocol with a 3.0-T MR scanner. The SNR and CNR of the main arteries and branches were monitored. Pharmacokinetics and bioclearance were continuously evaluated in blood, urine, and feces. Gd deposition in vital organs was measured by ICP‒MS. Weight monitoring, HE staining, and blood biochemical analysis were also performed to comprehensively estimate systemic toxicity. Results: The ultrasmall Gd@BSA NPs (<6 nm) exhibited high stability and T1 relaxivity. Compared to Gd-DTPA, Gd@BSA NPs demonstrated superior vascular system imaging performance at ultralow doses, especially of the cardiac artery and other main branches, and exhibited a significantly higher SNR and CNR. Notably, the Gd@BSA NPs showed a shorter half-life in blood, less retention in organs, and improved biocompatibility. Conclusion: The preclinical evaluations here demonstrated that Gd@BSA NPs are promising and advantageous MR CA candidates that can be used at a low dose with excellent MR imaging performance, thus suggesting its further clinical trials and applications.


Subject(s)
Contrast Media , Gadolinium DTPA , Rabbits , Animals , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Angiography , Coronary Vessels
13.
PLoS One ; 18(6): e0286123, 2023.
Article in English | MEDLINE | ID: mdl-37319275

ABSTRACT

The high spatial and temporal resolution of dynamic contrast-enhanced MRI (DCE-MRI) can improve the diagnostic accuracy of breast cancer screening in patients who have dense breasts or are at high risk of breast cancer. However, the spatiotemporal resolution of DCE-MRI is limited by technical issues in clinical practice. Our earlier work demonstrated the use of image reconstruction with enhancement-constrained acceleration (ECA) to increase temporal resolution. ECA exploits the correlation in k-space between successive image acquisitions. Because of this correlation, and due to the very sparse enhancement at early times after contrast media injection, we can reconstruct images from highly under-sampled k-space data. Our previous results showed that ECA reconstruction at 0.25 seconds per image (4 Hz) can estimate bolus arrival time (BAT) and initial enhancement slope (iSlope) more accurately than a standard inverse fast Fourier transform (IFFT) when k-space data is sampled following a Cartesian based sampling trajectory with adequate signal-to-noise ratio (SNR). In this follow-up study, we investigated the effect of different Cartesian based sampling trajectories, SNRs and acceleration rates on the performance of ECA reconstruction in estimating contrast media kinetics in lesions (BAT, iSlope and Ktrans) and in arteries (Peak signal intensity of first pass, time to peak, and BAT). We further validated ECA reconstruction with a flow phantom experiment. Our results show that ECA reconstruction of k-space data acquired with 'Under-sampling with Repeated Advancing Phase' (UnWRAP) trajectories with an acceleration factor of 14, and temporal resolution of 0.5 s/image and high SNR (SNR ≥ 30 dB, noise standard deviation (std) < 3%) ensures minor errors (5% or 1 s error) in lesion kinetics. Medium SNR (SNR ≥ 20 dB, noise std ≤ 10%) was needed to accurately measure arterial enhancement kinetics. Our results also suggest that accelerated temporal resolution with ECA with 0.5 s/image is practical.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Female , Humans , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Contrast Media/pharmacokinetics , Follow-Up Studies , Image Enhancement/methods , Magnetic Resonance Imaging/methods
14.
Eur J Radiol ; 165: 110925, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320880

ABSTRACT

PURPOSE: Angiogenesis is essential for tumor growth. Currently, there are no established imaging biomarkers to show angiogenesis in tumor tissue. The aim of this prospective study was to evaluate whether semiquantitative and pharmacokinetic DCE-MRI perfusion parameters could be used to assess angiogenesis in epithelial ovarian cancer (EOC). METHOD: We enrolled 38 patients with primary EOC treated in 2011-2014. DCE-MRI was performed with a 3.0 T imaging system before the surgical treatment. Two different sizes of ROI were used to evaluate semiquantitative and pharmacokinetic DCE perfusion parameters: a large ROI (L-ROI) covering the whole primary lesion on one plane and a small ROI (S-ROI) covering a small solid, highly enhancing focus. Tissue samples from tumors were collected during the surgery. Immunohistochemistry was used to measure the expression of vascular endothelial growth factor (VEGF), its receptors (VEGFRs) and to analyse microvascular density (MVD) and the number of microvessels. RESULTS: VEGF expression correlated inversely with Ktrans (L-ROI, r = -0.395 (p = 0.009), S-ROI, r = -0.390, (p = 0.010)), Ve (L-ROI, r = -0.395 (p = 0.009), S-ROI, r = -0.412 (p = 0.006)) and Vp (L-ROI, r = -0.388 (p = 0.011), S-ROI, r = -0.339 (p = 0.028)) values in EOC. Higher VEGFR-2 correlated with lower DCE parameters Ktrans (L-ROI, r = -0.311 (p = 0.040), S-ROI, r = -0.337 (p = 0.025)) and Ve (L-ROI, r = -0.305 (p = 0.044), S-ROI, r = -0.355 (p = 0.018)). We also found that MVD and the number of microvessels correlated positively with AUC, Peak and WashIn values. CONCLUSIONS: We observed that several DCE-MRI parameters correlated with VEGF and VEGFR-2 expression and MVD. Thus, both semiquantitative and pharmacokinetic perfusion parameters of DCE-MRI represent promising tools for the assessment of angiogenesis in EOC.


Subject(s)
Ovarian Neoplasms , Vascular Endothelial Growth Factor A , Humans , Female , Carcinoma, Ovarian Epithelial/diagnostic imaging , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2 , Prospective Studies , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology
15.
Mol Imaging Biol ; 25(4): 638-647, 2023 08.
Article in English | MEDLINE | ID: mdl-37166575

ABSTRACT

PURPOSE: We demonstrated earlier in mouse models of pancreatic ductal adenocarcinoma (PDA) that Ktrans derived from dynamic contrast-enhanced (DCE) MRI detected microvascular effect induced by PEGPH20, a hyaluronidase which removes stromal hyaluronan, leading to reduced interstitial fluid pressure in the tumor (Clinical Cancer Res (2019) 25: 2314-2322). How the choice of pharmacokinetic (PK) model and arterial input function (AIF) may impact DCE-derived markers for detecting such an effect is not known. PROCEDURES: Retrospective analyses of the DCE-MRI of the orthotopic PDA model are performed to examine the impact of individual versus group AIF combined with Tofts model (TM), extended-Tofts model (ETM), or shutter-speed model (SSM) on the ability to detect the microvascular changes induced by PEGPH20 treatment. RESULTS: Individual AIF exhibit a marked difference in peak gadolinium concentration. However, across all three PK models, kep values show a significant correlation between individual versus group-AIF (p < 0.01). Regardless individual or group AIF, when kep is obtained from fitting the DCE-MRI data using the SSM, kep shows a significant increase after PEGPH20 treatment (p < 0.05 compared to the baseline); %change of kep from baseline to post-treatment is also significantly different between PEGPH20 versus vehicle group (p < 0.05). In comparison, when kep is derived from the TM, only the use of individual AIF leads to a significant increase of kep after PEGPH20 treatment, whereas the %change of kep is not different between PEGPH20 versus vehicle group. Group AIF but not individual AIF allows detection of a significant increase of Vp (derived from the ETM) in PEGPH20 versus vehicle group (p < 0.05). Increase of Vp is consistent with a large increase of mean capillary lumen area estimated from immunostaining. CONCLUSION: Our results suggest that kep derived from SSM and Vp from ETM, both using group AIF, are optimal for the detection of microvascular changes induced by stroma-directed drug PEGPH20. These analyses provide insights in the choice of PK model and AIF for optimal DCE protocol design in mouse pancreatic cancer models.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Contrast Media/pharmacokinetics , Retrospective Studies , Image Enhancement/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Disease Models, Animal , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Magnetic Resonance Imaging/methods , Reproducibility of Results , Pancreatic Neoplasms
16.
Magn Reson Imaging ; 101: 40-46, 2023 09.
Article in English | MEDLINE | ID: mdl-37030177

ABSTRACT

PURPOSE: To evaluate the dependence of the arterial input function (AIF) on the imaging z-axis and its effect on 3D DCE MRI pharmacokinetic parameters as mediated by the SPGR signal equation and Extended Tofts-Kermode model. THEORY: For SPGR-based 3D DCE MRI acquisition of the head and neck, inflow effects within vessels violate the assumptions underlying the SPGR signal model. Errors in the SPGR-based AIF estimate propagate through the Extended Tofts-Kermode model to affect the output pharmacokinetic parameters. MATERIALS AND METHODS: 3D DCE-MRI data were acquired for six newly diagnosed HNC patients in a prospective single arm cohort study. AIF were selected within the carotid arteries at each z-axis location. A region of interest (ROI) was placed in normal paravertebral muscle and the Extended Tofts-Kermode model solved for each pixel within the ROI for each AIF. Results were compared to those obtained with a published population average AIF. RESULTS: Due to inflow effect, the AIF showed extreme variation in their temporal shapes. Ktrans was most sensitive to the initial bolus concentration and showed more variation over the muscle ROI with AIF taken from the upstream portion of the carotid. kep was less sensitive to the peak bolus concentration and showed less variation for AIF taken from the upstream portion of the carotid. CONCLUSION: Inflow effects may introduce an unknown bias to SPGR-based 3D DCE pharmacokinetic parameters. Variation in the computed parameters depends on the selected AIF location. In the context of high flow, measurements may be limited to relative rather than absolute quantitative parameters.


Subject(s)
Contrast Media , Head and Neck Neoplasms , Humans , Contrast Media/pharmacokinetics , Cohort Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Carotid Arteries , Algorithms , Reproducibility of Results
17.
JCO Clin Cancer Inform ; 7: e2200101, 2023 01.
Article in English | MEDLINE | ID: mdl-36745858

ABSTRACT

PURPOSE: Breast cancer is the most frequent cancer in women worldwide. However, its diagnosis mostly depends on visual examination of radiologic images, leading to an overdiagnosis with substantial costs. Therefore, a quantitative approach such as dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) through pharmacokinetic (PK) modeling is required for reliable analysis. As PK parameters lack information on parameter heterogeneity, texture-based analysis is required to quantify PK parameter heterogeneity. Therefore, this study focused on determining the usefulness of fractal dimension (FD) as a potential imaging biomarker of tumor heterogeneity for discriminating benign and malignant breast lesions. METHODS: Parametric maps for PK parameters, extravasation rate of contrast agent from blood plasma to extravascular extracellular space (Ktrans) and volume fraction of extravascular extracellular space (ve), were generated for the regions of interest (ROIs) under the standard model using 18 lesions. Then, tumor ROI and pixel DCE-MRI time-course data were analyzed to extract pixel values of Ktrans and ve. For each ROI, FD values of Ktrans and ve were computed using the blanket method. RESULTS: The FD values of Ktrans for benign and malignant lesions varied from 2.96 to 3.49 and from 2.37 to 3.16, respectively, whereas FD values of ve for benign and malignant lesions varied from 3.01 to 5.15 and 2.42 to 3.44, respectively. There were significant differences in FD values derived from Ktrans parametric maps (P = .0053) and ve parametric maps (P = .0271) between benign and malignant lesions according to the statistical analysis. CONCLUSION: Incorporating texture heterogeneity changes in breast lesions captured by FD with quantitative DCE-MRI parameters generated under the standard model is a potential marker for prediction of malignant lesions.


Subject(s)
Breast Neoplasms , Fractals , Female , Humans , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Contrast Media/pharmacokinetics
18.
Adv Mater ; 35(10): e2209603, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36524741

ABSTRACT

Glutathione (GSH)-activatable probes hold great promise for in vivo cancer imaging, but are restricted by their dependence on non-selective intracellular GSH enrichment and uncontrollable background noise. Here, a holographically activatable nanoprobe caging manganese tetraoxide is shown for tumor-selective contrast enhancement in magnetic resonance imaging (MRI) through cooperative GSH/albumin-mediated cascade signal amplification in tumors and rapid elimination in normal tissues. Once targeting tumors, the endocytosed nanoprobe effectively senses the lysosomal microenvironment to undergo instantaneous decomposition into Mn2+ with threshold GSH concentration of ≈ 0.12 mm for brightening MRI signals, thus achieving high contrast tumor imaging and flexible monitoring of GSH-relevant cisplatin resistance during chemotherapy. Upon efficient up-regulation of extracellular GSH in tumor via exogenous injection, the relaxivity-silent interstitial nanoprobe remarkably evolves into Mn2+ that are further captured/retained and re-activated into ultrahigh-relaxivity-capable complex by stromal albumin in the tumor, and simultaneously allows the renal clearance of off-targeted nanoprobe in the form of Mn2+ via lymphatic vessels for suppressing background noise to distinguish tiny liver metastasis. These findings demonstrate the concept of holographic tumor activation via both tumor GSH/albumin-mediated cascade signal amplification and simultaneous background suppression for precise tumor malignancy detection, surveillance, and surgical guidance.


Subject(s)
Albumins , Glutathione , Magnetic Resonance Imaging , Metal Nanoparticles , Molecular Probes , Neoplasms , Glutathione/administration & dosage , Glutathione/pharmacokinetics , Glutathione/pharmacology , Molecular Probes/administration & dosage , Molecular Probes/pharmacokinetics , Molecular Probes/pharmacology , Albumins/administration & dosage , Albumins/pharmacokinetics , Albumins/pharmacology , Magnetic Resonance Imaging/methods , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Image Enhancement/methods , Holography/methods , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Metal Nanoparticles/administration & dosage , Transferrin/administration & dosage , Transferrin/pharmacokinetics , Transferrin/pharmacology , Tissue Distribution , A549 Cells , Humans , Animals , Mice , Mice, Inbred BALB C , Mice, Nude , Cisplatin/administration & dosage , Cisplatin/pharmacokinetics , Cisplatin/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology
19.
Magn Reson Med ; 89(3): 1134-1150, 2023 03.
Article in English | MEDLINE | ID: mdl-36321574

ABSTRACT

PURPOSE: A method is presented to select the optimal time points at which to measure DCE-MRI signal intensities, leaving time in the MR exam for high-spatial resolution image acquisition. THEORY: Simplicial complexes are generated from the Kety-Tofts model pharmacokinetic parameters Ktrans and ve . A geometric search selects optimal time points for accurate estimation of perfusion parameters. METHODS: The DCE-MRI data acquired in women with invasive breast cancer (N = 27) were used to retrospectively compare parameter maps fit to full and subsampled time courses. Simplicial complexes were generated for a fixed range of Kety-Tofts model parameters and for the parameter ranges weighted by estimates from the fully sampled data. The largest-area manifolds determined the optimal three time points for each case. Simulations were performed along with retrospectively subsampled data fits. The agreement was computed between the model parameters fit to three points and those fit to all points. RESULTS: The optimal three-point sample times were from the data-informed simplicial complex analysis and determined to be 65, 204, and 393 s after arrival of the contrast agent to breast tissue. In the patient data, tumor-median parameter values fit using all points and the three selected time points agreed with concordance correlation coefficients of 0.97 for Ktrans and 0.67 for ve . CONCLUSION: It is possible to accurately estimate pharmacokinetic parameters from three properly selected time points inserted into a clinical DCE-MRI breast exam. This technique can provide guidance on when to capture images for quantitative data between high-spatial-resolution DCE-MRI images.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Retrospective Studies , Breast/diagnostic imaging , Contrast Media/pharmacokinetics , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging
20.
J Magn Reson Imaging ; 58(1): 122-132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36269053

ABSTRACT

BACKGROUND: Head and neck cancer (HNC) is the sixth most prevalent cancer worldwide. Dynamic contrast-enhanced MRI (DCE-MRI) helps in diagnosis and prognosis. Quantitative DCE-MRI requires an arterial input function (AIF), which affects the values of pharmacokinetic parameters (PKP). PURPOSE: To evaluate influence of four individual AIF measurement methods on quantitative DCE-MRI parameters values (Ktrans , ve , kep , and vp ), for HNC and muscle. STUDY TYPE: Prospective. POPULATION: A total of 34 HNC patients (23 males, 11 females, age range 24-91) FIELD STRENGTH/SEQUENCE: A 3 T; 3D SPGR gradient echo sequence with partial saturation of inflowing spins. ASSESSMENT: Four AIF methods were applied: automatic AIF (AIFa) with up to 50 voxels selected from the whole FOV, manual AIF (AIFm) with four voxels selected from the internal carotid artery, both conditions without (Mc-) or with (Mc+) motion correction. Comparison endpoints were peak AIF values, PKP values in tumor and muscle, and tumor/muscle PKP ratios. STATISTICAL TESTS: Nonparametric Friedman test for multiple comparisons. Nonparametric Wilcoxon test, without and with Benjamini Hochberg correction, for pairwise comparison of AIF peak values and PKP values for tumor, muscle and tumor/muscle ratio, P value ≤ 0.05 was considered statistically significant. RESULTS: Peak AIF values differed significantly for all AIF methods, with mean AIFmMc+ peaks being up to 66.4% higher than those for AIFaMc+. Almost all PKP values were significantly higher for AIFa in both, tumor and muscle, up to 76% for mean Ktrans values. Motion correction effect was smaller. Considering tumor/muscle parameter ratios, most differences were not significant (0.068 ≤ Wilcoxon P value ≤ 0.8). DATA CONCLUSION: We observed important differences in PKP values when using either AIFa or AIFm, consequently choice of a standardized AIF method is mandatory for DCE-MRI on HNC. From the study findings, AIFm and inflow compensation are recommended. The use of the tumor/muscle PKP ratio should be of interest for multicenter studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Contrast Media , Head and Neck Neoplasms , Male , Female , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Contrast Media/pharmacokinetics , Prospective Studies , Image Enhancement/methods , Head and Neck Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...