Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.178
Filter
1.
Addict Biol ; 29(5): e13399, 2024 May.
Article in English | MEDLINE | ID: mdl-38711213

ABSTRACT

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Internet Addiction Disorder , Self-Control , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Female , Diffusion Tensor Imaging/methods , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Ventral Striatum/pathology , Severity of Illness Index , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Internet , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602741

ABSTRACT

Studies of the development and asymmetry of the corpus striatum and thalamus in early childhood are rare. Studies investigating these structures across the lifespan have not presented their changes during childhood and adolescence in detail. For these reasons, this study investigated the effect of age and sex factors on the development and asymmetry of the corpus striatum and thalamus in the 1-18 age group. In this retrospective study, we included 652 individuals [362 (56%) males] aged 1-18 years with normal brain MRI between 2012 and 2021. Absolute and relative volumes of the corpus striatum and thalamus were obtained by segmentation of three-dimensional T1-weighted MRIs with volBrain1.0. We created age-specific volume data and month-based development models with the help of SPSS (ver.28). The corpus striatum and thalamus had cubic absolute volumetric developmental models. The relative volume of the caudate and thalamus (only males) is consistent with the decreasing "growth" model, the others with the decreasing cubic model. The absolute volumes of the males' bilateral corpus striatum and thalamus and the relative volumes of the caudate and thalamus of the females were significantly larger (P < 0.05). The caudate showed right > left lateralization; putamen, globus pallidus, and thalamus showed left > right lateralization.


Subject(s)
Corpus Striatum , Thalamus , Child, Preschool , Adolescent , Female , Male , Humans , Infant , Child , Retrospective Studies , Corpus Striatum/diagnostic imaging , Thalamus/diagnostic imaging , Putamen , Magnetic Resonance Imaging
3.
Mov Disord ; 39(5): 847-854, 2024 May.
Article in English | MEDLINE | ID: mdl-38477228

ABSTRACT

BACKGROUND: As a biomarker targeting vesicular monoamine transporter 2 (VMAT2), 18F-9-fluoropropyldihydrotetrabenazine (18F-FP-DTBZ) positron emission tomography (PET) is highly accurate in diagnosing Parkinson's disease (PD) and assessing its severity. However, evidence is insufficient in patients with progressive supranuclear palsy (PSP). OBJECTIVE: We evaluated the striatal and extrastriatal monoaminergic disruption of PSP and differences in patterns between patients with PSP, PD, and healthy controls (HCs) using 18F-FP-DTBZ PET, as well as its correlations with the clinical characteristics of PSP. METHODS: We recruited 58 patients with PSP, 23 age- and duration-matched patients with PD, as well as 17 HCs. Patients were scanned using 18F-FP-DTBZ PET/computed tomography, and images were spatially normalized and analyzed based on the volume of interest. RESULTS: VMAT2 binding differed significantly in the striatum and substantia nigra among the groups (P < 0.001). A more severe disruption in the caudate was noted in the PSP group (P < 0.001) than in the PD group. However, no differences were found in the nucleus accumbens, hippocampus, amygdala, or raphe between the PD and PSP groups. Within the PSP group, striatal VMAT2 binding was significantly associated with the fall/postural stability subscore of the PSP Rating Scale, especially in the putamen. Furthermore, VMAT2 binding was correlated with Mini-Mental State Examination or Montreal Cognitive Assessment in the hippocampus. CONCLUSIONS: Caudate disruptions showed prominent differences among the groups. VAMT2 binding in the striatum and hippocampus reflects the severity of fall/postural stability and cognition, respectively. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Corpus Striatum , Parkinson Disease , Supranuclear Palsy, Progressive , Vesicular Monoamine Transport Proteins , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Male , Female , Aged , Middle Aged , Vesicular Monoamine Transport Proteins/metabolism , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography/methods , Tetrabenazine/analogs & derivatives , Substantia Nigra/diagnostic imaging , Substantia Nigra/metabolism , Substantia Nigra/pathology , Positron Emission Tomography Computed Tomography/methods
4.
J Alzheimers Dis ; 98(4): 1301-1317, 2024.
Article in English | MEDLINE | ID: mdl-38517789

ABSTRACT

Background: Mild cognitive impairment (MCI), the prodromal stage of Alzheimer's disease, has two distinct subtypes: stable MCI (sMCI) and progressive MCI (pMCI). Early identification of the two subtypes has important clinical significance. Objective: We aimed to compare the cortico-striatal functional connectivity (FC) differences between the two subtypes of MCI and enhance the accuracy of differential diagnosis between sMCI and pMCI. Methods: We collected resting-state fMRI data from 31 pMCI patients, 41 sMCI patients, and 81 healthy controls. We chose six pairs of seed regions, including the ventral striatum inferior, ventral striatum superior, dorsal-caudal putamen, dorsal-rostral putamen, dorsal caudate, and ventral-rostral putamen and analyzed the differences in cortico-striatal FC among the three groups, additionally, the relationship between the altered FC within the MCI subtypes and cognitive function was examined. Results: Compared to sMCI, the pMCI patients exhibited decreased FC between the left dorsal-rostral putamen and right middle temporal gyrus, the right dorsal caudate and right inferior temporal gyrus, and the left dorsal-rostral putamen and left superior frontal gyrus. Additionally, the altered FC between the right inferior temporal gyrus and right putamen was significantly associated with episodic memory and executive function. Conclusions: Our study revealed common and distinct cortico-striatal FC changes in sMCIs and pMCI across different seeds; these changes were associated with cognitive function. These findings can help us understand the underlying pathophysiological mechanisms of MCI and distinguish pMCI and sMCI in the early stage potentially.


Subject(s)
Cognitive Dysfunction , Humans , Cognitive Dysfunction/diagnostic imaging , Corpus Striatum/diagnostic imaging , Neostriatum , Prefrontal Cortex , Magnetic Resonance Imaging
5.
Mov Disord ; 39(5): 855-862, 2024 May.
Article in English | MEDLINE | ID: mdl-38465778

ABSTRACT

BACKGROUND: Intrastriatal delivery of potential therapeutics in Huntington's disease (HD) requires sufficient caudate and putamen volumes. Currently, volumetric magnetic resonance imaging is rarely done in clinical practice, and these data are not available in large research cohorts such as Enroll-HD. OBJECTIVE: The objective of this study was to investigate whether predictive models can accurately classify HD patients who exceed caudate and putamen volume thresholds required for intrastriatal therapeutic interventions. METHODS: We obtained and merged data for 1374 individuals across three HD cohorts: IMAGE-HD, PREDICT-HD, and TRACK-HD/TRACK-ON. We imputed missing data for clinical variables with >72% non-missing values and used the model-building algorithm BORUTA to identify the 10 most important variables. A random forest algorithm was applied to build a predictive model for putamen volume >2500 mm3 and caudate volume >2000 mm3 bilaterally. Using the same 10 predictors, we constructed a logistic regression model with predictors significant at P < 0.05. RESULTS: The random forest model with 1000 trees and minimal terminal node size of 5 resulted in 83% area under the curve (AUC). The logistic regression model retaining age, CAG repeat size, and symbol digit modalities test-correct had 85.1% AUC. A probability cutoff of 0.8 resulted in 5.4% false positive and 66.7% false negative rates. CONCLUSIONS: Using easily obtainable clinical data and machine learning-identified initial predictor variables, random forest, and logistic regression models can successfully identify people with sufficient striatal volumes for inclusion cutoffs. Adopting these models in prescreening could accelerate clinical trial enrollment in HD and other neurodegenerative disorders when volume cutoffs are necessary enrollment criteria. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Caudate Nucleus , Huntington Disease , Magnetic Resonance Imaging , Putamen , Humans , Huntington Disease/diagnostic imaging , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Adult , Putamen/diagnostic imaging , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/pathology , Aged , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Cohort Studies
6.
Psychiatry Clin Neurosci ; 78(5): 291-299, 2024 May.
Article in English | MEDLINE | ID: mdl-38444215

ABSTRACT

AIM: The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS: We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS: Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION: The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cerebral Cortex , Corpus Striatum , Magnetic Resonance Imaging , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Adolescent , Male , Female , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Corpus Striatum/physiopathology , Corpus Striatum/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
7.
Sci Rep ; 14(1): 3731, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355810

ABSTRACT

Corticostriatal regions play a pivotal role in visuomotor learning. However, less research has been done on how fMRI activity in their subregions is related to task performance, which is provided as visual feedback during motor learning. To address this, we conducted an fMRI experiment in which participants acquired a complex de novo motor skill using continuous or binary visual feedback related to performance. We found a highly selective response related to performance in the entire striatum in both conditions and a relatively higher response in the caudate nucleus for the binary feedback condition. However, the ventromedial prefrontal cortex (vmPFC) response was significant only for the continuous feedback condition. Furthermore, we also found functional distinction of the striatal subregions in random versus goal-directed motor control. These findings underscore the substantial effects of the visual feedback indicating performance on distinct corticostriatal responses, thereby elucidating its significance in reinforcement-based motor learning.


Subject(s)
Corpus Striatum , Learning , Humans , Learning/physiology , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Motor Skills/physiology , Caudate Nucleus , Motivation , Magnetic Resonance Imaging
9.
Psychiatry Clin Neurosci ; 78(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38414202

ABSTRACT

AIM: While conservatism bias refers to the human need for more evidence for decision-making than rational thinking expects, the jumping to conclusions (JTC) bias refers to the need for less evidence among individuals with schizophrenia/delusion compared to healthy people. Although the hippocampus-midbrain-striatal aberrant salience system and the salience, default mode (DMN), and frontoparietal networks ("triple networks") are implicated in delusion/schizophrenia pathophysiology, the associations between conservatism/JTC and these systems/networks are unclear. METHODS: Thirty-seven patients with schizophrenia and 33 healthy controls performed the beads task, with large and small numbers of bead draws to decision (DTD) indicating conservatism and JTC, respectively. We performed independent component analysis (ICA) of resting functional magnetic resonance imaging (fMRI) data. For systems/networks above, we investigated interactions between diagnosis and DTD, and main effects of DTD. We similarly applied ICA to structural and diffusion MRI to explore the associations between DTD and gray/white matter. RESULTS: We identified a significant main effect of DTD with functional connectivity between the striatum and DMN, which was negatively correlated with delusion severity in patients, indicating that the greater the anti-correlation between these networks, the stronger the JTC and delusion. We further observed the main effects of DTD on a gray matter network resembling the DMN, and a white matter network connecting the functional and gray matter networks (all P < 0.05, family-wise error [FWE] correction). Function and gray/white matter showed no significant interactions. CONCLUSION: Our results support the novel association of conservatism and JTC biases with aberrant salience and default brain mode.


Subject(s)
Decision Making , Default Mode Network , Delusions , Magnetic Resonance Imaging , Schizophrenia , Humans , Adult , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Male , Female , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Delusions/physiopathology , Delusions/diagnostic imaging , Decision Making/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/pathology , Middle Aged , Young Adult , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Gray Matter/pathology
10.
Nat Commun ; 15(1): 59, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167691

ABSTRACT

The dopaminergic system is firmly implicated in reversal learning but human measurements of dopamine release as a correlate of reversal learning success are lacking. Dopamine release and hemodynamic brain activity in response to unexpected changes in action-outcome probabilities are here explored using simultaneous dynamic [11C]Raclopride PET-fMRI and computational modelling of behavior. When participants encounter reversed reward probabilities during a card guessing game, dopamine release is observed in associative striatum. Individual differences in absolute reward prediction error and sensitivity to errors are associated with peak dopamine receptor occupancy. The fMRI response to perseverance errors at the onset of a reversal spatially overlap with the site of dopamine release. Trial-by-trial fMRI correlates of absolute prediction errors show a response in striatum and association cortices, closely overlapping with the location of dopamine release, and separable from a valence signal in ventral striatum. The results converge to implicate striatal dopamine release in associative striatum as a central component of reversal learning, possibly signifying the need for increased cognitive control when new stimuli-responses should be learned.


Subject(s)
Dopamine , Ventral Striatum , Humans , Reversal Learning/physiology , Corpus Striatum/diagnostic imaging , Raclopride , Neostriatum , Ventral Striatum/diagnostic imaging , Reward
11.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38244576

ABSTRACT

Obtaining valuable objects motivates many of our daily decisions. However, the neural underpinnings of object processing based on human value memory are not yet fully understood. Here, we used whole-brain functional magnetic resonance imaging (fMRI) to examine activations due to value memory as participants passively viewed objects before, minutes after, and 1-70 days following value training. Significant value memory for objects was evident in the behavioral performance, which nevertheless faded over the days following training. Minutes after training, the occipital, ventral temporal, interparietal, and frontal areas showed strong value discrimination. Days after training, activation in the frontal, temporal, and occipital regions decreased, whereas the parietal areas showed sustained activation. In addition, days-long value responses emerged in certain subcortical regions, including the caudate, ventral striatum, and thalamus. Resting-state analysis revealed that these subcortical areas were functionally connected. Furthermore, the activation in the striatal cluster was positively correlated with participants' performance in days-long value memory. These findings shed light on the neural basis of value memory in humans with implications for object habit formation and cross-species comparisons.


Subject(s)
Brain Mapping , Occipital Lobe , Humans , Corpus Striatum/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology
12.
Nat Commun ; 15(1): 19, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168089

ABSTRACT

Actions are biased by the outcomes they can produce: Humans are more likely to show action under reward prospect, but hold back under punishment prospect. Such motivational biases derive not only from biased response selection, but also from biased learning: humans tend to attribute rewards to their own actions, but are reluctant to attribute punishments to having held back. The neural origin of these biases is unclear. Specifically, it remains open whether motivational biases arise primarily from the architecture of subcortical regions or also reflect cortical influences, the latter being typically associated with increased behavioral flexibility and control beyond stereotyped behaviors. Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased prediction errors occurred in cortical regions (dorsal anterior and posterior cingulate cortices) before subcortical regions (striatum). These results highlight that biased learning is not a mere feature of the basal ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated mechanism.


Subject(s)
Corpus Striatum , Learning , Humans , Learning/physiology , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Neostriatum , Reward , Magnetic Resonance Imaging , Decision Making/physiology , Bias
14.
Exp Neurol ; 374: 114704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281587

ABSTRACT

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Subject(s)
Parkinson Disease , Tropanes , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Dopamine/metabolism , Probenecid/pharmacology , Probenecid/therapeutic use , Dopaminergic Neurons/pathology , Fluorodeoxyglucose F18/therapeutic use , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/pathology
15.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 301-309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37505291

ABSTRACT

Internet gaming disorder (IGD) was included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as a research diagnosis, but little is known about its pathophysiology. Alterations in frontostriatal circuits appear to play a critical role in the development of addiction. Glutamate is considered an essential excitatory neurotransmitter in addictive disorders. This study's aim was to investigate striatal glutamate in youth with IGD compared to healthy controls (HC). Using a cross-sectional design, 25 adolescent male subjects fulfilling DSM-5 criteria for IGD and 26 HC, matched in age, education, handedness and smoking, were included in the analysis. A structural MPRAGE T1 sequence followed by a single-voxel magnetic resonance spectroscopy MEGA-PRESS sequence (TR = 1500 ms, TE = 68 ms, 208 averages) with a voxel size of 20 mm3 were recorded on 3 T Siemens Magnetom Prisma scanner. The voxel was placed in the left striatum. Group comparison of the relative glutamate and glutamine (Glx) was calculated using regression analysis. IGD subjects met an average of 6.5 of 9 DSM-5 IGD criteria and reported an average of 29 h of weekly gaming. Regression analysis showed a significant group effect for Glx, with higher Glx levels in IGD as compared to HC (coef. = .086, t (50) = 2.17, p = .035). Our study is the first to show higher levels of Glx in the striatum in youth with IGD. The elevation of Glx in the striatum may indicate hyperactivation of the reward system in IGD. Thus, results confirm that neurochemical alterations can be identified in early stages of behavioral addictions.


Subject(s)
Behavior, Addictive , Video Games , Humans , Male , Adolescent , Glutamic Acid , Cross-Sectional Studies , Internet Addiction Disorder , Corpus Striatum/diagnostic imaging , Behavior, Addictive/diagnostic imaging , Magnetic Resonance Imaging/methods , Internet
16.
Neuroimage Clin ; 41: 103555, 2024.
Article in English | MEDLINE | ID: mdl-38134742

ABSTRACT

BACKGROUND: This study was designed to investigate the relationship of irisin with the severity of Parkinson's disease (PD) and dopamine (DOPA) uptake in patients with PD and to understand the role of irisin in PD. METHODS: The plasma levels of irisin and α-syn were measured by enzyme-linked immunosorbent assay (ELISA). Motor and nonmotor symptoms were assessed with the relevant scales. DOPA uptake was measured with DOPA positron emission tomography (PET)/magnetic resonance imaging (MRI). RESULTS: The plasma levels of α-syn and irisin in patients with PD gradually increased and decreased, respectively, with the progression of the disease. There was a negative correlation between plasma α-syn and irisin levels in patients with PD. The level of irisin in plasma was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS)-III scores and positively correlated with Montreal Cognitive Assessment (MoCA) scores. The striatal/occipital lobe uptake ratios (SORs) of the ipsilateral and contralateral caudate nucleus and anterior and posterior putamen in the high-irisin group were significantly higher than those in the low-irisin group, and irisin levels in the caudate nucleus and anterior and posterior putamen contralateral to the affected limb were lower than those on the ipsilateral side. The level of irisin was positively correlated with the SORs of the ipsilateral and contralateral caudate nucleus and putamen in PD patients. CONCLUSIONS: Irisin plays a neuroprotective role by decreasing the level of α-syn. Irisin is negatively correlated with the severity of motor symptoms and cognitive impairment. More importantly, irisin can improve DOPA uptake in the striatum of patients with PD, especially on the side contralateral to the affected limb.


Subject(s)
Parkinson Disease , Humans , Caudate Nucleus , Corpus Striatum/diagnostic imaging , Dihydroxyphenylalanine , Dopamine , Fibronectins , Parkinson Disease/diagnostic imaging , Patient Acuity
17.
Epilepsy Behav ; 149: 109506, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925871

ABSTRACT

PURPOSE: To explore the features of dynamic functional connectivity (dFC) variability of striatal-cortical/subcortical networks in juvenile absence epilepsy (JAE). METHODS: We collected resting-state functional magnetic imaging data from 18 JAE patients and 28 healthy controls. The striatum was divided into six pairs of regions: the inferior-ventral striatum (VSi), superior-ventral striatum (VSs), dorsal-caudal putamen, dorsal-rostral putamen, dorsal-caudate (DC) and ventral-rostral putamen. We assessed the dFC variability of each subdivision in the whole brain using the sliding-window method, and correlated altered circuit with clinical variables in JAE patients. RESULTS: We found altered dFC variability of striatal-cortical/subcortical networks in patients with JAE. The VSs exhibited decreased dFC variability with subcortical regions, and dFC variability between VSs and thalamus was negatively correlated with epilepsy duration. For the striatal-cortical networks, the dFC variability was decreased in VSi-affective network but increased in DC-executive network. The altered dynamics of striatal-cortical networks involved crucial nodes of the default mode network (DMN). CONCLUSION: JAE patients exhibit excessive stability in the striatal-subcortical networks. For striatal-cortical networks in JAE, the striatal-affective circuit was more stable, while the striatal-executive circuit was more variable. Furthermore, crucial nodes of DMN were changed in striatal-cortical networks in JAE.


Subject(s)
Epilepsy, Absence , Humans , Epilepsy, Absence/diagnostic imaging , Magnetic Resonance Imaging/methods , Corpus Striatum/diagnostic imaging , Putamen , Brain/diagnostic imaging , Brain Mapping/methods
18.
Curr Opin Psychiatry ; 36(6): 443-448, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37781973

ABSTRACT

PURPOSE OF REVIEW: Studies increasingly show the importance of reward processing in binge eating and provide evidence of associated changes in the neurobiological reward system. This review gives an up-to-date overview of the neurobiological substrates of reward processing subconstructs in binge eating. Neural findings are linked to different behavioral theories and the clinical relevance is discussed. RECENT FINDINGS: Increased neural responses in the orbitofrontal cortex, anterior cingulate cortex as well as striatum during anticipation and receipt of food rewards are found in association to binge eating. Increased model-free learning is also found and associated with altered brain reward reactivity. Data in rest report reduced striatal dopamine release and lower frontostriatal connectivity. Mechanisms of onset of binge eating are less clear, but specific personality traits, related to frontostriatal dysconnectivity, probably increase the risk of binge eating onset. SUMMARY: Both structural and task-based imaging studies show differences in the neurobiological reward system in binge eating. These changes are linked to specific reward processing, such as altered reward responsiveness to food cues, reinforcement learning, and habitual behavior. Findings are lined with different behavioral theories of binge eating, and a staging model is described, from onset to full illness development. Understanding the specific underlying aberrant reward mechanism in binge eating, associated with different stages of the illness, enables caregivers to focus their treatment more precisely.


Subject(s)
Binge-Eating Disorder , Humans , Reward , Brain/diagnostic imaging , Prefrontal Cortex , Corpus Striatum/diagnostic imaging , Magnetic Resonance Imaging/methods
19.
Neuroimage Clin ; 40: 103519, 2023.
Article in English | MEDLINE | ID: mdl-37797434

ABSTRACT

The loss of dopamine in the striatum underlies motor symptoms of Parkinson's disease (PD). Rapid eye movement sleep behaviour disorder (RBD) is considered prodromal PD and has shown similar neural changes in the striatum. Alterations in brain iron suggest neurodegeneration; however, the literature on striatal iron has been inconsistent in PD and scant in RBD. Toward clarifying pathophysiological changes in PD and RBD, and uncovering possible biomarkers, we imaged 26 early-stage PD patients, 16 RBD patients, and 39 age-matched healthy controls with 3 T MRI. We compared mean susceptibility using quantitative susceptibility mapping (QSM) in the standard striatum (caudate, putamen, and nucleus accumbens) and tractography-parcellated striatum. Diffusion MRI permitted parcellation of the striatum into seven subregions based on the cortical areas of maximal connectivity from the Tziortzi atlas. No significant differences in mean susceptibility were found in the standard striatum anatomy. For the parcellated striatum, the caudal motor subregion, the most affected region in PD, showed lower iron levels compared to healthy controls. Receiver operating characteristic curves using mean susceptibility in the caudal motor striatum showed a good diagnostic accuracy of 0.80 when classifying early-stage PD from healthy controls. This study highlights that tractography-based parcellation of the striatum could enhance sensitivity to changes in iron levels, which have not been consistent in the PD literature. The decreased caudal motor striatum iron was sufficiently sensitive to PD, but not RBD. QSM in the striatum could contribute to development of a multivariate or multimodal biomarker of early-stage PD, but further work in larger datasets is needed to confirm its utility in prodromal groups.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Parkinson Disease/diagnostic imaging , Iron , Corpus Striatum/diagnostic imaging , Brain
20.
Neuroreport ; 34(16): 792-800, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37756204

ABSTRACT

Diffuse axonal injury (DAI) disrupts the integrity of white matter microstructure and affects brain functional connectivity, resulting in persistent cognitive, behavioral and affective deficits. Mounting evidence suggests that altered cortical-subcortical connectivity is a major contributor to cognitive dysfunction. The functional integrity of the striatum is particularly vulnerable to DAI, but has received less attention. This study aimed to investigate the alteration patterns of striatal subdivision functional connectivity. Twenty-six patients with DAI and 27 healthy controls underwent resting-state fMRI scans on a 3.0 T scanner. We assessed striatal subdivision functional connectivity using a seed-based analysis in DAI. Furthermore, a partial correlation was used to measure its clinical association. Compared to controls, patients with DAI showed decreased functional connectivity between the right inferior ventral striatum and right inferior frontal gyrus, as well as the right inferior parietal lobule, between the left inferior ventral striatum and right inferior frontal gyrus, between the right superior ventral striatum and bilateral cerebellar posterior lobe, between the bilateral dorsal caudal putamen and right anterior cingulate gyrus, and between the right dorsal caudal putamen and right inferior parietal lobule. Moreover, decreased functional connectivity was observed between the left dorsal caudate and the right cerebellar posterior lobe, while increased functional connectivity was found between the left dorsal caudate and right inferior parietal lobule. Correlation analyses showed that regions with functional connectivity differences in the DAI group correlated with multiple clinical scoring scales, including cognition, motor function, agitated behavior, and anxiety disorders. These findings suggest that abnormalities in cortico-striatal and cerebellar-striatal functional connectivity are observed in patients with DAI, enriching our understanding of the neuropathological mechanisms of post-injury cognitive disorders and providing potential neuroimaging markers for the diagnosis and treatment of DAI.


Subject(s)
Diffuse Axonal Injury , Humans , Diffuse Axonal Injury/diagnostic imaging , Corpus Striatum/diagnostic imaging , Parietal Lobe , Brain , Putamen , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...