Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Virol ; 96(17): e0090722, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000844

ABSTRACT

The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus, Feline , Drug Resistance, Viral , Mutation , Protease Inhibitors , Animals , Antiviral Agents/pharmacology , Cats/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus, Feline/drug effects , Coronavirus, Feline/enzymology , Coronavirus, Feline/genetics , Drug Resistance, Viral/genetics , Protease Inhibitors/pharmacology
2.
Antiviral Res ; 182: 104927, 2020 10.
Article in English | MEDLINE | ID: mdl-32910955

ABSTRACT

Feline infectious peritonitis (FIP) which is caused by feline infectious peritonitis virus (FIPV), a variant of feline coronavirus (FCoV), is a member of family Coronaviridae, together with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. So far, neither effective vaccines nor approved antiviral therapeutics are currently available for the treatment of FIPV infection. Both human and animal CoVs shares similar functional proteins, particularly the 3CL protease (3CLpro), which plays the pivotal role on viral replication. We investigated the potential drug-liked compounds and their inhibitory interaction on the 3CLpro active sites of CoVs by the structural-bases virtual screening. Fluorescence resonance energy transfer (FRET) assay revealed that three out of twenty-eight compounds could hamper FIPV 3CLpro activities with IC50 of 3.57 ± 0.36 µM to 25.90 ± 1.40 µM, and Ki values of 2.04 ± 0.08 to 15.21 ± 1.76 µM, respectively. Evaluation of antiviral activity using cell-based assay showed that NSC629301 and NSC71097 could strongly inhibit the cytopathic effect and also reduced replication of FIPV in CRFK cells in all examined conditions with the low range of EC50 (6.11 ± 1.90 to 7.75 ± 0.48 µM and 1.99 ± 0.30 to 4.03 ± 0.60 µM, respectively), less than those of ribavirin and lopinavir. Analysis of FIPV 3CLpro-ligand interaction demonstrated that the selected compounds reacted to the crucial residues (His41 and Cys144) of catalytic dyad. Our investigations provide a fundamental knowledge for the further development of antiviral agents and increase the number of anti-CoV agent pools for feline coronavirus and other related CoVs.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Coronavirus, Feline/enzymology , Cysteine Proteinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Cats , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drug Evaluation, Preclinical/methods , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Humans , Inhibitory Concentration 50 , Kinetics , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/enzymology , Models, Molecular , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
3.
Nat Commun ; 11(1): 4282, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32855413

ABSTRACT

The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus, Feline/drug effects , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Animals , Antiviral Agents/chemistry , Betacoronavirus/enzymology , Binding Sites , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus, Feline/enzymology , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cytopathogenic Effect, Viral/drug effects , Drug Repositioning , Humans , Inhibitory Concentration 50 , Molecular Structure , Prodrugs , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2 , Sulfonic Acids , Vero Cells , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
4.
Antiviral Res ; 174: 104697, 2020 02.
Article in English | MEDLINE | ID: mdl-31863793

ABSTRACT

The computational search of chemical libraries has been used as a powerful tool for the rapid discovery of candidate compounds. To find small molecules with anti-feline infectious peritonitis virus (FIPV) properties, we utilized a virtual screening technique to identify the active site on the viral protease for the binding of the available natural compounds. The protease 3CL (3CLpro) plays an important role in the replication cycle of FIPV and other viruses within the family Coronaviridae. The 15 best-ranked candidate consensus compounds, based on three docking tools, were evaluated for further assays. The protease inhibitor assay on recombinant FIPV 3CLpro was performed to screen the inhibitory effect of the candidate compounds with IC50 ranging from 6.36 ± 2.15 to 78.40 ± 2.60 µM. As determined by the cell-based assay, the compounds NSC345647, NSC87511, and NSC343256 showed better EC50 values than the broad-spectrum antiviral drug ribavirin and the protease inhibitor lopinavir, under all the test conditions including pre-viral entry, post-viral entry, and prophylactic activity. The NSC87511 particularly yielded the best selective index (>4; range of SI = 13.80-22.90). These results indicated that the natural small-molecular compounds specifically targeted the 3CLpro of FIPV and inhibited its replication. Structural modification of these compounds may generate a higher anti-viral potency for the further development of a novel therapy against FIP.


Subject(s)
Antiviral Agents/chemistry , Coronavirus, Feline/enzymology , Feline Infectious Peritonitis/virology , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Viral Proteins/chemistry , Animals , Antiviral Agents/pharmacology , Catalytic Domain , Cats , Computer Simulation , Coronavirus, Feline/chemistry , Coronavirus, Feline/drug effects , Coronavirus, Feline/genetics , Drug Evaluation, Preclinical , Kinetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Ribavirin/chemistry , Ribavirin/pharmacology , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Vet Microbiol ; 237: 108398, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31585653

ABSTRACT

Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.


Subject(s)
Cat Diseases/virology , Coronaviridae Infections/veterinary , Coronavirus, Feline/enzymology , Feline Infectious Peritonitis/complications , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cats , Coronaviridae Infections/drug therapy , Coronaviridae Infections/virology , Male , Models, Molecular , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/pharmacology , RNA, Viral , Sequence Alignment , Sulfonic Acids , Viral Proteins/chemistry , Viral Proteins/metabolism
6.
J Virol ; 90(4): 1910-7, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26656689

ABSTRACT

UNLABELLED: Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. Feline infectious peritonitis virus (FIPV) belongs to the genus Alphacoronavirus, resulting in a lethal systemic granulomatous disease called feline infectious peritonitis (FIP), which is one of the most important fatal infectious diseases of cats worldwide. No specific vaccines or drugs have been approved to treat FIP. CoV main proteases (M(pro)s) play a pivotal role in viral transcription and replication, making them an ideal target for drug development. Here, we report the crystal structure of FIPV M(pro) in complex with dual inhibitors, a zinc ion and a Michael acceptor. The complex structure elaborates a unique mechanism of two distinct inhibitors synergizing to inactivate the protease, providing a structural basis to design novel antivirals and suggesting the potential to take advantage of zinc as an adjunct therapy against CoV-associated diseases. IMPORTANCE: Coronaviruses (CoVs) have the largest genome size among all RNA viruses. CoV infection causes various diseases in humans and animals, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). No approved specific drugs or vaccinations are available to treat their infections. Here, we report a novel dual inhibition mechanism targeting CoV main protease (M(pro)) from feline infectious peritonitis virus (FIPV), which leads to lethal systemic granulomatous disease in cats. M(pro), conserved across all CoV genomes, is essential for viral replication and transcription. We demonstrated that zinc ion and a Michael acceptor-based peptidomimetic inhibitor synergistically inactivate FIPV M(pro). We also solved the structure of FIPV M(pro) complexed with two inhibitors, delineating the structural view of a dual inhibition mechanism. Our study provides new insight into the pharmaceutical strategy against CoV M(pro) through using zinc as an adjuvant therapy to enhance the efficacy of an irreversible peptidomimetic inhibitor.


Subject(s)
Coronavirus, Feline/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Amino Acid Sequence , Coronavirus 3C Proteases , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Zinc/chemistry , Zinc/metabolism
7.
Antiviral Res ; 126: 1-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26675666

ABSTRACT

Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.


Subject(s)
Coronavirus, Feline/enzymology , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Virus Replication/physiology , Amino Acid Sequence , Animals , Cats , Cell Line , Coronavirus, Feline/drug effects , Coronavirus, Feline/genetics , Coronavirus, Feline/physiology , Cyclophilins/drug effects , Cyclosporine/pharmacology , DNA Replication/drug effects , Drug Discovery , Feline Infectious Peritonitis/virology , Gene Knockout Techniques , Immunosuppressive Agents/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/biosynthesis , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Piperidines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Tacrolimus Binding Proteins/pharmacology , Thiram/analogs & derivatives , Thiram/pharmacology , Virus Replication/drug effects
8.
Bioorg Med Chem Lett ; 25(22): 5072-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26592814

ABSTRACT

Feline infectious peritonitis (FIP) is a deadly disease that effects both domestic and wild cats and is caused by a mutation in feline coronavirus (FCoV) that allows the virus to replicate in macrophages. Currently, there are no treatments or vaccines available for the treatment of FIP even though it kills approximately 5% of cats in multi-cat households per year. In an effort to develop small molecule drugs targeting FIP for the treatment of cats, we screened a small set of designed peptidomimetic inhibitors for inhibition of FIPV-3CL(pro), identifying two compounds with low to sub-micromolar inhibition, compound 6 (IC50=0.59±0.06 µM) and compound 7 (IC50=1.3±0.1 µM). We determined the first X-ray crystal structure of FIPV-3CL(pro) in complex with the best inhibitor identified, compound 6, to a resolution of 2.10 Å to better understand the structural basis for inhibitor specificity. Our study provides important insights into the structural requirements for the inhibition of FIPV-3CL(pro) by peptidomimetic inhibitors and expands the current structural knowledge of coronaviral 3CL(pro) architecture.


Subject(s)
Antiviral Agents/chemical synthesis , Coronavirus, Feline/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Oligopeptides/chemical synthesis , Peptidomimetics/chemical synthesis , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Drug Design , Escherichia coli , Hydrogen Bonding , Kinetics , Models, Molecular , Oligopeptides/chemistry , Peptidomimetics/chemistry
9.
J Virol ; 89(9): 4942-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25694593

ABSTRACT

UNLABELLED: Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE: Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats, and virulent, systemic feline calicivirus (vs-FCV) causes a highly fatal disease in cats for which no preventive or therapeutic measure is available. The genomes of these distinct viruses, which belong to different virus families, encode a structurally and functionally conserved 3C-like protease (3CLpro) which is a potential target for broad-spectrum antiviral drug development. However, no studies have previously reported a structural platform for the design of antiviral drugs with activities against these viruses or on the efficacy of 3CLpro inhibitors against coronavirus infection in experimental animals. In this study, we explored the structure-activity relationships of the derivatives of 3CLpro inhibitors and identified inhibitors with potent dual activities against these viruses. In addition, the efficacy of the 3CLpro inhibitors was demonstrated in mice infected with a murine coronavirus. Overall, our study provides the first insight into a structural platform for anti-FIPV and anti-FCV drug development.


Subject(s)
Antiviral Agents/isolation & purification , Calicivirus, Feline/enzymology , Coronavirus, Feline/enzymology , Protease Inhibitors/isolation & purification , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Calicivirus, Feline/drug effects , Cats , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus, Feline/drug effects , Cysteine Endopeptidases , Disease Models, Animal , Female , Liver/pathology , Mice, Inbred BALB C , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Treatment Outcome
10.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1612-5, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25484209

ABSTRACT

Feline infectious peritonitis virus (FIPV) causes a lethal systemic granulomatous disease in wild and domestic cats around the world. Currently, no effective vaccines or drugs have been developed against it. As a member of the genus Alphacoronavirus, FIPV encodes two polyprotein precursors required for genome replication and transcription. Each polyprotein undergoes extensive proteolytic processing, resulting in functional subunits. This process is mainly mediated by its genome-encoded main protease, which is an attractive target for antiviral drug design. In this study, the main protease of FIPV in complex with a Michael acceptor-type inhibitor was crystallized. The complex crystals diffracted to 2.5 Šresolution and belonged to space group I422, with unit-cell parameters a = 112.3, b = 112.3, c = 102.1 Å. There is one molecule per asymmetric unit.


Subject(s)
Coronavirus, Feline/enzymology , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Amino Acid Sequence , Crystallization , Molecular Sequence Data
11.
J Virol ; 86(8): 4444-54, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22318142

ABSTRACT

Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His(6)-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/ß domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His(6) tag. Remarkably, the same protein harboring the sequence GPLG instead of the His(6) tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length.


Subject(s)
Coronavirus, Feline/chemistry , Coronavirus, Feline/enzymology , DNA-Directed RNA Polymerases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , DNA-Directed RNA Polymerases/chemistry , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Multimerization , Sequence Alignment
12.
J Gen Virol ; 91(Pt 2): 415-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19889934

ABSTRACT

Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene--a proposed virulence marker--in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all--or only poorly--in the gut, explaining the rare incidence of FIP outbreaks.


Subject(s)
Cats , Coronavirus, Feline/enzymology , Coronavirus, Feline/pathogenicity , Cysteine Endopeptidases/genetics , Feline Infectious Peritonitis/epidemiology , Viral Proteins/genetics , 3C Viral Proteases , Amino Acid Sequence , Animals , Coronavirus, Feline/classification , Coronavirus, Feline/physiology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Feline Infectious Peritonitis/virology , Molecular Sequence Data , Mutation , Phylogeny , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/metabolism , Virulence , Virus Replication
13.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1292-300, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966415

ABSTRACT

The structure of the X (or ADRP) domain of a pathogenic variant of feline coronavirus (FCoV) has been determined in tetragonal and cubic crystal forms to 3.1 and 2.2 A resolution, respectively. In the tetragonal crystal form, glycerol-3-phosphate was observed in the ADP-ribose-binding site. Both crystal forms contained large solvent channels and had a solvent content of higher than 70%. Only very weak binding of this domain to ADP-ribose was detected in vitro. However, the structure with ADP-ribose bound was determined in the cubic crystal form at 3.9 A resolution. The structure of the FCoV X domain had the expected macro-domain fold and is the first structure of this domain from a coronavirus belonging to subgroup 1a.


Subject(s)
Coronavirus, Feline/enzymology , Protein Interaction Domains and Motifs , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Glycerophosphates/chemistry , Glycerophosphates/metabolism , Molecular Sequence Data , Protein Binding , Sequence Alignment , Sequence Homology, Amino Acid
14.
J Gen Virol ; 83(Pt 3): 581-593, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11842253

ABSTRACT

Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.


Subject(s)
Coronavirus, Feline/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Mutation/genetics , Amino Acid Sequence , Animals , Binding Sites , Catalysis , Cats , Cell Line , Computational Biology , Conserved Sequence , Coronavirus 3C Proteases , Coronavirus, Feline/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/isolation & purification , Evolution, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Peptide Fragments/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...