Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.127
Filter
1.
Proc Biol Sci ; 291(2023): 20232207, 2024 May.
Article in English | MEDLINE | ID: mdl-38772423

ABSTRACT

Population and species persistence in a rapidly warming world will be determined by an organism's ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unknown. We aimed to disentangle the effects of two critical ontogenetic stages (juvenile development and reproduction) to the new-generation acclimation potential, by exposing the spiny chromis damselfish Acanthochromis polyacanthus to simulated ocean warming across two generations. By using hepatic transcriptomics, we discovered that the post-hatching developmental environment of the offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the developmental experience of parents increased regulatory RNA production and protein synthesis, which could improve the offspring's response to warming. Conversely, parental reproduction and offspring embryogenesis in warmer water elicited stress response mechanisms in the offspring, with suppression of translation and mitochondrial respiration. Mismatches between parental developmental and reproductive temperatures deeply affected offspring gene expression profiles, and detrimental effects were evident when warming occurred both during parents' development and reproduction. This study reveals that the previous generation's developmental temperature contributes substantially to thermal acclimation potential during early life; however, exposure at reproduction as well as prolonged heat stress will likely have adverse effects on the species' persistence.


Subject(s)
Acclimatization , Coral Reefs , Animals , Reproduction , Global Warming , Perciformes/physiology , Transcriptome , Oceans and Seas , Fishes/physiology , Temperature
2.
Sci Rep ; 14(1): 11158, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750135

ABSTRACT

Examples of symbiotic relationships often include cleaning mutualisms, typically involving interactions between cleaner fish and other fish, called the clients. While these cleaners can cooperate by removing ectoparasites from their clients, they can also deceive by feeding on client mucus, a behavior usually referred to as "cheating behavior" that often leads to a discernible jolt from the client fish. Despite extensive studies of these interactions, most research has focused on the visual aspects of the communication. In this study, we aimed to explore the role of acoustic communication in the mutualistic relationship between cleaner fishes and nine holocentrid client species across four regions of the Indo-Pacific Ocean: French Polynesia, Guam, Seychelles, and the Philippines. Video cameras coupled with hydrophones were positioned at various locations on reefs housing Holocentridae fish to observe their acoustic behaviors during interactions. Our results indicate that all nine species of holocentrids can use acoustic signals to communicate to cleaner fish their refusal of the symbiotic interaction or their desire to terminate the cooperation. These sounds were predominantly observed during agonistic behavior and seem to support visual cues from the client. This study provides a novel example of acoustic communication during a symbiotic relationship in teleosts. Interestingly, these vocalizations often lacked a distinct pattern or structure. This contrasts with numerous other interspecific communication systems where clear and distinguishable signals are essential. This absence of a clear acoustic pattern may be because they are used in interspecific interactions to support visual behavior with no selective pressure for developing specific calls required in conspecific recognition. The different sound types produced could also be correlated with the severity of the client response. There is a need for further research into the effects of acoustic behaviors on the quality and dynamics of these mutualistic interactions.


Subject(s)
Symbiosis , Animals , Symbiosis/physiology , Fishes/physiology , Sound , Acoustics , Vocalization, Animal/physiology , Animal Communication , Coral Reefs , Pacific Ocean , Polynesia , Perciformes/physiology
3.
Sci Total Environ ; 931: 172897, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697527

ABSTRACT

Microorganisms play pivotal roles in different biogeochemical cycles within coral reef waters. Nevertheless, our comprehension of the microbially mediated processes following environmental perturbation is still limited. To gain a deeper insight into the environmental adaptation and nutrient cycling, particularly within core and noncore bacterial communities, it is crucial to understand reef ecosystem functioning. In this study, we delved into the microbial community structure and function of seawater in a coral reef under different degrees of anthropogenic disturbance. To achieve this, we harnessed the power of 16S rRNA gene high-throughput sequencing and metagenomics techniques. The results showed that a continuous temporal succession but little spatial heterogeneity in the bacterial communities of core and noncore taxa and functional profiles involved in nitrogen (N) and phosphorus (P) cycling. Eutrophication state (i.e., nutrient concentration and turbidity) and temperature played pivotal roles in shaping both the microbial community composition and functional traits of coral reef seawater. Within this context, the core subcommunity exhibited a remarkably broader habitat niche breadth, stronger phylogenetic signal and lower environmental sensitivity when compared to the noncore taxa. Null model analysis further revealed that the core subcommunity was governed primarily by stochastic processes, while deterministic processes played a more significant role in shaping the noncore subcommunity. Furthermore, our observations indicated that changes in function related to N cycling were correlated to the variations in noncore taxa, while core taxa played a more substantial role in critical processes such as P cycling. Collectively, these findings facilitated our knowledge about environmental adaptability of core and noncore bacterial taxa and shed light on their respective roles in maintaining diverse nutrient cycling within coral reef ecosystems.


Subject(s)
Bacteria , Coral Reefs , Microbiota , Seawater , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Phosphorus/analysis , RNA, Ribosomal, 16S , Nitrogen/analysis , Environmental Monitoring , Eutrophication
4.
Sci Adv ; 10(18): eadk6808, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701216

ABSTRACT

Many Caribbean coral reefs are near collapse due to various threats. An emerging threat, stony coral tissue loss disease (SCTLD), is spreading across the Western Atlantic and Caribbean. Data from the U.S. Virgin Islands reveal how SCTLD spread has reduced the abundance of susceptible coral and crustose coralline algae and increased cyanobacteria, fire coral, and macroalgae. A Caribbean-wide structural equation model demonstrates versatility in reef fish and associations with rugosity independent of live coral. Model projections suggest that some reef fishes will decline due to SCTLD, with the largest changes on reefs that lose the most susceptible corals and rugosity. Mapping these projected declines in space indicates how the indirect effects of SCTLD range from undetectable to devastating.


Subject(s)
Anthozoa , Coral Reefs , Animals , Anthozoa/physiology , Caribbean Region , Fishes , Ecosystem
5.
Curr Biol ; 34(9): R399-R406, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714172

ABSTRACT

Coral reefs provide food and livelihoods for hundreds of millions of coastal people in over 100 countries. Recent global estimates for the total value of goods and services that they can generate indicate around US$ 105,000-350,000 per hectare per year, but local estimates of current total economic value can be one to two orders of magnitude lower. Unfortunately, coral reefs are under threat both from local human stressors (for example, sediment and nutrient run-off from agriculture, sewage discharges, dredging, destructive fishing, land 'reclamation', overfishing) and, increasingly, from stressors related to global climate change (not only El Niño Southern Oscillation-related marine heatwaves, which cause mass bleaching and mortality of corals, but also more frequent and powerful tropical cyclones and ocean acidification). Four successive mass-bleaching events on Australia's iconic Great Barrier Reef between 2016 and 2022 (plus another one currently underway) have focused world attention on the need for urgent action to protect coral reefs. It is clear that coral reef ecosystems will continue to decline unless anthropogenic greenhouse gas emissions are reduced and innovative management strategies are developed to assist adaptation.


Subject(s)
Climate Change , Conservation of Natural Resources , Coral Reefs , Conservation of Natural Resources/methods , Animals , Anthozoa/physiology , Australia , Humans , Environmental Restoration and Remediation/methods
7.
PeerJ ; 12: e17291, 2024.
Article in English | MEDLINE | ID: mdl-38708336

ABSTRACT

The mass mortality event of the herbivorous sea urchin Diadema antillarum in 1983-1984 has been a major contributor to the diminished resilience of coral reefs throughout the Caribbean. The reduction in grazing pressure resulted in algae proliferation, which inhibited coral recruitment after disturbances such as disease, hurricanes, pollution and climatic change induced marine heat waves. Natural recovery of D. antillarum after the 1983-1984 die-off has been slow. However, the few locations with recovered populations exhibit signs of improvement in coral reef health, prompting interest in D. antillarum restoration. Current restoration strategies include translocation of wild individuals, the restocking of juveniles that are either cultured from gametes or collected as settlers and head-started in a nursery, and assisted natural recovery by providing suitable settlement substrate. Both the collection of wild settlers and assisted natural recovery necessitate an understanding of the local, spatiotemporal trends in settlement. In this study, which was carried out on the Dutch Caribbean Island of Saba, artificial turf settlement collectors were deployed at nine locations around the island and monitored from June 2019 till July 2020 (13 months). The primary objective was to identify trends in larval settlement in space and time, to be able to optimize restoration efforts. Additionally, the small size of Saba allowed us to deploy settlement collectors around the island and compare D. antillarum settlement between windward and leeward sides. Our study showed that on Saba, D. antillarum settlement peaked in June and July, following similar seasonal trends observed around other islands in the Northeastern Caribbean. By far the most settlement occurred at the leeward side of the island, suggesting that hydrodynamic forces entrained D. antillarum larvae in the lee of Saba and/or calmer waters facilitated settlement. Limited settlement occurred on the more exposed windward locations. The identified high settlement locations are candidates for settler collection and restoration attempts. Continued monitoring of D. antillarum settlement, especially in light of the 2022 D. antillarum die-off, holds significance as it can provide insights into the potential of natural recovery.


Subject(s)
Coral Reefs , Sea Urchins , Animals , Larva , Caribbean Region
8.
PLoS Biol ; 22(5): e3002620, 2024 May.
Article in English | MEDLINE | ID: mdl-38743647

ABSTRACT

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Subject(s)
Reproduction , Seasons , Starfish , Animals , Starfish/genetics , Starfish/metabolism , Starfish/physiology , Reproduction/genetics , Female , Male , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Organ Specificity/genetics , Coral Reefs
9.
PLoS One ; 19(5): e0303539, 2024.
Article in English | MEDLINE | ID: mdl-38743730

ABSTRACT

Mollusk death assemblages are formed by shell remnants deposited in the surficial mixed layer of the seabed. Diversity patterns in tropical marine habitats still are understudied; therefore, we aimed to investigate the taxonomic, phylogenetic, and functional diversity of mollusk death assemblages at regional and local scales in coral reef sands and seagrass meadows. We collected sediment samples at 11 sites within two shallow gulfs in the Northwestern Caribbean Sea and Southeastern Gulf of Mexico. All the shells were counted and identified to species level and classified into biological traits. We identified 7113 individuals belonging to 393 species (290 gastropods, 94 bivalves, and nine scaphopods). Diversity and assemblage structure showed many similarities between gulfs given their geological and biogeographical commonalities. Reef sands had higher richness than seagrasses likely because of a more favorable balance productivity-disturbance. Reef sands were dominated by epifaunal herbivores likely feeding on microphytobenthos and bysally attached bivalves adapted to intense hydrodynamic regime. In seagrass meadows, suspension feeders dominated in exposed sites and chemosynthetic infaunal bivalves dominated where oxygen replenishment was limited. Time averaging of death assemblages was likely in the order of 100 years, with stronger effects in reef sands compared to seagrass meadows. Our research provides evidence of the high taxonomic, phylogenetic, and functional diversity of mollusk death assemblages in tropical coastal sediments as result of the influence of scale-related processes and habitat type. Our study highlights the convenience of including phylogenetic and functional traits, as well as dead shells, for a more complete assessment of mollusk biodiversity.


Subject(s)
Biodiversity , Coral Reefs , Geologic Sediments , Mollusca , Phylogeny , Animals , Cuba , Mollusca/classification , Mollusca/physiology , Ecosystem
10.
Sci Rep ; 14(1): 10161, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38698199

ABSTRACT

Globally tropical Scleractinian corals have been a focal point for discussions on the impact of a changing climate on marine ecosystems and biodiversity. Research into tropical Scleractinian corals, particularly the role and breakdown of photoendosymbiosis in response to warming, has been prolific in recent decades. However, research into their subtropical, temperate, cold- and deep-water counterparts, whose number is dominated by corals without photoendosymbiosis, has not been as prolific. Approximately 50% of Scleractinian corals (> 700 species) do not maintain photoendosymbiosis and as such, do not rely upon the products of photosynthesis for homeostasis. Some species also have variable partnerships with photendosymbionts depending on life history and ecological niche. Here we undertake a systematic map of literature on Scleractinian corals without, or with variable, photoendosymbiosis. In doing so we identify 482 publications spanning 5 decades. In mapping research effort, we find publications have been sporadic over time, predominately focusing on a limited number of species, with greater research effort directed towards deep-water species. We find only 141 species have been studied, with approximately 30% of the total identified research effort directed toward a single species, Desmophyllum pertusum, highlighting significant knowledge gaps into Scleractinian diversity. We find similar limitations to studied locations, with 78 identified from the global data, of which only few represent most research outputs. We also identified inconsistencies with terminology used to describe Scleractinia without photoendosymbiosis, likely contributing to difficulties in accounting for their role and contribution to marine ecosystems. We propose that the terminology requires re-evaluation to allow further systematic assessment of literature, and to ensure it's consistent with changes implemented for photoendosymbiotic corals. Finally, we find that knowledge gaps identified over 20 years ago are still present for most aphotoendosymbiotic Scleractinian species, and we show data deficiencies remain regarding their function, biodiversity and the impacts of anthropogenic stressors.


Subject(s)
Anthozoa , Biodiversity , Symbiosis , Anthozoa/physiology , Animals , Symbiosis/physiology , Photosynthesis , Ecosystem , Climate Change , Coral Reefs
11.
Ecol Lett ; 27(5): e14429, 2024 May.
Article in English | MEDLINE | ID: mdl-38690608

ABSTRACT

Coral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning. Here, we propose a hypothesis linking annual coral bleaching and the transmission of symbionts to the next generation of coral hosts. We developed a dynamic model with two symbiont growth strategies, and found that high sexual recruitment and low adult coral survivorship and growth favour bleaching susceptibility, while the reverse promotes bleaching resilience. Otherwise, unexplained trends in the Indo-Pacific align with our hypothesis, where reefs and coral taxa exhibiting higher recruitment are more bleaching susceptible. The results from our model caution against interpreting potential shifts towards more bleaching-resistant symbionts as evidence of climate adaptation-we predict such a shift could also occur in declining systems experiencing low recruitment rates, a common scenario on today's reefs.


Subject(s)
Anthozoa , Coral Bleaching , Coral Reefs , Symbiosis , Animals , Anthozoa/physiology , Anthozoa/microbiology , Models, Biological
12.
Sci Total Environ ; 931: 172920, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701933

ABSTRACT

Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.


Subject(s)
Anthozoa , Coral Reefs , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Anthozoa/physiology , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism , Bioaccumulation , Environmental Monitoring , Symbiosis
13.
Glob Chang Biol ; 30(4): e17257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572701

ABSTRACT

Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.


Los países están ampliando las redes de áreas marinas protegidas (AMP) para mitigar la disminución de las pesquerías y apoyar la biodiversidad marina. Sin embargo, las evaluaciones de impacto de las AMP típicamente estudian la biomasa total de peces. Aquí, examinamos cómo la biomasa de peces desagregada por etapas de vida adultas y juveniles responde a factores ambientales como anomalías de la temperatura superficial del mar (SST) e impacto humano, y múltiples tipos de manejo en 139 sitios de arrecifes en el sistema arrecifal mesoamericano (SAM). Encontramos que la biomasa total de peces en general parece estable en toda la región entre 2006 y 2018, con una recuperación limitada de las poblaciones de peces en las AMP. Sin embargo, la métrica de biomasa total de peces enmascaró los cambios en la estructura de la comunidad de peces, con una biomasa de peces adultos más baja que juveniles en los sitios del norte, y proporciones adulto:juvenil más cercana a 1:1 en los sitios del sur. Estos cambios fueron asociados con diferentes respuestas de peces juveniles y adultos a variables ambientales y de manejo. La biomasa de peces juveniles aumentó en sitios con alta conectividad larvaria y cobertura coralina, mientras que la biomasa de peces adultos disminuyó en sitios con mayor impacto humano y anomalías en la SST. La biomasa de peces adultos disminuyó principalmente en las zonas de uso general (GUZ) hondureñas, lo cual sugiere una protección insuficiente para peces adultos en el sur del SAM. Hubo un gradiente norte­sur en el manejo y los factores ambientales, con menor cobertura de áreas totalmente protegidas y mayores anomalías de SST y desarrollo costero en el sur. En conjunto esto puede degradar el mantenimiento de la biomasa de peces adultos en el sur del SAM. La interacción entre factores ambientales y el manejo en el diseño de las AMP es fundamental para aumentar la biomasa de peces en todas las etapas del ciclo de vida.


Subject(s)
Anthozoa , Ecosystem , Animals , Humans , Coral Reefs , Conservation of Natural Resources , Biomass , Fishes/physiology , Fisheries
14.
PLoS Biol ; 22(4): e3002593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603520

ABSTRACT

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Symbiosis , Ecology , Coral Reefs , Biological Evolution
16.
Sci Data ; 11(1): 367, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605060

ABSTRACT

Coral reefs support the world's most diverse marine ecosystem and provide invaluable goods and services for millions of people worldwide. They are however experiencing frequent and intensive marine heatwaves that are causing coral bleaching and mortality. Coarse-grained climate models predict that few coral reefs will survive the 3 °C sea-surface temperature rise in the coming century. Yet, field studies show localized pockets of coral survival and recovery even under high-temperature conditions. Quantifying recovery from marine heatwaves is central to making accurate predictions of coral-reef trajectories into the near future. Here we introduce the world's most comprehensive database on coral recovery following marine heatwaves and other disturbances, called Heatwaves and Coral-Recovery Database (HeatCRD) encompassing 29,205 data records spanning 44 years from 12,266 sites, 83 countries, and 160 data sources. These data provide essential information to coral-reef scientists and managers to best guide coral-reef conservation efforts at both local and regional scales.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Temperature , Climate Change
17.
Sci Rep ; 14(1): 8495, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605161

ABSTRACT

A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Toll-Like Receptor 4 , Global Warming , Lipopolysaccharides , NF-kappa B , Seawater , Temperature , Coral Reefs
18.
Curr Biol ; 34(8): 1810-1816.e4, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38608678

ABSTRACT

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Subject(s)
Anthozoa , Coral Reefs , Anthozoa/parasitology , Animals , Apicomplexa/physiology , Apicomplexa/genetics , Apicomplexa/classification , Symbiosis , Cold Temperature , Dinoflagellida/physiology , Dinoflagellida/genetics , Host-Parasite Interactions
19.
Sci Rep ; 14(1): 8686, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622214

ABSTRACT

On 28 March 2005, the Indonesian islands of Nias and Simeulue experienced a powerful Mw 8.6 earthquake and coseismic uplift and subsidence. In areas of coastal uplift (up to ~ 2.8 m), fringing reef coral communities were killed by exposure, while deeper corals that survived were subjected to habitats with altered runoff, sediment and nutrient regimes. Here we present time-series (2000-2009) of Mn/Ca, Y/Ca and Ba/Ca variability in massive Porites corals from Nias to assess the environmental impact of a wide range of vertical displacement (+ 2.5 m to - 0.4 m). High-resolution LA-ICP-MS measurements show that skeletal Mn/Ca increased at uplifted sites, regardless of reef type, indicating a post-earthquake increase in suspended sediment delivery. Transient and/or long-term increases in skeletal Y/Ca at all uplift sites support the idea of increased sediment delivery. Coral Mn/Ca and Ba/Ca in lagoonal environments highlight the additional influences of reef bathymetry, wind-driven sediment resuspension, and phytoplankton blooms on coral geochemistry. Together, the results show that the Nias reefs adapted to fundamentally altered hydrographic conditions. We show how centuries of repeated subsidence and uplift during great-earthquake cycles along the Sunda megathrust may have shaped the modern-day predominance of massive scleractinian corals on the West Sumatran reefs.


Subject(s)
Anthozoa , Earthquakes , Animals , Anthozoa/physiology , Coral Reefs , Ecosystem , Phytoplankton
20.
PLoS One ; 19(4): e0301837, 2024.
Article in English | MEDLINE | ID: mdl-38626123

ABSTRACT

An essential component of the coral reef animal diversity is the species hidden in crevices within the reef matrix, referred to as the cryptobiome. These organisms play an important role in nutrient cycling and provide an abundant food source for higher trophic levels, yet they have been largely overlooked. Here, we analyzed the distribution patterns of the mobile cryptobiome (>2000 µm) along the latitudinal gradient of the Saudi Arabian coast of the Red Sea. Analysis was conducted based on 54 Autonomous Reef Monitoring Structures. We retrieved a total of 5273 organisms, from which 2583 DNA sequences from the mitochondrially encoded cytochrome c oxidase I were generated through sanger sequencing. We found that the cryptobiome community is variable over short geographical distances within the basin. Regression tree models identified sea surface temperature (SST), percentage cover of hard coral and turf algae as determinant for the number of operational taxonomic units present per Autonomous Reef Monitoring Structures (ARMS). Our results also show that the community structure of the cryptobiome is associated with the energy available (measured as photosynthetic active radiation), sea surface temperature, and nearby reef habitat characteristics (namely hard corals, turf and macroalgae). Given that temperature and reef benthic characteristics affect the cryptobiome, current scenarios of intensive climate change are likely to modify this fundamental biological component of coral reef functioning. However, the trajectory of change is unknow and can be site specific, as for example, diversity is expected to increase above SST of 28.5°C, and with decreasing hard coral and turf cover. This study provides a baseline of the cryptobenthic community prior to major coastal developments in the Red Sea to be used for future biodiversity studies and monitoring projects. It can also contribute to better understand patterns of reef biodiversity in a period where Marine Protected Areas are being discussed in the region.


Subject(s)
Anthozoa , Coral Reefs , Animals , Indian Ocean , Saudi Arabia , Ecosystem , Anthozoa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...