Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
PLoS One ; 19(5): e0299696, 2024.
Article in English | MEDLINE | ID: mdl-38728335

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 disease, which represents a new life-threatening disaster. Regarding viral infection, many therapeutics have been investigated to alleviate the epidemiology such as vaccines and receptor decoys. However, the continuous mutating coronavirus, especially the variants of Delta and Omicron, are tended to invalidate the therapeutic biological product. Thus, it is necessary to develop molecular entities as broad-spectrum antiviral drugs. Coronavirus replication is controlled by the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme, which is required for the virus's life cycle. In the cases of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), 3CLpro has been shown to be a promising therapeutic development target. Here we proposed an attention-based deep learning framework for molecular graphs and sequences, training from the BindingDB 3CLpro dataset (114,555 compounds). After construction of such model, we conducted large-scale screening the in vivo/vitro dataset (276,003 compounds) from Zinc Database and visualize the candidate compounds with attention score. geometric-based affinity prediction was employed for validation. Finally, we established a 3CLpro-specific deep learning framework, namely GraphDPI-3CL (AUROC: 0.958) achieved superior performance beyond the existing state of the art model and discovered 10 molecules with a high binding affinity of 3CLpro and superior binding mode.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Deep Learning , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Protein Binding , COVID-19/virology , Molecular Docking Simulation
2.
J Infect Dev Ctries ; 18(4): 520-531, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728643

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic caused global health, economic, and population loss. Variants of the coronavirus contributed to the severity of the disease and persistent rise in infections. This study aimed to identify potential drug candidates from fifteen approved antiviral drugs against SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike protein (6M0J) using virtual screening and pharmacokinetics to gain insights into COVID-19 therapeutics. METHODOLOGY: We employed drug repurposing approach to analyze binding performance of fifteen clinically approved antiviral drugs against the main protease of SARS-CoV-2 (6LU7), SARS-CoV (5B6O), and SARS-CoV-2 spike proteins bound to ACE-2 receptor (6M0J), to provide an insight into the therapeutics of COVID-19. AutoDock Vina was used for docking studies. The binding affinities were calculated, and 2-3D structures of protein-ligand interactions were drawn. RESULTS: Rutin, hesperidin, and nelfinavir are clinically approved antiviral drugs with high binding affinity to proteins 6LU7, 5B6O, and 6M0J. These ligands have excellent pharmacokinetics, ensuring efficient absorption, metabolism, excretion, and digestibility. Hesperidin showed the most potent interaction with spike protein 6M0J, forming four H-bonds. Nelfinavir had a high human intestinal absorption (HIA) score of 0.93, indicating maximum absorption in the body and promising interactions with 6LU7. CONCLUSIONS: Our results indicated that rutin, hesperidin, and nelfinavir had the highest binding results against the proposed drug targets. The computational approach effectively identified SARS-CoV-2 inhibitors. COVID-19 is still a recurrent threat globally and predictive analysis using natural compounds might serve as a starting point for new drug development against SARS-CoV-2 and related viruses.


Subject(s)
Antiviral Agents , COVID-19 , Drug Repositioning , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Pandemics , Betacoronavirus/drug effects , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry
3.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710746

ABSTRACT

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
4.
Int J Biol Macromol ; 267(Pt 1): 131392, 2024 May.
Article in English | MEDLINE | ID: mdl-38582483

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is critical in the virus's replication cycle, facilitating the maturation of polyproteins into functional units. Due to its conservation across taxa, Mpro is a promising target for broad-spectrum antiviral drugs. Targeting Mpro with small molecule inhibitors, such as nirmatrelvir combined with ritonavir (Paxlovid™), which the FDA has approved for post-exposure treatment and prophylaxis, can effectively interrupt the replication process of the virus. A key aspect of Mpro's function is its ability to form a functional dimer. However, the mechanics of dimerization and its influence on proteolytic activity remain less understood. In this study, we utilized biochemical, structural, and molecular modelling approaches to explore Mpro dimerization. We evaluated critical residues, specifically Arg4 and Arg298, that are essential for dimerization. Our results show that changes in the oligomerization state of Mpro directly affect its enzymatic activity and dimerization propensity. We discovered a synergistic relationship influencing dimer formation, involving both intra- and intermolecular interactions. These findings highlight the potential for developing allosteric inhibitors targeting Mpro, offering promising new directions for therapeutic strategies.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protein Multimerization , SARS-CoV-2 , SARS-CoV-2/drug effects , Protein Multimerization/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Models, Molecular , COVID-19/virology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
5.
PLoS One ; 19(4): e0301086, 2024.
Article in English | MEDLINE | ID: mdl-38662719

ABSTRACT

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Subject(s)
Antiviral Agents , Iridoids , Molecular Docking Simulation , Olea , Plant Extracts , Plant Leaves , Polyphenols , SARS-CoV-2 , Olea/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Computer Simulation , COVID-19 Drug Treatment , Luteolin/pharmacology , Luteolin/chemistry , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , Apigenin/pharmacology , Apigenin/chemistry
6.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38661066

ABSTRACT

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Subject(s)
Antiviral Agents , CD13 Antigens , Ionophores , Livestock , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ionophores/pharmacology , Ionophores/chemistry , CD13 Antigens/metabolism , CD13 Antigens/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Veterinary Drugs/pharmacology , Veterinary Drugs/chemistry , Coronavirus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyether Polyketides
7.
Phys Chem Chem Phys ; 26(18): 14006-14017, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683190

ABSTRACT

SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.


Subject(s)
Coronavirus 3C Proteases , Molecular Dynamics Simulation , Peptides , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Design , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , COVID-19/virology
8.
J Med Chem ; 67(8): 6495-6507, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38608245

ABSTRACT

We have witnessed three coronavirus (CoV) outbreaks in the past two decades, including the COVID-19 pandemic caused by SARS-CoV-2. Main protease (MPro), a highly conserved protease among various CoVs, is essential for viral replication and pathogenesis, making it a prime target for antiviral drug development. Here, we leverage proteolysis targeting chimera (PROTAC) technology to develop a new class of small-molecule antivirals that induce the degradation of SARS-CoV-2 MPro. Among them, MPD2 was demonstrated to effectively reduce MPro protein levels in 293T cells, relying on a time-dependent, CRBN-mediated, and proteasome-driven mechanism. Furthermore, MPD2 exhibited remarkable efficacy in diminishing MPro protein levels in SARS-CoV-2-infected A549-ACE2 cells. MPD2 also displayed potent antiviral activity against various SARS-CoV-2 strains and exhibited enhanced potency against nirmatrelvir-resistant viruses. Overall, this proof-of-concept study highlights the potential of targeted protein degradation of MPro as an innovative approach for developing antivirals that could fight against drug-resistant viral variants.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Proteolysis , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Proteolysis/drug effects , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , HEK293 Cells , Drug Discovery , COVID-19 Drug Treatment , A549 Cells
9.
Chem Biodivers ; 21(5): e202302089, 2024 May.
Article in English | MEDLINE | ID: mdl-38526531

ABSTRACT

The SARS-CoV-2 main protease, as a key target for antiviral therapeutics, is instrumental in maintaining virus stability, facilitating translation, and enabling the virus to evade innate immunity. Our research focused on designing non-covalent inhibitors to counteract the action of this protease. Utilizing a 3D-QSAR model and contour map, we successfully engineered eight novel non-covalent inhibitors. Further evaluation and comparison of these novel compounds through methodologies including molecular docking, ADMET analysis, frontier molecular orbital studies, molecular dynamics simulations, and binding free energy revealed that the inhibitors N02 and N03 demonstrated superior research performance (N02 ΔGbind=-206.648 kJ/mol, N03 ΔGbind=-185.602 kJ/mol). These findings offer insightful guidance for the further refinement of molecular structures and the development of more efficacious inhibitors. Consequently, future investigations can draw upon these findings to unearth more potent inhibitors, thereby amplifying their impact in the treatment and prevention of associated diseases.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , Quantitative Structure-Activity Relationship , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Humans , COVID-19 Drug Treatment , Thermodynamics , Molecular Structure
10.
Chem Biodivers ; 21(4): e202301786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466126

ABSTRACT

SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 µg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 µg/ml), and Arabincoside B (IC50=53.31 µg/ml).


Subject(s)
Apocynaceae , COVID-19 , Coronavirus 3C Proteases , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Apocynaceae/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Glycosides/pharmacology , Glycosides/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pregnanes/pharmacology , Pregnanes/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
12.
J Chem Inf Model ; 64(8): 3047-3058, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38520328

ABSTRACT

Covalent drugs exhibit advantages in that noncovalent drugs cannot match, and covalent docking is an important method for screening covalent lead compounds. However, it is difficult for covalent docking to screen covalent compounds on a large scale because covalent docking requires determination of the covalent reaction type of the compound. Here, we propose to use deep learning of a lateral interactions spiking neural network to construct a covalent lead compound screening model to quickly screen covalent lead compounds. We used the 3CL protease (3CL Pro) of SARS-CoV-2 as the screen target and constructed two classification models based on LISNN to predict the covalent binding and inhibitory activity of compounds. The two classification models were trained on the covalent complex data set targeting cysteine (Cys) and the compound inhibitory activity data set targeting 3CL Pro, respected, with good prediction accuracy (ACC > 0.9). We then screened the screening compound library with 6 covalent binding screening models and 12 inhibitory activity screening models. We tested the inhibitory activity of the 32 compounds, and the best compound inhibited SARS-CoV-2 3CL Pro with an IC50 value of 369.5 nM. Further assay implied that dithiothreitol can affect the inhibitory activity of the compound to 3CL Pro, indicating that the compound may covalently bind 3CL Pro. The selectivity test showed that the compound had good target selectivity to 3CL Pro over cathepsin L. These correlation assays can prove the rationality of the covalent lead compound screening model. Finally, covalent docking was performed to demonstrate the binding conformation of the compound with 3CL Pro. The source code can be obtained from the GitHub repository (https://github.com/guzh970630/Screen_Covalent_Compound_by_LISNN).


Subject(s)
Coronavirus 3C Proteases , Molecular Docking Simulation , Neural Networks, Computer , SARS-CoV-2 , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Humans , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , COVID-19 Drug Treatment , Deep Learning , Protein Binding , COVID-19/virology
13.
Chem Asian J ; 19(8): e202400079, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38415945

ABSTRACT

The antioxidant power of quercetin-3-O-glucuronide (miquelianin) has been studied, at the density functional level of theory, in both lipid-like and aqueous environments. In the aqueous phase, the computed pKa equilibria allowed the identification of the neutral and charged species present in solution that can react with the ⋅OOH radical. The Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET) and Radical Adduct Formation (RAF) mechanisms were considered, and the individual, total and fraction corrected rate constants were obtained. Potential non-covalent inhibition of Mpro from SARS-CoV-2 by miquelianin has been also evaluated.


Subject(s)
Antioxidants , Coronavirus M Proteins , SARS-CoV-2 , Antioxidants/chemistry , Antioxidants/pharmacology , SARS-CoV-2/drug effects , Quercetin/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Humans , COVID-19/virology
14.
J Mol Biol ; 436(6): 168474, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38311236

ABSTRACT

The main protease (Mpro) of coronaviruses participates in viral replication, serving as a hot target for drug design. GC376 is able to effectively inhibit the activity of Mpro, which is due to nucleophilic addition of GC376 by binding covalently with Cys145 in Mpro active site. Here, we used fluorescence resonance energy transfer (FRET) assay to analyze the IC50 values of GC376 against Mpros from six different coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-HUK1, MERS-CoV, SARS-CoV, HCoV-NL63) and five Mpro mutants (G15S, M49I, K90R, P132H, S46F) from SARS-CoV-2 variants. The results showed that GC376 displays effective inhibition to various coronaviral Mpros and SARS-CoV-2 Mpro mutants. In addition, the crystal structures of SARS-CoV-2 Mpro (wide type)-GC376, SARS-CoV Mpro-GC376, MERS-CoV Mpro-GC376, and SARS-CoV-2 Mpro mutants (G15S, M49I, S46F, K90R, and P132H)-GC376 complexes were solved. We found that GC376 is able to fit into the active site of Mpros from different coronaviruses and different SARS-CoV-2 variants properly. Detailed structural analysis revealed key molecular determinants necessary for inhibition and illustrated the binding patterns of GC376 to these different Mpros. In conclusion, we not only proved the inhibitory activity of GC376 against different Mpros including SARS-CoV-2 Mpro mutants, but also revealed the molecular mechanism of inhibition by GC376, which will provide scientific guidance for the development of broad-spectrum drugs against SARS-CoV-2 as well as other coronaviruses.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus , Lactams , Leucine , Sulfonic Acids , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Lactams/pharmacology , Leucine/analogs & derivatives , SARS-CoV-2/enzymology , Sulfonic Acids/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry
15.
Med ; 5(1): 42-61.e23, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38181791

ABSTRACT

BACKGROUND: Oral antiviral drugs with improved antiviral potency and safety are needed to address current challenges in clinical practice for treatment of COVID-19, including the risks of rebound, drug-drug interactions, and emerging resistance. METHODS: Olgotrelvir (STI-1558) is designed as a next-generation antiviral targeting the SARS-CoV-2 main protease (Mpro), an essential enzyme for SARS-CoV-2 replication, and human cathepsin L (CTSL), a key enzyme for SARS-CoV-2 entry into host cells. FINDINGS: Olgotrelvir is a highly bioavailable oral prodrug that is converted in plasma to its active form, AC1115. The dual mechanism of action of olgotrelvir and AC1115 was confirmed by enzyme activity inhibition assays and co-crystal structures of AC1115 with SARS-CoV-2 Mpro and human CTSL. AC1115 displayed antiviral activity by inhibiting replication of all tested SARS-CoV-2 variants in cell culture systems. Olgotrelvir also inhibited viral entry into cells using SARS-CoV-2 Spike-mediated pseudotypes by inhibition of host CTSL. In the K18-hACE2 transgenic mouse model of SARS-CoV-2-mediated disease, olgotrelvir significantly reduced the virus load in the lungs, prevented body weight loss, and reduced cytokine release and lung pathologies. Olgotrelvir demonstrated potent activity against the nirmatrelvir-resistant Mpro E166 mutants. Olgotrelvir showed enhanced oral bioavailability in animal models and in humans with significant plasma exposure without ritonavir. In phase I studies (ClinicalTrials.gov: NCT05364840 and NCT05523739), olgotrelvir demonstrated a favorable safety profile and antiviral activity. CONCLUSIONS: Olgotrelvir is an oral inhibitor targeting Mpro and CTSL with high antiviral activity and plasma exposure and is a standalone treatment candidate for COVID-19. FUNDING: Funded by Sorrento Therapeutics.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Coronavirus Protease Inhibitors , SARS-CoV-2 , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cathepsin L/antagonists & inhibitors , COVID-19/prevention & control , Disease Models, Animal , Mice, Transgenic , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , COVID-19 Drug Treatment/methods
16.
Proteins ; 92(6): 735-749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213131

ABSTRACT

The new viral strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are continuously rising, becoming more virulent, and transmissible. Therefore, the development of new antiviral drugs is essential. Due to its significant role in the viral life cycle of SARS-CoV-2, the main protease (Mpro) enzyme is a leading target for antiviral drug design. The Mpro monomer consists of domain DI, DII, and DI-DII interface. Twenty-one conserved water molecules (W4-W24) are occupied at these domains according to multiple crystal structure analyses. The crystal and MD structures reveal the presence of eight conserved water sites in domain DI, DII and remaining in the DI-DII interface. Grid-based inhomogeneous fluid solvation theory (GIST) was employed on MD structures of Mpro native to predict structural and thermodynamic properties of each conserved water site for focusing to identify the specific conserved water molecules that can easily be displaced by proposed ligands. Finally, MD water W13 is emerged as a promising candidate for water mimic drug design due to its low mean interaction energy, loose binding character with the protein, and its involvement in a water-mediated H-bond with catalytic His41 via the interaction Thr25(OG)---W13---W---His41(NE2). In this context, water occupancy, relative interaction energy, entropy, and topologies of W13 are thermodynamically acceptable for the water displacement method. Therefore, the strategic use of W13's geometrical position in the DI domain may be implemented for drug discovery against COVID disease by designing new ligands with appropriately oriented chemical groups to mimic its structural, electronic, and thermodynamic properties.


Subject(s)
Coronavirus 3C Proteases , Molecular Dynamics Simulation , SARS-CoV-2 , Thermodynamics , Water , Water/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , COVID-19/virology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Hydrogen Bonding , Drug Design , Protein Binding , Solvents/chemistry , Binding Sites , Ligands
18.
Science ; 382(6671): eabo7201, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37943932

ABSTRACT

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Drug Discovery , SARS-CoV-2 , Humans , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Molecular Docking Simulation , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Structure-Activity Relationship , Crystallography, X-Ray
19.
PLoS One ; 18(11): e0295014, 2023.
Article in English | MEDLINE | ID: mdl-38033024

ABSTRACT

Main protease (Mpro) of SARS-CoV-2 is considered one of the key targets due to its role in viral replication. The use of traditional phytochemicals is an important part of complementary/alternative medicine, which also accompany the concept of temperament, where it has been shown that hot medicines cure cold and cold medicines cure hot, with cold and hot pattern being associated with oxidative and anti-oxidative properties in medicine, respectively. Molecular docking in this study has demonstrated that a number of anti-oxidative and hot temperament-based phytochemicals have high binding affinities to SARS-CoV-2 Mpro, both in the monomeric and dimeric deposited states of the protein. The highest ranking phytochemicals identified in this study included savinin, betulinic acid and curcumin. Complexes of savinin, betulinic acid, curcumin as well as Nirmatrelvir (the only approved inhibitor, used for comparison) bound to SARS-CoV-2 Mpro were further subjected to molecular dynamics simulations. Subsequently, RMSD, RMSF, Rg, number of hydrogen bonds, binding free energies and residue contributions (using MM-PBSA) and buried surface area (BSA), were analysed. The computational results suggested high binding affinities of savinin, betulinic acid and curcumin to both the monomeric and dimeric deposited states of Mpro, while highlighting the lower binding energy of betulinic acid in comparison with savinin and curcumin and even Nirmatrelvir, leading to a greater stability of the betulinic acid-SARS-CoV-2 Mpro complex. Overall, based on the increasing mutation rate in the spike protein and the fact that the SARS-CoV-2 Mpro remains highly conserved, this study provides an insight into the use of phytochemicals against COVID-19 and other coronavirus diseases.


Subject(s)
Coronavirus 3C Proteases , Curcumin , Protease Inhibitors , SARS-CoV-2 , Betulinic Acid , Lactams , Leucine , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Phytochemicals/pharmacology , Polymers , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
20.
Phys Chem Chem Phys ; 25(38): 26308-26315, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37747304

ABSTRACT

SARS-CoV-2 main protease, Mpro, plays a crucial role in the virus replication cycle, making it an important target for antiviral research. In this study, a simplified model obtained through truncation is used to explore the reaction mechanism of aldehyde warhead compounds inhibiting Mpro at the level of density functional theory. According to the calculation results, proton transfer (P_T)-nucleophilic attack (N_A) is the rate-determining step in the entire reaction pathway. The water molecule that plays a catalytic role occupies the oxyanion hole, which is unfavorable for the aldehyde warhead to approach the Cys145 SH. Through a hypothetical study of substituting the main chain NH with methylene, it is further confirmed that the P_T-N_A is a proton transfer-dominated process accompanied by a nucleophilic attack reaction. In this process, the oxyanion hole serves only to stabilize the aldehyde oxygen anion and therefore does not have a significant impact on the activation free energy barrier of the step. Our research results provide a unique perspective for understanding the covalent inhibition reaction of the Mpro active site. This study also offers theoretical guidance for the design of new Mpro covalent inhibitors.


Subject(s)
Aldehydes , Antiviral Agents , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , Aldehydes/chemistry , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Molecular Docking Simulation , Protons , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...