Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
1.
BMC Plant Biol ; 24(1): 848, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256685

ABSTRACT

In plant production, evaluation of salt stress protectants concerning their potential to improve growth and productivity under saline stress is critical. Bacillus subtilis (Bs) and cobalt (Co) have been proposed to optimize salt stress tolerance in coriander (Coriandrum sativum L. cv. Balady) plants by influencing some physiological activities. The main aim of this work is to investigate the response of (Bs) and (Co) as eco-safe salt stress protectants to resist the effect of salinity, on growth, seed, and essential oil yield, and the most important biochemical constituents of coriander produced under salt stress condition. Therefore, in a split-plot factorial experiment design in the RCBD (randomized complete block design), four levels of salinity of NaCl irrigation water (SA) were assigned to the main plots; (0.5, 1.5, 4, and 6 dS m-1); and six salt stress protectants (SP) were randomly assigned to the subplots: distilled water; 15 ppm (Co1); 30 ppm (Co2); (Bs); (Co1 + Bs); (Co2 + Bs). The study concluded that increasing SA significantly reduced coriander growth and yield by 42.6%, which could be attributed to ion toxicity, oxidative stress, or decreased vital element content. From the results, we recommend that applying Bs with Co (30 ppm) was critical for significantly improving overall growth parameters. This was determined by the significant reduction in the activity of reactive oxygen species scavenging enzymes: superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) and non-enzyme: proline by 5, 11.3, 14.7, and 13.8% respectively, while increasing ascorbic acid by 8% and preserving vital nutrient levels and enhancing plant osmotic potential to buffer salt stress, seed yield per plant, and essential oil yield increased by 12.6 and 18.8% respectively. The quality of essential oil was indicated by highly significant quantities of vital biological phytochemicals such as linalool, camphor, and protein which increased by 10.3, 3.6, and 9.39% respectively. Additional research is suggested to determine the precise mechanism of action of Bs and Co's dual impact on medicinal and aromatic plant salt stress tolerance.


Subject(s)
Bacillus subtilis , Cobalt , Coriandrum , Salt Tolerance , Coriandrum/drug effects , Bacillus subtilis/physiology , Bacillus subtilis/drug effects , Salt Tolerance/drug effects , Phytochemicals , Seeds/drug effects , Seeds/growth & development , Oils, Volatile/metabolism
2.
Chemosphere ; 363: 142998, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097110

ABSTRACT

Mass cultivation of high-value aromatic herbs such as Vietnamese coriander and Persicaria odorata required specific soil, nutrients, and irrigation, mostly found in the limited natural wetland. This study aimed to evaluate the capacity of P. odorata at different densities in nutrient removal and the growth performance of African catfish, Clarias gariepinus in aquaponic systems. P. odorata was cultivated for 40 d with less than 10% water exchange. The effects of increasing crop densities, from zero plants for the control, 0.035 ± 0.003 kg/m2 in Treatment 1, 0.029 ± 0.002 kg/m2 in Treatment 2, and 0.021 ± 0.003 kg/m2 in Treatment 3, were tested on the growth performance of C. gariepinus with an initial density of 3.00 ± 0.50 kg/m3. The specific growth rate (SGR), daily growth rate of fish (DGRf), and survival rate (SR) of the C. gariepinus were monitored. Nutrient removal, daily growth rate of plant (DGRp), relative growth rate (RGR), and the sum of leaf number (Æ©n) of the P. odorata plant were also recorded. It was found that nutrient removal percentage significantly increased with the presence of P. odorata at different densities. The growth performance of C. gariepinus was also affected by P. odorata density in each treatment. However, no significant difference was observed in the DGRp and RGR of the P. odorata (p>0.05), except for Æ©n values. Treatment 1 had the highest Æ©n number compared to Treatment 2 and Treatment 3, showing a significant difference (p<0.05). This study demonstrates that the presence of P. odorata significantly contributes to lower nutrient concentrations, supporting the fundamental idea that plants improve water quality in aquaponic systems.


Subject(s)
Catfishes , Animals , Catfishes/growth & development , Vietnam , Wetlands , Aquaculture/methods , Coriandrum , Paspalum/growth & development , Nutrients
3.
Molecules ; 29(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124890

ABSTRACT

Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat content was similar among the samples (13%), with monounsaturated fatty acids being predominant. The coriander and mystical cumin seeds were extremely rich in C18:1n9c (81 and 85%, respectively) while, in the caraway, C18:1n12 (25%) was found together with C18:1n9c (32%). The caraway seeds also presented a higher proportion of C18:2n6c (34%) than the other seeds (13 and 8%, correspondingly). γ-Tocotrienol was the major vitamin E form in all the samples. The caraway seeds contained double the amount of protein (~18%) compared to the other seeds (~8%) but, qualitatively, the amino acid profiles among all seeds were similar. The seeds were also rich in dietary fiber (40-53%); however, differences were found in their fiber profiles. Caraway showed the highest antioxidant profile and anti-inflammatory activity and an LC-DAD-ESI/MSn analysis revealed great differences in the phenolic profiles of the samples. Cytotoxicity (NCI-H460, AGS, MCF-7, and CaCo2) and hepatotoxicity (RAW 264.7) were not observed. In sum, besides their flavoring/preservation properties, these seeds are also relevant source of bioactive compounds with health-promoting activities.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Coriandrum , Phytochemicals , Spices , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Coriandrum/chemistry , Spices/analysis , Morocco , Cuminum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry
4.
PLoS One ; 19(8): e0297250, 2024.
Article in English | MEDLINE | ID: mdl-39106253

ABSTRACT

Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Coriandrum , Macrophages , Oils, Volatile , Seeds , Animals , Mice , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Seeds/chemistry , Antioxidants/pharmacology , Coriandrum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Cell Survival/drug effects , Nitric Oxide/metabolism , Phagocytosis/drug effects , Cytokines/metabolism , Jordan
5.
Comput Biol Med ; 181: 109051, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39186905

ABSTRACT

Autoimmune diseases represent a complex array of conditions where the body's immune system mistakenly attacks its own tissues. These disorders, affecting millions worldwide, encompass a broad spectrum of conditions ranging from rheumatoid arthritis and multiple sclerosis to lupus and type 1 diabetes. The Aryl hydrocarbon receptor (AhR) translocator, expressed across immune and other cell types, plays crucial roles in immune disorders and inflammatory diseases. With a realm towards natural remedies in modern medicine for disease prevention, this study investigates the electronic properties and behaviors of bioactive compounds from dietary sources, including Apium graveolens L. (Celery), Coriandrum sativum seeds (Coriander), and Mentha longifolia, as AhR modulators. Through comprehensive analysis (HOMO-LUMO, ESP, LOL, and ELF), electron-rich and -poor regions, electron localization, and delocalization are identified, contrasting these compounds with the toxic AhR ligand, TCDD. Evaluation of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties reveals favorable pharmacokinetics without blood-brain barrier penetration, indicating drug-like characteristics. Molecular docking demonstrates stronger interactions of dietary flavonoid ligands with AhR transcription compared to TCDD. Molecular dynamics simulations confirm the stability of complexes and the sustainability of interactions formed. This research underscores the potential of natural compounds as effective AhR modulators for therapeutic interventions in immune-related disorders.


Subject(s)
Apium , Coriandrum , Receptors, Aryl Hydrocarbon , Coriandrum/chemistry , Receptors, Aryl Hydrocarbon/metabolism , Humans , Apium/chemistry , Immunotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plants, Edible/chemistry , Molecular Docking Simulation
6.
Commun Biol ; 7(1): 1059, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198706

ABSTRACT

Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Plant Extracts , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Mice , Coriandrum/chemistry , Molecular Docking Simulation , Plants, Medicinal/chemistry , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Male , Tannins/pharmacology , Tannins/chemistry
7.
Cardiovasc Hematol Agents Med Chem ; 22(2): 230-239, 2024.
Article in English | MEDLINE | ID: mdl-38975619

ABSTRACT

BACKGROUND: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. OBJECTIVE: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. METHODS: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. RESULTS: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. CONCLUSION: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.


Subject(s)
Coriandrum , Fibrinolytic Agents , Green Chemistry Technology , Metal Nanoparticles , Murraya , Plant Extracts , Plant Leaves , Silver , Metal Nanoparticles/chemistry , Murraya/chemistry , Silver/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Coriandrum/chemistry , Plant Leaves/chemistry , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology
8.
Food Chem ; 457: 140128, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38959682

ABSTRACT

Headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (E-nose) technologies were implemented to characterize the volatile profile of aerial part from 40 coriander varieties. A total of 207 volatile compounds were identified and quantified, including aldehydes, alcohols, terpenes, hydrocarbons, esters, ketones, acids, furans, phenols and others. E-nose results showed that W5S and W2W were representative sensors responding to coriander odor. Among all varieties, the number (21-30 species) and content (449.94-1050.55 µg/g) of aldehydes were the highest, and the most abundant analytes were (Z)-9-hexadecenal or (E)-2-tetratecenal, which accounted for approximately one-third of the total content. In addition, 37 components were determined the characteristic constituents with odor activity values (OAVs) ≥ 1, mainly presenting citrusy, fatty, soapy and floral smells. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) could effectively distinguish different varieties. This study provided a crucial theoretical basis for flavor evaluation and quality improvement of coriander germplasm resources.


Subject(s)
Coriandrum , Electronic Nose , Gas Chromatography-Mass Spectrometry , Odorants , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Coriandrum/chemistry , Odorants/analysis , Chemometrics
9.
BMC Complement Med Ther ; 24(1): 267, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997693

ABSTRACT

BACKGROUND: Malaria continues to wreak havoc on the well-being of the community. Resistant parasites are jeopardizing the treatment. This is a wake-up call for better medications. Folk plants are the key starting point for antimalarial drug discovery. After crushing and mixing the leaves of Coriandrum sativum with water, one cup of tea is drunk daily for a duration of three to five days as a remedy for malaria by local folks in Ethiopia. Additionally, in vitro experiments conducted on the plant leaf extract elsewhere have also demonstrated the plant's malaria parasite inhibitory effect. There has been no pharmacologic research to assert this endowment in animals, though. This experiment was aimed at evaluating the antimalarial efficacy of C. sativum in Plasmodium berghei infected mice. METHODS: The plant's leaf was extracted using maceration with distilled water. The extract was examined for potential acute toxicity. An evaluation of secondary phytoconstituents was done. Standard antimalarial screening models (prophylactic, chemosuppressive, curative tests) were utilized to assess the antiplasmodial effect. In each test, thirty mice were organized into groups of five. To the three categories, the test substance was given at doses of 100, 200 and 400 mg/kg/day before or after the commencement of P. berghei infection. Positive and negative control mice were provided Chloroquine and distilled water, respectively. Rectal temperature, parasitemia, body weight, survival time and packed cell volume were ultimately assessed. Analysis of the data was performed using Statistical Package for Social Sciences. RESULTS: No toxicity was manifested in mice. The extract demonstrated a significant inhibition of parasitemia (p < 0.05) in all the models. The inhibition of parasite load was highest with the upper dose in the suppressive test (82.74%) followed by the curative procedure (78.49%). Likewise, inhibition of hypothermia, weight loss hampering, improved survival and protection against hemolysis were elicited by the extract. CONCLUSIONS: The results of our experimental study revealed that the aqueous crude leaf extract of C. sativum exhibits significant antimalarial efficacy in multiple in vivo models involving mice infected with P. berghei. Given this promising therapeutic attribute, in depth investigation on the plant is recommended.


Subject(s)
Antimalarials , Coriandrum , Disease Models, Animal , Malaria , Plant Extracts , Plant Leaves , Plasmodium berghei , Animals , Plant Extracts/pharmacology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mice , Plasmodium berghei/drug effects , Malaria/drug therapy , Coriandrum/chemistry , Ethiopia , Male , Female
10.
Sci Rep ; 14(1): 10052, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698117

ABSTRACT

The Apiaceae family contains many species used as food, spice and medicinal purposes. Different parts of plants including seeds could be used to obtain essential (EO) oils from members of the Apiaceae family. In the present study, EOs were components obtained through hydrodistillation from the seeds of anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), dill (Anethum graveolens), coriander (Coriandrum sativum), fennel (Foeniculum vulgare), and cumin (Cuminum cyminum). EO constituents were determined with Gas Chromatography/Mass Spectrometry (GC-MS) and Gas Chromatography/Flame Ionization Detector (GC-FID) and their antioxidant capacities were determined with the cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods. The antimicrobial activity of EOs were tested against four pathogenic bacteria. Phenylpropanoids in anise (94.87%) and fennel (92.52%), oxygenated monoterpenes in dill (67.59%) and coriander (98.96%), monoterpene hydrocarbons in celery (75.42%), mono- (45.42%) and sesquiterpene- (43.25%) hydrocarbons in carrots, monoterpene hydrocarbon (34.30%) and aromatic hydrocarbons (32.92%) in cumin were the major compounds in the EOs. Anethole in anise and fennel, carotol in carrot, limonene in celery, carvone in dill, linalool in coriander, and cumin aldehyde in cumin were predominant compounds in these EOs. The high hydrocarbon content in cumin EO gave high CUPRAC activity (89.07 µmol Trolox g-1), and the moderate monoterpene hydrocarbon and oxygenated monoterpene content in dill EO resulted in higher DPPH activity (9.86 µmol Trolox g-1). The in vitro antibacterial activity of EOs against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was evaluated using the agar diffusion method and the minimum bactericidal concentration was determined. Coriander, cumin and dill EOs showed inhibitory effect against all tested strains except P. aeruginosa. While fennel and celery EOs were effective against E. coli and B. cereus strains, respectively, anise and carrot EOs did not show any antibacterial effect against the tested bacteria. Hierarchical Cluster Analysis (HCA) produced four groups based on EO constituents of seven species. The potential adoption of the cultivated Apiaceae species for EO extraction could be beneficial for the wild species that are endangered by over collection and consumption.


Subject(s)
Antioxidants , Apiaceae , Daucus carota , Foeniculum , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Apiaceae/chemistry , Daucus carota/chemistry , Foeniculum/chemistry , Cuminum/chemistry , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Coriandrum/chemistry , Seeds/chemistry , Anethum graveolens/chemistry , Pimpinella/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Apium/chemistry
11.
Environ Toxicol ; 39(7): 4014-4021, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613516

ABSTRACT

Coriander is a notable medicinal plant known for its diverse properties, including anti-inflammatory, antioxidant, anticancer, analgesic, and anti-diabetic effects. Despite its recognized health benefits, research on its nephroprotective properties is limited. This study aimed to investigate the potential nephroprotective properties of an aqueous extract derived from coriander leaves using an aristolochic acid-intoxicated zebrafish model. To assess kidney abnormalities induced by aristolochic acid (AA), we utilized the transgenic line Tg(wt1b:egfp), which expresses green fluorescent protein (GFP) in the kidney. Our previous report indicated that AA exposure leads to acute renal failure in zebrafish characterized by kidney malformation and impaired renal function. However, pretreatment of coriander extract (CE) can mitigate kidney malformations induced by AA. In addition, CE pretreatment reduces the accumulation of red blood cells in the glomerular region. To verify the nephroprotective effects of CE, we analyzed renal function by measuring the glomerular filtration rate in zebrafish embryos. Results indicate that CE partially mitigates renal function impairment caused by AA exposure, suggesting its potential to attenuate AA-induced renal failure. Mechanistically, pretreatment with CE reduces the expression of proinflammatory and proapoptotic genes induced by AA. This suggests that CE likely alleviates acute renal failure by reducing inflammation and apoptosis. As a result, we regard zebrafish as a valuable model for screening natural compounds that have the potential to alleviate AA-induced nephrotoxicity.


Subject(s)
Aristolochic Acids , Coriandrum , Embryo, Nonmammalian , Kidney , Plant Extracts , Plant Leaves , Zebrafish , Animals , Aristolochic Acids/toxicity , Plant Extracts/pharmacology , Plant Leaves/chemistry , Embryo, Nonmammalian/drug effects , Kidney/drug effects , Kidney/pathology , Coriandrum/chemistry , Animals, Genetically Modified , Protective Agents/pharmacology
12.
Food Funct ; 15(8): 4122-4139, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38573168

ABSTRACT

The health-promoting effects of berries have attracted attention due to the possible application of their extracts as functional ingredients in food products. Natural deep eutectic solvents (NADESs) are a new generation of environmentally friendly solvents for the extraction of natural products, and they are green alternatives to organic solvents, and they can improve the solubility, stability, and bioavailability of isolated biocompounds. In this study, an efficient eco-friendly method was used for the extraction of phenolic compounds from different berries: chokeberries, blueberries, and black goji berries with a range of eutectic solvents consisting of hydrogen bond acceptors (HBAs) such as choline chloride, L-proline, L-glycine, and L-lysine and hydrogen bond donors (HBDs) such as malic, citric, tartaric, lactic and succinic acids, glucose and glycerol. The obtained results indicated the ability of NADESs towards selective extraction of phenolics; the eutectic system choline chloride : malic acid showed selective extraction of anthocyanins, while choline chloride : glycerol and choline chloride : urea showed selectivity towards flavonoids and phenolic acids. The methodology for screening of the NADES extraction performance, which included chromatographic profiling via high-performance thin layer chromatography combined with chemometrics and spectrophotometric essays, allowed effective assessment of optimal eutectic solvents for isolation of different groups of phenolics. Great antioxidant and antimicrobial activities of extracts, along with the green nature of eutectic solvents, enable NADES berry extracts to be used as "green-labelled" functional foods or ingredients.


Subject(s)
Deep Eutectic Solvents , Fruit , Functional Food , Phenols , Plant Extracts , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Deep Eutectic Solvents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Blueberry Plants/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Coriandrum/chemistry
13.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 81-87, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38430037

ABSTRACT

This study aimed to investigate the role of coriander seed powder (Coriandrum sativum) on growth indices, feed utilization, body composition, and haemato-biochemical parameters in common carp (Cyprinus carpio) fingerlings over 84 days. One hundred and forty-four common carp (25.24±0.05 g) were assigned into four groups fed with different diets, namely 0 (basal diet), 1%, 2%, and 4% of coriander seed powder (CSP). In the current study, C. carpio fed with dietary CSP revealed significant improvement in weight gain, final weight, specific growth rate, total feed intake, feed conversion efficiency, feed conversion ratio, protein intake, and protein efficiency ratio, in comparison to control fish fed after 84 days (P>0.05). It was also found that fish fed with 1%CSP-supplemented dietary had the best growth performance and feed utilization. The crude protein of fish fed with CSP dietary treatments increased, and significant differences were only found in the fish fed with 1%CSP diet, in comparison to the control group. The CSP supplementation groups showed significant increases in hemoglobin, hematocrit, albumin, total protein, and globulin compared to the control group. Nevertheless, differential white blood cells, mean corpuscular hemoglobin concentration, cholesterols, and triglycerides were significantly reduced in the CSP dietary group in comparison to the control group. It was also found that CSP dietary treatment significantly increased lipase and amylase in comparison to the control group (P>0.05). However, the highest lipase and amylase levels were obtained at 1%CSP and 2%CSP dietary treatment groups, compared to the control basal diet. Based on the results, CSP supplementation could improve the overall health status and growth performance of common carp fingerlings.


Subject(s)
Carps , Coriandrum , Hematology , Animals , Powders , Dietary Supplements , Body Composition , Amylases , Lipase
14.
Sci Rep ; 14(1): 2921, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316894

ABSTRACT

The application of natural extracts to vegetable plants can increase production, optimize nutrient and water uptake, and mitigate the effects of stress on vegetable plants by enhancing primary and secondary metabolism. In this study, Acacia saligna (Labill.) H.L.Wendl. fruit aqueous extract (FAE) was applied as a foliar application to assess and demonstrate its effects on growth, productivity, and phytochemicals of coriander (Coriandrum sativum L.) plants. A. saligna FAE (2%, 4%, and 6%), each combined with 50% of the recommended dose of N fertilizer was applied to coriander plants over the course of two successive seasons in the field. These treatments were compared with the control treatment, which used a 100% recommended dose of N. The four tested treatments were set up in a randomized complete block design with three replicates for a total of 12 experimental plots. Each replicate (experimental plot) was 3 m2 (2 × 1.5 m2) in size and included 300 seeds/m2. The phytochemicals were examined using chromatographic and spectrophotometric methods, where the essential oils (EOs) extracted from leaves were analyzed by Gas chromatography-mass spectrometry (GC-MS), while the phenolic and flavonoid compounds were analyzed by High Performance Liquid Chromatography (HPLC). With the application of A. saligna FAE (4%) + 50% N fertilizer, the levels of total solid content, total carbohydrates, total protein, total phenols, and total antioxidant activity, as well as chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoids, were increased at harvest. The treatment A. saligna FAE at 6% + 50% N fertilizer did not observe significant improvement in the growth parameters of coriander plants because of the anticipated allelopathic effects. By GC-MS analysis, the major compounds in the EO from control treatment were 2-octyn-1-ol (23.93%), and 2-butyl-1-octanol (8.80%), in treated plants with 2% of A. saligna FAE + 50% N fertilizer were (E)-2-decen-1-ol (32.00%), and 1-methoxymethoxy-oct-2-yne (13.71%), in treated plants with 4% A. saligna FAE + 50% N fertilizer were E-2-undecen-1-ol (32.70%), and 3,5,5-trimethyl-1-hexene (8.91%), and in the treated plants with A. saligna FAE (6%) + 50% N fertilizer were phytol (80.44%), and (Z)6,(Z)9-pentadecadien-1-ol (13.75%). The flavonoid components 7-hydroxyflavone, naringin, rutin, quercetin, kaempferol, luteolin, apigenin, and catechin were presented with variable concentrations according to the treatments utilized as identified by HPLC analysis from the methanol extracts of the treated plants with the combination treatments of A. saligna FAE (2, 4, and 6%) and N fertilization (50% from the recommended dose) and control coriander plants (100% N recommended dose). The combination of 50% N fertilizer treatment and the biostimulant A. saligna FAE (4%) seems to improve coriander plant growth while simultaneously lowering N fertilizer consumption. Future research will be needed to further study the effectiveness of several concentrations of A. saligna FAE in various conditions and/or species.


Subject(s)
Acacia , Coriandrum , Coriandrum/chemistry , Chlorophyll A/metabolism , Fertilizers , Fruit/chemistry , Phytochemicals/analysis , Antioxidants/metabolism , Flavonoids/metabolism , Plants
15.
Viruses ; 16(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38400002

ABSTRACT

In Chile, edible herbs are mainly grown by small farmers. This type of horticultural crop typically requires intensive management because it is highly susceptible to insects, some of which transmit viruses that severely affect crop yield and quality. In 2019, in coriander plants tested negative for all previously reported viruses, RNA-Seq analysis of one symptomatic plant revealed a plethora of viruses, including one virus known to infect coriander, five viruses never reported in coriander, and a new cytorhabdovirus with a 14,180 nucleotide RNA genome for which the species name Cytorhabdovirus coriandrum was proposed. Since all the detected viruses were aphid-borne, aphids and weeds commonly growing around the coriander field were screened for viruses. The results showed the occurrence of the same seven viruses and the alfalfa mosaic virus, another aphid-borne virus, in aphids and weeds. Together, our findings document the presence of multiple viruses in coriander and the potential role of weeds as virus reservoirs for aphid acquisition.


Subject(s)
Aphids , Coriandrum , Plant Viruses , Viruses , Animals , Chile/epidemiology , Plants , Plant Diseases , Plant Viruses/genetics
16.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398596

ABSTRACT

In recent years, there has been a significant decline in interest in high-alcohol beers, while interest in low- and non-alcohol beers is growing. The aim of this study was to investigate the influence of the addition of coriander seeds at various stages of the production of low-alcohol wheat beer (mashing, boiling, and fermentation). The presented article uses biological methods to produce low-alcohol beer. For this purpose, first, the mashing process was modified (breaking 44 °C for 20 min, followed by 75 °C for 60 min). The chemical composition and aroma components of the obtained beers were determined using various chromatographic methods (HPLC, GC-MS, and GC-O). Differences were found between the aroma components depending on the stage of production at which the coriander seeds were added. Beers with the addition of coriander seeds at the fermentation stage had the highest terpene content (linalool, camphor, trans-linalool oxide, and γ-terpinene) and boiling (myrcene, limonene, citronellol, and geraniol). The least desirable process is the addition of coriander seeds at the mashing stage due to the lowest content of volatile compounds. Additionally, beers with the addition of coriander seeds for fermentation were characterized by a higher content of antioxidant compounds. This proves that the addition of coriander seeds during beer production could improve the fermentation process and modify the quality of the obtaining beer.


Subject(s)
Beer , Coriandrum , Beer/analysis , Triticum/chemistry , Coriandrum/metabolism , Antioxidants/analysis , Seeds/chemistry , Fermentation
17.
Vet Q ; 44(1): 1-7, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38423073

ABSTRACT

The study investigated the impact of incorporating a specific herbal blend comprising coriander, garlic, and fenugreek (CGF) at various levels on the zootechnical performance, blood metabolites and nutrient digestibility in broiler chickens. The 42-day experiment involved 360 broilers (Cobb 500), organized into four distinct treatment groups. The dietary interventions included a control group consisting of a basal diet and the same diet was supplemented with CGF at rates of 1, 2, and 3%. Broilers receiving a 1% phytogenic mixture exhibited significantly increased live weight and carcass weight. Moreover, the digestibility of crude protein and crude fat significantly improved in broilers supplemented with a 1% phytogenic mixture. On the other hand, the digestibility of calcium and phosphorus showed a notable increase in broilers fed with a 3% phytogenic mixture. Regarding serum metabolites, the 1% phytogenic mixture group displayed significantly higher levels of high density lipoprotein and triglycerides. The supplementation of the broiler diet with a herbal mixture of coriander, fenugreek, and garlic at a 1% rate resulted in improved growth performance, carcass quality, nutrient digestion, and lipid profile.


Subject(s)
Coriandrum , Garlic , Trigonella , Animals , Chickens , Nutrients
18.
Sci Rep ; 14(1): 603, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182767

ABSTRACT

In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated ß-galactoside/SA-ß-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = < 0.001), SA-ß-Gal activity (p = 0.010), and increased GSH concentration (p = 0.047) in the brain of obese rats; however, the decrease of IL-6, NSE, and p16 as well as the increase of catalase specific activity and BDNF expression were not significant. Moreover, the mature/pro-BDNF ratio was significantly higher in the brains of non-obese rats, both given the control diet and the high-fat diet compared to the control. Our results suggest that obese rats benefited from consuming CSES, showing improved oxidative stress levels, reduced cellular senescence and increased endogenous antioxidants, making CSES a potential neuroprotective agent.


Subject(s)
Coriandrum , Neuroprotective Agents , Male , Rats , Animals , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor , Catalase , Interleukin-6 , Rats, Wistar , Brain , Obesity/drug therapy , Ethanol , Glutathione , Seeds
19.
BMC Vet Res ; 19(1): 254, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037033

ABSTRACT

This study (60 days) was conducted to investigate the ability of diet enriched with Coriandrum sativum powder or its extract to protect Oreochromis niloticus health and survivability at suboptimal temperature (21 ℃). One hundred and twenty (33.14 ± 0.5 g) were divided into four groups; each group has three replicates.. The first control group fed on a basal diet. Second and third groups fed on diet enriched with 30 mg/kg coriander seed powder (CP) and coriander seed ethanolic extract (CE), respectively. The fourth group (OT) fed on diet enriched with 500 mg oxytetracycline/kg diet. The results revealed that CE exhibited a considerable improvement in hematological parameters, hepatic-renal functions, antioxidant status, and immunological markers as well as remarkably increased resistance against Aeromonas veronii. It could be concluded that feeding tilapia CE enriched diet at 30 mg/kg is a recommended strategy to enhance tilapia health and resistance to A. veronii infection reared at 21 ℃.


Subject(s)
Cichlids , Coriandrum , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Survival Rate , Powders , Temperature , Diet/veterinary , Health Status , Animal Feed/analysis , Fish Diseases/prevention & control , Dietary Supplements/analysis , Disease Resistance , Gram-Negative Bacterial Infections/veterinary
20.
BMC Plant Biol ; 23(1): 649, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38102554

ABSTRACT

BACKGROUND: Brassinolide, known as the seventh plant hormone, can improve the photosynthetic capacity of plants, promote plant growth and development, promote the formation of horticultural crop yield, improve the quality of horticultural crops, and also improve the ability of plants to resist biological and abiotic stresses. RESULTS: The effects of different concentrations of exogenously sprayed 2,4-epibrassinolide (EBR) on growth, physiological and photosynthetic characteristics of 'All-round large leaf coriander' were studied in substrate culture. The results showed that 0.05, 0.1, and 0.5 mg.L- 1 EBR promoted the growth of coriander and increased the aboveground fresh and dry weights, with 0.5 mg.L- 1 EBR having the most significant effect. Spraying 0.1 mg.L- 1 EBR increased the content of soluble sugars and protein of coriander leaves. Spraying 0.1 and 0.5 mg.L- 1 EBR significantly increased the chlorophyll content and photosynthetic parameters of coriander leaves, and 0.5 mg.L- 1 EBR also significantly increased the chlorophyll fluorescence parameters of coriander leaves. Spraying 0.5 mg.L- 1 EBR upregulated the expression of CsRbcS, CsFBPase, and CsAld. Correlation analysis showed that aboveground fresh weight under exogenous EBR treatment was significantly positively correlated with aboveground dry weight, plant height, Pn, Gs, Ci, and CsAld (P < 0.05), and soluble sugar content was significantly positively correlated with the number of leaves, Y(II), qP, and CsRbcS. The results of the principal component analysis (PCA) showed that there was a significant separation between the treatment and the control groups. Spraying 0.5 mg.L- 1 EBR can promote the growth of coriander, improve the quality of coriander leaves, and strengthen coriander leaf photosynthetic capacity. This study provides new insights into the promotion of coriander growth and development following the application of exogenous EBR. CONCLUSION: Exogenous EBR treatment increased coriander plant height, leaf growth and aboveground dry weight, and enhanced photosynthesis. Exogenous spraying of 0.5 mg.L- 1 EBR had the most significant effect.


Subject(s)
Coriandrum , Photosynthesis , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Chlorophyll/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL