Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.005
Filter
1.
J Mol Model ; 30(6): 177, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775913

ABSTRACT

CONTEXT: Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS: Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).


Subject(s)
Antineoplastic Agents , Density Functional Theory , Magnetic Resonance Spectroscopy , Thiocarbamates , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thiocarbamates/chemistry , Magnetic Resonance Spectroscopy/methods , Bismuth/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Models, Molecular , Humans
2.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731481

ABSTRACT

As the use of antibiotics increases, the increasing resistance of bacteria is the main reason for the reduced efficiency of antibacterial drugs, making the research of new antibacterial materials become new hot spot. In this article, two novel coordination polymers (CPs), namely, [Cd2(L)2(bibp)2]n (1) and [Ni(L)(bib)]n (2), where H2L = N,N'-bis(4-carbozvlbenzvl)-4-aminotoluene, bibp = 4,4'-bis(imidazol-1-yl)biphenyl, and bib = 1,3-bis(1-imidazoly)benzene, have been synthesized under solvothermal and hydrothermal condition. Structural clarification was performed through infrared spectrum and single-crystal X-ray diffraction analysis, while thermal analysis and XRD technology were used for the performance assessment of compounds 1 and 2. In addition, antibacterial performance experiments showed that compounds 1 and 2 have certain selectivity in their antibacterial properties and have good antibacterial properties against S. aureus. As the concentration of the compound increases, the inhibitory effect gradually strengthens, and when the concentration of the compound reaches 500 µg/mL and 400 µg/mL, the concentration of the S. aureus solution no longer increases and has been completely inhibited.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Polymers , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Models, Molecular , Crystallography, X-Ray
3.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731488

ABSTRACT

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Subject(s)
Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
4.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731639

ABSTRACT

The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.


Subject(s)
Antineoplastic Agents , Pyridines , Ruthenium , Humans , Catalysis , Ruthenium/chemistry , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Molecular Structure , Photochemical Processes
5.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732201

ABSTRACT

This Special Issue (SI), "Emerging Topics in Metal Complexes: Pharmacological Activity", includes reports updating our knowledge on metals with multidirectional biological properties and metal-containing compounds/complexes for their potential therapeutic applications, with a focus on strategies improving their pharmacological features [...].


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Humans , Metals/chemistry , Animals
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732229

ABSTRACT

Oxidovanadium(V) complexes, [(+)VOL1-5] and [(-)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, UV-Vis, and circular dichroism, as well as elemental analysis, have been used for their detailed characterization. Furthermore, the epoxidation of styrene, cyclohexene, and two monoterpenes, S(‒)-limonene and (‒)-α-pinene, using two oxidants, aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP) in decane, has been studied with catalytic amounts of all complexes. Finally, biological cytotoxicity studies have also been performed with these oxidovanadium(V) compounds for comparison with cis-dioxidomolybdenum(VI) Schiff base complexes with the same chiral ligands, as well as to determine the cytoprotection against the oxidative damage caused by 30% H2O2 in the HT-22 hippocampal neuronal cells in the range of their 10-100 µM concentration.


Subject(s)
Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Catalysis , Stereoisomerism , Animals , Vanadium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Oxidative Stress/drug effects , Mice , Humans
7.
Sci Rep ; 14(1): 10032, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693156

ABSTRACT

The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.


Subject(s)
Cobalt , Coordination Complexes , Copper , Isothiocyanates , Molecular Docking Simulation , Nickel , Nickel/chemistry , Copper/chemistry , Humans , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cobalt/chemistry , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
8.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695060

ABSTRACT

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Subject(s)
Alkaline Phosphatase , Anions , Coordination Complexes , Iridium , Osteosarcoma , Iridium/chemistry , Humans , Osteosarcoma/pathology , Osteosarcoma/metabolism , Alkaline Phosphatase/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Anions/chemistry , Cell Line, Tumor
9.
Dalton Trans ; 53(20): 8772-8780, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712840

ABSTRACT

A series of Ir(III)-naproxen (NPX) conjugates with the molecular formula [Ir(C^N)2bpy(4-CH2ONPX-4'-CH2ONPX)](PF6) (Ir-NPX-1-3) were designed and synthesized, including C^N = 2-phenylpyridine (ppy, Ir-NPX-1), 2-(2-thienyl)pyridine (thpy, Ir-NPX-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-NPX-3). Cytotoxicity tests showed that Ir-NPX-1-3 exhibited excellent antitumor activity, especially in A549R cells. The cellular uptake experiment showed that the complexes were mainly localized in mitochondria, and induced apoptosis in A549R cells by damaging the structure and function of mitochondria. The main manifestations are a decrease in the mitochondrial membrane potential (MMP), an increase in reactive oxygen species (ROS) levels, and cell cycle arrest. Furthermore, Ir-NPX-1-3 could inhibit the migration and colony formation of cancer cells, demonstrating potential anti-metastatic ability. Finally, the anti-inflammatory and immunological applications of Ir-NPX-1-3 were verified. The downregulation of cyclooxygenase-2 (COX-2) and programmed death-ligand 1 (PD-L1) expression levels and the release of immunogenic cell death (ICD) related signaling molecules such as damage-associated molecular patterns (DAMPs) (cell surface calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP)) indicate that these Ir(III) -NPX conjugates are novel ICD inducers with synergistic effects in multiple anti-tumor pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Iridium , Mitochondria , Naproxen , Iridium/chemistry , Iridium/pharmacology , Naproxen/pharmacology , Naproxen/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mitochondria/drug effects , Mitochondria/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Animals , Mice , Inflammation/drug therapy , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Cell Line, Tumor
10.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38691971

ABSTRACT

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Subject(s)
Antifungal Agents , Coordination Complexes , Microbial Sensitivity Tests , Silver , Voriconazole , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Voriconazole/pharmacology , Voriconazole/chemistry , Silver/chemistry , Silver/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Candida albicans/drug effects , Candida/drug effects , Crystallography, X-Ray
11.
Chemistry ; 30(28): e202401199, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695718

ABSTRACT

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Palladium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
12.
Chem Biol Interact ; 395: 111031, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38703805

ABSTRACT

Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.


Subject(s)
Cobalt , DNA , DNA/chemistry , DNA/metabolism , Cobalt/chemistry , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Nucleic Acid Conformation , G-Quadruplexes
13.
Bioorg Chem ; 147: 107422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705106

ABSTRACT

Two acylhydrazone based zinc(II) complexes [Zn(HL)2Cl2(CH3OH)2] (Zn1) and [ZnL(AC)]2 (Zn2) were synthesized from 3-(1-(salicyloylhydrazono)ethyl) pyridine (HL). Single crystal X-ray structure analyses showed that complexes Zn1 and Zn2 have a zero-dimensional monomer or dimer structure. Antiproliferative activity studies revealed that Zn1 and Zn2 are both more effective against A549 cells than cisplatin. The results of the reactive oxygen species (ROS) generation assay on A549 cells showed that both Zn1 and Zn2 induced apoptosis through ROS accumulation. The apoptosis-inducing and cell cycle arrest effects of Zn1 and Zn2 on A549 cells indicated that the antitumor effect was achieved through apoptosis induction and inhibition of DNA synthesis by blocking the G0/G1 phase of the cell cycle. What's more, the results of wound-healing assay showed that Zn1 and Zn2 could inhibit the migration of A549 cells. Western blot analysis further demonstrated that Zn1 and Zn2 induced cell apoptosis through the mitochondrial pathway, in which process, the expression level of cytochrome C, cleaved-PARP, cleaved-caspase 3 and cleaved-caspase 9 proteins increased while pro-caspase 3 and pro-caspase 9 expression decreased. In vivo anticancer evaluation demonstrated that both Zn1 and Zn2 complexes effectively inhibited tumor growth without causing significant toxicity in systemic organs.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Coordination Complexes , Drug Screening Assays, Antitumor , Hydrazones , Lung Neoplasms , Zinc , Animals , Mice , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Dose-Response Relationship, Drug , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Zinc/chemistry , Zinc/pharmacology
14.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612821

ABSTRACT

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Subject(s)
Coordination Complexes , Zinc , Zinc/pharmacology , Ligands , Schiff Bases/pharmacology , Nitrates , Coordination Complexes/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Plankton
15.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557015

ABSTRACT

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Subject(s)
Coordination Complexes , Neoplasms , Humans , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Coordination Complexes/chemistry , Neoplasms/drug therapy , Platinum/chemistry
16.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38578920

ABSTRACT

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Light , Pyridines , Ruthenium , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Catalysis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Drug Screening Assays, Antitumor , Photochemical Processes , Cell Proliferation/drug effects , Molecular Structure , HeLa Cells , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Green Light
17.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38590210

ABSTRACT

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Coordination Complexes , Drug Screening Assays, Antitumor , Ruthenium , Thiourea , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Animals , Molecular Structure , Furans/chemistry , Furans/pharmacology , Furans/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis , Membrane Potential, Mitochondrial/drug effects , Chlorocebus aethiops , Reactive Oxygen Species/metabolism , Vero Cells , Structure-Activity Relationship
18.
J Colloid Interface Sci ; 666: 259-275, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38598998

ABSTRACT

Multimodal /components tumors synergistic therapy is a crucial approach for enhancing comprehensive efficacy. Our research has identified lots of high efficiency synergies among four suitable components, revealing combinations with remarkably low combination index (CI) values (10-3-10-8). These combinations hold promise for large tumor powerful electrothermal-thermodynamic-multi-chemo trimodal therapy. To implement this approach, we developed four-component of double-layer infinite coordination polymer (ICP) nanocomposites, in which hypoxia-activated AQ4N and thermodynamic agent AIPH coordinated with Cu(Ⅱ) to form initial layer of positively charged ICPs-l NPs, chemotherapeutic agents gossypol-hyaluronic acid (G-HA) and CA4 coordinated with Fe(Ⅲ) to form out layer of negatively charged ICPs-2 NPs, then double-layer infinite coordination polymer nanocomposites (ICPs-1@ICPs-2 CNPs) were fabricated by electrostatic adsorption using ICPs-l NPs and ICPs-2 NPs. Cell experiments have extensively optimized the coordination combinations of the four components and the composition of the two layers. A programmable three-stage therapeutic procedure, assisted by a micro-electrothermal needle (MEN), was developed. Under this procedure the resulting nanocomposites demonstrate the powerful trimodal comprehensive therapeutic outcomes for large tumors using lower components dosage, achieving a tumor inhibition rate nearly reaching 100 % and no recurrence for 60 days. This study offers remarkable potential for tumor multimodal /components synergistic therapy in future.


Subject(s)
Antineoplastic Agents , Nanocomposites , Polymers , Nanocomposites/chemistry , Polymers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Animals , Mice , Hyaluronic Acid/chemistry , Surface Properties , Particle Size , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Neoplasms/therapy
19.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38603561

ABSTRACT

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Subject(s)
Antineoplastic Agents , Phenanthrolines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , HeLa Cells , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Rhenium/chemistry , Rhenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Apoptosis/drug effects , Light , Reactive Oxygen Species/metabolism , Ultrasonic Therapy , Photochemotherapy , Drug Screening Assays, Antitumor , Neoplasms/drug therapy
20.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593587

ABSTRACT

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...