Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.125
Filter
1.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722338

ABSTRACT

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Neutralization Tests/methods , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/diagnosis , Animals , Inhibitory Concentration 50 , Sensitivity and Specificity
2.
Hum Vaccin Immunother ; 20(1): 2346390, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38691025

ABSTRACT

Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Silicon Dioxide , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Mice , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Silicon Dioxide/chemistry , Mice, Inbred BALB C , Female , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccine Development
3.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696217

ABSTRACT

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Subject(s)
Nanoparticles , Porcine epidemic diarrhea virus , Viral Vaccines , Porcine epidemic diarrhea virus/immunology , Animals , Nanoparticles/chemistry , Swine , Mice , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Mice, Inbred BALB C , Antigens, Viral/immunology , Antigens, Viral/chemistry , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Domains/immunology , Female , Nanovaccines
4.
Int J Biol Macromol ; 267(Pt 1): 131427, 2024 May.
Article in English | MEDLINE | ID: mdl-38583833

ABSTRACT

Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.


Subject(s)
COVID-19 , Neoplasms , Pseudouridine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Neoplasms/immunology , Pseudouridine/metabolism , COVID-19 Vaccines/immunology , Animals , mRNA Vaccines , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pneumonia, Viral/prevention & control , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology
5.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38656455

ABSTRACT

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Subject(s)
Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
6.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
7.
Vet Immunol Immunopathol ; 271: 110753, 2024 May.
Article in English | MEDLINE | ID: mdl-38608406

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes immensely large economic losses worldwide in the swine industry. PEDV attacks the intestine, disrupts intestinal epithelium morphology and barrier integrity, and results in profound diarrhea and high mortality. A commercially available isotonic protein solution (IPS) (Tonisity Px) has anecdotally been reported to be effective in supportive treatment of piglets with active PEDV infections. This study evaluated the effects of supplementing (or not) the drinking water of 14 day old PEDV-infected piglets with the IPS on the content of E-cadherin, fibronectin, interferon-alpha (IFN-α), and matrix metalloproteinase 9 (MMP-9) in duodenal tissue. The content of PEDV DNA in feces was also measured. Though both groups had similar PEDV shedding at day 1, IPS piglets had significantly lower PEDV shedding at day 5, 14 and 21. The IPS group also had a shorter duration of PEDV virus shedding. Levels of E-cadherin and fibronectin, both of which are structural proteins in the intestine, remained unchanged from baseline in the IPS group, whereas the same molecules decreased significantly in the control group. IFN-α, an antiviral cytokine, and MMP-9, an enzyme that aids in tissue remodeling, were increased at days 5 and 14 post infection, and then decreased at day 21 post-infection in the IPS group compared to control. Overall, the IPS used in this study enhanced epithelial intercellular adhesion (E-cadherin) and extracellular matrix structure (fibronectin), resulted in significantand favorable changes in MMP-9 activity, and favorably modulated IFN-α production. This is the first report of this panel of biomarkers, especially MMP-9 and IFN-α, in the face of in vivo PEDV infection. This is also the first report to investigate a commercially available swine product that does not need to be administered in solid feed, and that is already registered for use throughout Asia, Europe, South America, and North America. Overall, the results of this study serve to clarify the behavior of 4 key biomarkers in the presence of in vivo PEDV infection. The results also indicate that IPS (Tonisity Px) supplementation is a viable intervention to modulate the porcine intestinal immune response with favorable effects on the intestine.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Virus Shedding , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Porcine epidemic diarrhea virus/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Swine Diseases/virology , Swine Diseases/immunology , Fibronectins/metabolism , Matrix Metalloproteinase 9/metabolism , Cadherins/metabolism , Intestines/immunology , Intestines/virology , Interferon-alpha/immunology , Cell Adhesion , Intestinal Mucosa/immunology
8.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598560

ABSTRACT

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Subject(s)
Blood-Retinal Barrier , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Blood-Retinal Barrier/virology , COVID-19/immunology , COVID-19/virology , Mice , Humans , Retina/virology , Retina/immunology , Retina/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Inflammation/immunology , Inflammation/virology , Betacoronavirus/physiology , Viral Tropism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/pathology
9.
J Med Virol ; 96(5): e29628, 2024 May.
Article in English | MEDLINE | ID: mdl-38682568

ABSTRACT

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , COVID-19 , Immunoglobulin G , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle Aged , Male , Female , Neutralization Tests , Adult , COVID-19 Vaccines/immunology , Antigens, Viral/immunology , Animals , Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination
10.
Viruses ; 16(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675946

ABSTRACT

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Subject(s)
Chickens , Coronavirus Infections , Gene Expression Profiling , Infectious bronchitis virus , Poultry Diseases , Trachea , Animals , Trachea/virology , Trachea/immunology , Chickens/virology , Infectious bronchitis virus/physiology , Infectious bronchitis virus/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/genetics , Epithelial Cells/virology , Epithelial Cells/immunology , Transcriptome , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Virus Replication , Specific Pathogen-Free Organisms
11.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653845

ABSTRACT

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Immune Evasion , Swine Diseases , Viral Vaccines , Animals , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Deltacoronavirus/pathogenicity , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/epidemiology , Viral Vaccines/immunology , Vaccine Development , Humans
12.
Avian Dis ; 68(1): 10-17, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687102

ABSTRACT

The relationship between passive immunity and the development of false layer syndrome (FLS) and its associated lesions was investigated in this study by comparing the long-term reproductive effects of an infectious bronchitis virus (IBV) DMV/1639 wild-type strain and the GA08 vaccine in birds with and without maternal antibodies. There was a clear protective effect provided by maternal antibodies against both the early vaccination and challenge. It was also observed that vaccination at an early age, in the absence of maternal antibodies, can induce reproductive issues, such as reduced egg production and FLS-associated lesions (e.g., cystic oviduct and egg yolk coelomitis). This might indicate that maternal antibodies and the timing of IBV infection are more important in the generation of FLS than the IBV strain type.


Mitigación del síndrome de la falsa ponedora mediante anticuerpos maternos contra el virus de la bronquitis infecciosa. En este estudio se investigó la relación entre la inmunidad pasiva y el desarrollo del síndrome de la falsa ponedora (FLS) y sus lesiones asociadas comparando los efectos reproductivos a largo plazo de una cepa de tipo silvestre DMV/1639 del virus de la bronquitis infecciosa (IBV) y la cepa vacunal GA08, en aves con y sin anticuerpos maternos. Hubo un claro efecto protector proporcionado por los anticuerpos maternos tanto contra la vacunación temprana como contra el desafío. También se observó que la vacunación a una edad temprana, en ausencia de anticuerpos maternos, puede inducir problemas reproductivos, como una reducción de la producción de huevo y lesiones asociadas al síndrome de la falsa ponedora (p. ej., oviducto quístico y celomitis de yema de huevo). Esto podría indicar que los anticuerpos maternos y el momento de la infección por el virus de la bronquitis infecciosa son más importantes en la generación del síndrome de la falsa ponedora que el tipo de cepa del virus de la bronquitis infecciosa.


Subject(s)
Antibodies, Viral , Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Infectious bronchitis virus/immunology , Animals , Poultry Diseases/virology , Poultry Diseases/immunology , Female , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/immunology , Immunity, Maternally-Acquired , Viral Vaccines/immunology , Viral Vaccines/administration & dosage
13.
Vet Microbiol ; 293: 110096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636174

ABSTRACT

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Subject(s)
Coronavirus Infections , Immunoglobulin A , Intestine, Small , Porcine epidemic diarrhea virus , Swine Diseases , Toll-Like Receptor 9 , Animals , Swine , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Swine Diseases/virology , Intestine, Small/immunology , Immunoglobulin A/immunology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , B-Lymphocytes/immunology , Coculture Techniques , Dendritic Cells/immunology
14.
Vet Microbiol ; 293: 110087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663176

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a devastating pathogen of acute- gastrointestinal infectious diseases, which can cause vomiting, diarrhea, dehydration and high morbidity and mortality among neonatal piglets. Humoral immunity plays a vital role in the host anti-PEDV infection process, but the mechanism of PEDV-induced B-cell immune response remains unknown. In this study, the effects of PEDV infection on CD21+ B cell activation were systematically analyzed through animal experiments. Enzyme-linked immunosorbent assays (ELISA) revealed that low levels of serum-specific IgA, IgM, or IgG were detected in piglets after PEDV infection, respectively. Serum interleukin (IL)-6 levels increased significantly at 4 d after infection, and the levels of IL-4, B-cell activating factor (BAFF), interferon (IFN)-γ, transforming growth factor (TGF)-ß and IL-10 decreased at 7 d after infection. Fluorescence-activated cell sorting (FACS) showed that expression levels of CD21, MHC Ⅱ, CD40, and CD38 on B cell surfaces were significantly higher. In contrast, the proportions of CD21+IgM+ B cells were decreased in peripheral blood mononuclear cells (PBMCs) from the infected piglets. No differences were found in the percentage of CD21+CD80+ and CD21+CD27+ B cells in PBMCs from the infected piglets. In addition, the number of CD21+B cells in PBMCs stimulated with PEDV in vitro was significantly lower. No significant change in the mRNA expression of BCR molecules was found while the expression levels of paired immunoglobulin-like receptor B (PIR-B), B cell adaptor molecule of 32 kDa (Bam32) and BAFF were decreased. In conclusion, our research demonstrates that virulent strains of PEDV profoundly impact B cell activation, leading to alterations in phenotypic expression and BCR signaling molecules. Furthermore, this dysregulation results in compromised specific antibody secretion and perturbed cytokine production, highlighting the intricate immunological dysfunctions induced by PEDV infection.


Subject(s)
B-Lymphocytes , Coronavirus Infections , Lymphocyte Activation , Porcine epidemic diarrhea virus , Receptors, Complement 3d , Swine Diseases , Animals , Porcine epidemic diarrhea virus/immunology , Swine , B-Lymphocytes/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Receptors, Complement 3d/immunology , Receptors, Complement 3d/metabolism , Swine Diseases/virology , Swine Diseases/immunology , Cytokines/immunology , Cytokines/genetics , Cytokines/metabolism , Antibodies, Viral/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology
15.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677126

ABSTRACT

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Subject(s)
Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
16.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508315

ABSTRACT

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Subject(s)
Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
17.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38457927

ABSTRACT

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Subject(s)
Administration, Intranasal , Animals, Newborn , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Herpesviridae Infections , Herpesvirus 1, Bovine , Vaccines, Attenuated , Viral Vaccines , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Administration, Intranasal/veterinary , Male , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Coronavirus, Bovine/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cattle Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Virus Shedding , Antibodies, Viral/blood , Random Allocation
18.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411947

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Diarrhea/veterinary , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/metabolism , Virus Replication
19.
J Virol ; 98(2): e0137723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38197629

ABSTRACT

Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.


Subject(s)
Butyrates , Coronavirus Infections , Coronavirus , Gastrointestinal Microbiome , Interferon Type I , Swine Diseases , Transmissible gastroenteritis virus , Animals , Butyrates/metabolism , Coronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Interferon Type I/immunology , RNA, Viral , Swine , Transmissible gastroenteritis virus/physiology , Swine Diseases/immunology , Swine Diseases/virology
20.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289117

ABSTRACT

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Subject(s)
Coronavirus 3C Proteases , Coronavirus Infections , Deltacoronavirus , Interferon Type I , Intracellular Signaling Peptides and Proteins , Swine Diseases , Swine , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus/enzymology , Deltacoronavirus/metabolism , Deltacoronavirus/pathogenicity , Immunity, Innate , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Signal Transduction/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/metabolism , Swine Diseases/virology , Transcription Factors/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/virology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...