Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.631
Filter
1.
Jt Dis Relat Surg ; 35(2): 417-421, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727123

ABSTRACT

Although hemangiomas are the most common soft tissue tumors, intramuscular hemangiomas account for only 0.8% of all vascular tumors. These lesions are rarely located adjacent to the bone and cause changes in the adjacent bone. They are often mistakenly diagnosed as bone tumors. In this study, a case of a 19-year-old male patient with intramuscular hemangioma causing cortical thickening was reported.


Subject(s)
Bone Neoplasms , Hemangioma , Hypertrophy , Muscle Neoplasms , Humans , Male , Hemangioma/pathology , Hemangioma/diagnosis , Hemangioma/diagnostic imaging , Diagnosis, Differential , Young Adult , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Muscle Neoplasms/pathology , Muscle Neoplasms/diagnostic imaging , Muscle Neoplasms/diagnosis , Hypertrophy/pathology , Magnetic Resonance Imaging , Cortical Bone/pathology , Cortical Bone/diagnostic imaging , Tomography, X-Ray Computed
2.
Int J Implant Dent ; 10(1): 23, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713411

ABSTRACT

PURPOSE: To analyze the visibility of the maxillary sinus septa (MSS) in panoramic radiography (PR) versus cone beam computed tomography (CBCT) and to investigate whether the buccal cortical bone thickness (BT) or the septa dimensions influence their visibility. METHODS: Corresponding PR and CBCT images of 355 patients were selected and examined for MSS visibility. The septa dimensions (width, height, depth) and the BT were measured. Results were analysed statistically. RESULTS: Comparing the corresponding regions on CBCT and PR, 170 MSS were identified; however, only 106 of these were also visible using PR. The MSS visibility was significantly higher on CBCT versus PR images (P1: p = 0.039, P2: p = 0.015, M1: p = 0.041, M2: p = 0.017, M3: p = 0.000), except region C (p = 0.625). Regarding the measurements of MSS dimensions, only the height in region M1 (p = 0.013) and the width in region P2 (p = 0.034) were significantly more visible on CBCT. The BT in the area of the MSS was found to have a marginal influence on its visibility on the PR images only in regions M3 and M1 (M3: p = 0.043, M1: p = 0.047). In terms of MSS visibility based on the dimensions, significance was found for all three influencing variables only in region P2 (width; p = 0.041, height; p = 0.001, depth; p = 0.007). There were only isolated cases of further significance: M3 for width (p = 0.043), M2 for height (p = 0.024), and P1 for depth (p = 0.034), no further significance was noted. CONCLUSION: MSS visibility appears significantly higher on CBCT versus PR images. It is concluded that the septa dimensions and BT can influence MSS visibility on PR images just in certain regions.


Subject(s)
Cone-Beam Computed Tomography , Cortical Bone , Maxillary Sinus , Radiography, Panoramic , Humans , Cone-Beam Computed Tomography/methods , Radiography, Panoramic/methods , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/anatomy & histology , Retrospective Studies , Male , Female , Middle Aged , Adult , Cortical Bone/diagnostic imaging , Cortical Bone/anatomy & histology , Aged , Young Adult , Aged, 80 and over
3.
J Robot Surg ; 18(1): 204, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714574

ABSTRACT

Workflow for cortical bone trajectory (CBT) screws includes tapping line-to-line or under tapping by 1 mm. We describe a non-tapping, two-step workflow for CBT screw placement, and compare the safety profile and time savings to the Tap (three-step) workflow. Patients undergoing robotic assisted 1-3 level posterior fusion with CBT screws for degenerative conditions were identified and separated into either a No-Tap or Tap workflow. Number of total screws, screw-related complications, estimated blood loss, operative time, robotic time, and return to the operating room were collected and analyzed. There were 91 cases (458 screws) in the No-Tap and 88 cases (466 screws) in the Tap groups, with no difference in demographics, revision status, ASA grade, approach, number of levels fused or diagnosis between cohorts. Total robotic time was lower in the No-Tap (26.7 min) versus the Tap group (30.3 min, p = 0.053). There was no difference in the number of malpositioned screws identified intraoperatively (10 vs 6, p = 0.427), screws converted to freehand (3 vs 3, p = 0.699), or screws abandoned (3 vs 2, p = 1.000). No pedicle/pars fracture or fixation failure was seen in the No-Tap cohort and one in the Tap cohort (p = 1.00). No patients in either cohort were returned to OR for malpositioned screws. This study showed that the No-Tap screw insertion workflow for robot-assisted CBT reduces robotic time without increasing complications.


Subject(s)
Cortical Bone , Robotic Surgical Procedures , Spinal Fusion , Humans , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Male , Female , Middle Aged , Cortical Bone/surgery , Aged , Spinal Fusion/methods , Spinal Fusion/instrumentation , Operative Time , Bone Screws , Workflow , Pedicle Screws , Adult
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 303-308, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645868

ABSTRACT

Objective: To compare the clinical effects of cortical bone trajectory screws and traditional pedicle screws in posterior lumbar fusion. Methods: A retrospective study was conducted to analyze lumbar degeneration patients who underwent surgical treatment at our hospital between January 2016 and January 2019. A total of 123 patients who met the inclusion criteria were enrolled. The subjects were divided into two groups according to their surgical procedures and the members of the two groups were matched by age, sex, and the number of fusion segments. There were 63 patients in the traditional pedicle screws (PS) group and 60 in the cortical bone trajectory screws (CBTS) group. The outcomes of the two groups were compared. The primary outcome measures were perioperative conditions, including operation duration, estimated intraoperative blood loss (EBL), and length-of-stay (LOS), visual analog scale (VAS) score, Oswestry Disability Index (ODI) score, and interbody fusion rate. The secondary outcome measures were the time to postoperative ambulation and the incidence of complications. VAS scores and ODI scores were assessed before operation, 1 week, 1 month, 3 months, and 12 months after operation, and at the final follow-up. The interbody fusion rate was assessed in 1 year and 2 years after the operation and at the final follow-up. Results: The CBTS group showed a reduction in operation duration ([142.8±13.1] min vs. [174.7±15.4] min, P<0.001), LOS ([9.5±1.5] d vs. [12.0±2.0] d, P<0.001), and EBL ([194.2±38.3] mL vs. [377.5±33.1] mL, P<0.001) in comparison with the PS group. The VAS score for back pain in the CBTS group was lower than that in the PS group at 1 week and 1 month after operation and the ODI score in the CBTS group was lower than that in the PS group at 1 month after operation, with the differences being statistically significant (P<0.05). At each postoperative time point, the VAS score for leg pain and the interbody fusion rate did not show significant difference between the two groups. The VAS score for back and leg pain and the ODI score at each time point after operation in both the CBTS group and the PS group were significantly lower than those before operation (P<0.05). No significant difference was found in the time to postoperative ambulation or the overall complication incidence between the two groups. Conclusion: The CBTS technique could significantly shorten the operation duration and LOS, reduce EBL, and achieve the same effect as the PS technique does in terms of intervertebral fusion rate, pain relief, functional improvement, and complication incidence in patients undergoing posterior lumbar fusion.


Subject(s)
Cortical Bone , Lumbar Vertebrae , Pedicle Screws , Spinal Fusion , Humans , Spinal Fusion/methods , Spinal Fusion/instrumentation , Lumbar Vertebrae/surgery , Retrospective Studies , Male , Female , Cortical Bone/surgery , Operative Time , Length of Stay , Middle Aged , Treatment Outcome , Intervertebral Disc Degeneration/surgery , Bone Screws , Blood Loss, Surgical/statistics & numerical data
5.
J Mech Behav Biomed Mater ; 153: 106487, 2024 May.
Article in English | MEDLINE | ID: mdl-38490048

ABSTRACT

Computational models of mature bone have been used to predict fracture; however, analogous study of immature diaphyseal fracture has not been conducted due to sparse experimental mechanical data. A model of immature bone fracture may be used to aid in the differentiation of accidental and non-accidental trauma fractures in young, newly ambulatory children (0-3 years). The objective of this study was to characterize the evolution of tissue-level mechanical behavior, composition, and microstructure of maturing cortical porcine bone with uniaxial tension, Raman spectroscopy, and light microscopy as a function of maturation. We asked: 1) How do the monotonic uniaxial tensile properties change with maturation and displacement rate; 2) How does the composition and microstructure change with maturation; and 3) Is there a correlation between composition and tensile properties with maturation? Elastic modulus (p < 0.001), fracture stress (p < 0.001), and energy absorption (p < 0.014) increased as a function of maturation at the quasistatic rate by 110%, 86%, and 96%, respectively. Fracture stress also increased by 90% with maturation at the faster rate (p = 0.001). Fracture stress increased as a function of increasing displacement rate by 28% (newborn p = 0.048; 1-month p = 0.004; 3-month p= < 0.001), and fracture strain decreased by 68% with increasing displacement rate (newborn p = 0.002; 1-month p = 0.036; 3-month p < 0.001). Carbonate-to-phosphate ratio was positively linearly related to elastic modulus, and fracture stress was positively related to carbonate-to-phosphate ratio and matrix maturation ratio. The results of this study support that immature bone is strain-rate dependent and becomes more brittle at faster rates, contributing to the foundation upon which a computational model can be built to evaluate immature bone fracture.


Subject(s)
Cortical Bone , Fractures, Bone , Child , Infant, Newborn , Humans , Animals , Swine , Biomechanical Phenomena , Phosphates , Carbonates , Stress, Mechanical
6.
J Mech Behav Biomed Mater ; 153: 106468, 2024 May.
Article in English | MEDLINE | ID: mdl-38493561

ABSTRACT

A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture.


Subject(s)
Dehydration , Fractures, Bone , Humans , Models, Biological , Cortical Bone/diagnostic imaging , Bone and Bones , Fractures, Bone/diagnostic imaging
7.
J Mech Behav Biomed Mater ; 152: 106442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330876

ABSTRACT

Antlers are bony structures composed predominantly of primary osteons with unique mechanical properties due to their specific use by deer as weapon and shield. Antler bone fracture resistance has attracted prior scrutiny through experimental tests and theoretical models. To characterize antler mechanical properties, compression of cubes, or bending or tensioning of rectangular bars have been performed in the literature with variations in the protocols precluding comparisons of the data. Compression testing is a widely used experimental technique for determining the mechanical properties of specimens excised from cortical or cancellous regions of bone. However, the recommended geometry for compression tests is the cylinder, being more representative of the real performances of the material. The purpose of research was to report data for compressive strength and stiffness of antler cortical bone following current guidelines. Cylinders (n = 296) of dry antler cortical bone from either the main beam or the tines of Cervus elaphus, Rangifer tarandus, Cervus nippon and Damadama were tested. This study highlights the fact that compression of antler cortical bone cylinders following current guidelines is feasible but not applicable in all species. Standardization of the testing protocols could help to compare data from the literature. This study also confirms that sample localization has no effect on the mechanical properties, that sample density has a significant impact and allows enriching the knowledge of the mechanical properties of dry antler cortical bone.


Subject(s)
Antlers , Deer , Animals , Cortical Bone , Compressive Strength , Physical Phenomena
8.
J Mech Behav Biomed Mater ; 152: 106432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354566

ABSTRACT

Various studies have shown that the water content affects the elastic behavior of cortical bone. However, there is disagreement regarding the reversibility of the elastic behavior with rewetting. This study investigates this issue using an intrinsic approach, i.e., moisture manipulation and material testing were always carried out on the same specimen. The test results were then evaluated separately for each of several specimens. In total, 24 specimens of human cortical bone from the ischiopubic ramus were examined. The water content was varied in 11 steps, and the corresponding elastic moduli were determined using three-point bending tests within the elastic range. Moisture adjustment was achieved mainly using desiccators, accelerated by forced convection. Reference samples stored in the same manner were evaluated microscopically. The experiments confirmed the known correlation between water content reduction and stiffness increase of cortical bone. Complete drying increased the elastic modulus by about 83 %. By rewetting, the stiffness was significantly reduced again, though not only to the initial state, but even about 24 % below this. Thus, an irreversible alteration of the elastic behavior was observed. Decay of the reference samples was not observed. Therefore, decay is not the main reason for the significant loss of stiffness. In terms of the storage conditions for cortical bone specimens, an environment with 100 % relative humidity yielded the best match with the initial state. This storage method can therefore be recommended for biomechanical specimens used to determine in-vivo-like material parameters.


Subject(s)
Pelvic Bones , Humans , Pelvis , Cortical Bone , Elastic Modulus , Water
9.
J Vet Med Sci ; 86(3): 325-332, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38311401

ABSTRACT

This study was performed to evaluate cortical bone strength in dogs using a quantitative ultrasound measurement device. In this study, 16 clinically healthy dogs with no lameness underwent measurement of the ultrasound propagation velocity of cortical bone (namely, speed of sound [SOS]) at the radius and tibia. Additionally, computed tomography examination with a calibration phantom was performed in 10 dogs. We calculated the bone mineral density (BMD) and Young's modulus from the computed tomography data using bone strength evaluation software. SOS, BMD, and Young's modulus were statistically compared between the radius and tibia. In addition, we examined the correlation between SOS and BMD and between SOS and Young's modulus. We also examined the correlation between SOS and age in the 13 dogs whose age was known. BMD and Young's modulus were not significantly different between the radius and tibia, but SOS was significantly different (P<0.05). Moreover, SOS and BMD showed a positive correlation in both radius and tibia. Similarly, SOS and Young's modulus showed a positive correlation. In addition, SOS and age showed a strong positive correlation (radius: r=0.77, P<0.05, tibia: r=0.83, P<0.05). Our finding that SOS of the radius and tibia cortical bone was correlated with BMD and Young's modulus indicates that quantitative ultrasound can be useful for evaluating cortical bone strength in dogs.


Subject(s)
Bone Density , Bone and Bones , Dogs , Animals , Bone and Bones/diagnostic imaging , Ultrasonography/veterinary , Cortical Bone/diagnostic imaging , Tibia/diagnostic imaging
10.
Medicina (Kaunas) ; 60(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399527

ABSTRACT

Background and Objectives: Surgical guides might impede the flow of coolant to the implant drills during the preparation of the implant bed, potentially contributing to increased temperatures during bone drilling. The objective of this experimental study was to assess the cooling efficiency of various guiding cylinder designs for sleeveless surgical guides used in guided surgery. Materials and Methods: In this experimental study, surgical guides with three different guiding cylinder designs were printed. One group had solid cylinders (control) and two test groups (cylinders with pores and cylinders with windows). Forty customized polyurethane blocks with type III bone characteristics were fitted into the guide and fixed in a vise, and implant bed preparations were completed using a simplified drilling protocol with and without irrigation. An infrared thermographic camera was used to record the temperature changes during drilling at the coronal, middle, and apical areas. ANOVA test and Games-Howell post hoc test were used to determine significant thermal differences among groups. Results: A significant thermal increase was observed at the coronal area in the group without irrigation (39.69 ± 8.82) (p < 0.05). The lowest thermal increase was recorded at the surgical guides with windows (21.451 ± 0.703 °C) compared to solid (25.005 ± 0.586 °C) and porous surgical guides (25.630 ± 1.004) (p < 0.05). In the middle and apical areas, there were no differences between solid and porous cylinders (p > 0.05). Conclusions: 3D-printed sleeveless surgical guides with window openings at the guiding cylinders reduce the temperature elevation at the cortical bone in guided implant surgery.


Subject(s)
Osteotomy , Prostheses and Implants , Humans , Cortical Bone , Microsurgery , Printing, Three-Dimensional
11.
Bone ; 181: 117031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311304

ABSTRACT

INTRODUCTION: Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity. UTE MRI also provides insights into bone water distribution and matrix organization, enabling a comprehensive bone assessment with a single imaging technique. Our study aimed to establish quantifiable UTE MRI-based biomarkers at clinical field strength to estimate BMD and microarchitecture while quantifying bound water content and matrix organization. METHODS: Femoral bones from 11 cadaveric specimens (n = 4 males 67-92 yrs of age, n = 7 females 70-95 yrs of age) underwent dual-echo UTE MRI (3.0 T, 0.45 mm resolution) with different echo times and high resolution peripheral quantitative computed tomography (HR-pQCT) imaging (60.7 µm voxel size). Following registration, a 4.5 mm HR-pQCT region of interest was divided into four quadrants and used across the multi-modal images. Statistical analysis involved Pearson correlation between UTE MRI porosity index and a signal-intensity technique used to estimate BMD with corresponding HR-pQCT measures. UTE MRI was used to calculate T1 relaxation time and a novel bound water index (BWI), compared across subregions using repeated measures ANOVA. RESULTS: The UTE MRI-derived porosity index and signal-intensity-based estimated BMD correlated with the HR-pQCT variables (porosity: r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002). However, these correlations varied in strength when we examined each of the four quadrants (subregions, r = 0.11-0.71). T1 relaxometry and the BWI exhibited variations across the four subregions, though these differences were not statistically significant. Notably, we observed a strong negative correlation between T1 relaxation time and the BWI (r = -0.87, p = 0.0006). CONCLUSION: UTE MRI shows promise for being an innocuous method for estimating cortical porosity and BMD parameters while also giving insight into bone hydration and matrix organization. This method offers the potential to equip clinicians with a more comprehensive array of imaging biomarkers to assess bone health without the need for invasive or ionizing procedures.


Subject(s)
Cortical Bone , Magnetic Resonance Imaging , Male , Female , Humans , Child , Feasibility Studies , X-Ray Microtomography , Cortical Bone/diagnostic imaging , Magnetic Resonance Imaging/methods , Water
12.
Bone ; 181: 117041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325648

ABSTRACT

Chronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling. Male rhesus macaques (5.3 years old at the initiation of treatment) were induced to drink alcohol and then given the choice to voluntarily self-administer water or ethanol (4 % w/v) for approximately 14 months, followed by three abstinence phases (lasting 34, 41, and 39-46 days) with approximately 3 months of ethanol access in between. During the initial 14 months of open-access, monkeys in the alcohol group consumed an average of 2.9 ± 0.8 g/kg/d ethanol (mean ± SD) resulting in a blood ethanol concentration of 89 ± 47 mg/dl in longitudinal samples taken at 7 h after the daily sessions began. To understand the impact of alcohol consumption on material properties, various mechanical tests were conducted on the distal tibia diaphysis of 2-5 monkeys per test group, including dynamic mechanical analysis (DMA) testing, nano-indentation, microhardness testing, compression testing, and fracture resistance curve (R-curve) testing. Additionally, compositional analyses were performed using Fourier-transform infrared (FTIR) spectroscopy. Significant differences in microhardness, compressive stress-strain response, and composition were not observed with alcohol consumption, and only minor differences were detected in hardness and elastic modulus of the matrix and osteons from nanoindentation. Furthermore, the R-curves of both groups overlapped, with similar crack initiation toughness, despite a significant decrease in crack growth toughness (p = 0.032) with alcohol consumption. However, storage modulus (p = 0.029) and loss factor (p = 0.015) from DMA testing were significantly increased in the alcohol group compared to the control group, while loss modulus remained unchanged. These results indicate that heavy alcohol consumption may have only a minor influence on the material properties and the composition of cortical bone in young adult male rhesus macaques.


Subject(s)
Bone and Bones , Cortical Bone , Animals , Male , Macaca mulatta , Alcohol Drinking , Ethanol
13.
World Neurosurg ; 184: e546-e553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320649

ABSTRACT

OBJECTIVE: We describe the incidence of, and identify the risk factors for, a medial breach of the pedicle wall during robotic-assisted cortical bone trajectory (RA-CBT) screw insertion. METHODS: We analyzed a consecutive series of adult patients who underwent RA-CBT screw placement from January 2019 to July 2022. To assess the pedicle wall medial breach, postoperative computed tomography (CT) images were analyzed. Patient demographic data and screw data were compared between patients with and without a medial breach. The Hounsfield units (HUs) on the L1 midvertebral axial CT scan was used to evaluate bone quality. RESULTS: Of 784 CBT screws in 145 patients, 30 (3.8%) had a medial breach in 23 patients (15.9%). One screw was grade 2, and the others were grade 1. Patients with a medial breach had a lower HU value compared with the patients without a medial breach (123.3 vs. 150.5; P = 0.027). A medial breach was more common in the right than left side (5.5% vs. 2.0%; P = 0.014). More than one half of the screws with a medial breach were found in the upper instrumented vertebra (UIV) compared with the middle construct or lowest instrumented vertebra (6.7% vs. 1.3% vs. 2.7%; P = 0.003). Binary logistic regression showed that low HU values, right-sided screw placement, and UIV were associated with a medial breach. No patients returned to the operating room for screw malposition. No differences were found in the clinical outcomes between patients with and without a medial breach. CONCLUSIONS: The incidence of pedicle wall medial breach was 3.8% of RA-CBT screws in the postoperative CT images. A low HU value measured in the L1 axial image, right-sided screw placement, and UIV were associated with an increased risk of medial breach for RA-CBT screw placement.


Subject(s)
Pedicle Screws , Robotic Surgical Procedures , Spinal Fusion , Adult , Humans , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/methods , Pedicle Screws/adverse effects , Cortical Bone/diagnostic imaging , Cortical Bone/surgery , Risk Factors , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Spinal Fusion/adverse effects , Spinal Fusion/methods , Retrospective Studies
14.
Am J Biol Anthropol ; 184(1): e24902, 2024 May.
Article in English | MEDLINE | ID: mdl-38400773

ABSTRACT

OBJECTIVES: Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS: Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS: Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION: Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.


Subject(s)
Hominidae , Animals , Humans , Hominidae/anatomy & histology , Gorilla gorilla/anatomy & histology , Locomotion , Pongo , Pongo pygmaeus/anatomy & histology , Cortical Bone
15.
J Robot Surg ; 18(1): 78, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358573

ABSTRACT

Robot-assisted (RA) technology has been shown to be a safe aid in spine surgery, this meta-analysis aims to compare surgical parameters and clinical indexes between robot-assisted cortical bone trajectory (CBT) and fluoroscopy-assisted (FA) cortical bone trajectory in spinal surgery. We searched databases such as PubMed, Web of Science, the Cochrane Library, and the China National Knowledge Infrastructure. The study selection process was guided by the PICOS (Patient/Problem, Intervention, Comparison, Outcome, Study Design) strategy. The risk of bias in non-randomized comparative studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) tool. We performed this meta-analysis using RevMan 5.3 software (Cochrane Collaboration, Copenhagen, Denmark), and the level of statistical significance was set at P < 0.05. Six articles involving 371 patients and 1535 screws were included in this meta-analysis. RA-CBT outperformed FA-CBT in terms of various parameters, such as accuracy of pedicle screw position (both Gertzbein-Robbins scale and Ding scale), avoidance of superior facet joint violation (FJV), and reduction of neurological injury. Our meta-analysis offered a thorough evaluation of the efficacy and safety of RA-CBT in spinal surgery. The findings revealed that RA-CBT produced statistically significant results in terms of pedicle screw position accuracy and superior facet joint violation prevention. In terms of surgical parameters and clinical indexes, future research and clinical practice should investigate the efficacy of RA-CBT further. The study was registered in the PROSPERO (CRD42023466280).


Subject(s)
Pedicle Screws , Robotic Surgical Procedures , Robotics , Humans , Robotic Surgical Procedures/methods , Cortical Bone , Fluoroscopy
16.
Eur Radiol Exp ; 8(1): 21, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38316687

ABSTRACT

BACKGROUND: We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS: SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (µCT) at 9-µm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS: α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS: The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT: This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS: • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.


Subject(s)
Bone and Bones , Protons , Animals , Cattle , X-Ray Microtomography , Bone and Bones/diagnostic imaging , Cortical Bone/diagnostic imaging , Water
17.
Acta Neurochir (Wien) ; 166(1): 74, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332369

ABSTRACT

BACKGROUND: Endoscopically assisted screw fixation with lumbar interbody fusion is rarely performed. We succeeded in implanting the cortical bone trajectory (CBT) screws under the guidance of unilateral biportal endoscopy (UBE). METHOD: We attempted endoscopically assisted screw fixation in a patient with degenerative spondylolisthesis. Through a third portal, ipsilateral CBT screws were implanted without complications. CONCLUSIONS: We successfully performed unilateral biportal endoscopic lumbar interbody fusion (ULIF) with CBT and reversed CBT screws. Compared with percutaneous pedicle screw (PPS) placement, this procedure is a minimally invasive, endoscopic alternative that allows precise screw placement.


Subject(s)
Pedicle Screws , Spinal Fusion , Spondylolisthesis , Humans , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Endoscopy , Cortical Bone/diagnostic imaging , Cortical Bone/surgery , Bone and Bones , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Treatment Outcome
18.
J Anat ; 244(5): 792-802, 2024 May.
Article in English | MEDLINE | ID: mdl-38200705

ABSTRACT

Rib fractures remain the most frequent thoracic injury in motor vehicle crashes. Computational human body models (HBMs) can be used to simulate these injuries and design mitigation strategies, but they require adequately detailed geometry to replicate such fractures. Due to a lack of rib cross-sectional shape data availability, most commercial HBMs use highly simplified rib sections extracted from a single individual during original HBM development. This study provides human rib shape data collected from chest CT scans of 240 females and males across the full adult age range. A cortical bone mapping algorithm extracted cross-sectional geometry from scans in terms of local periosteal position with respect to the central rib axis and local cortex thickness. Principal component analysis was used to reduce the dimensionality of these cross-sectional shape data. Linear regression found significant associations between principal component scores and subject demographics (sex, age, height, and weight) at all rib levels, and predicted scores were used to explore the expected rib cross-sectional shapes across a wide range of subject demographics. The resulting detailed rib cross-sectional shapes were quantified in terms of their total cross-sectional area and their cortical bone cross-sectional area. Average-sized female ribs were smaller in total cross-sectional area than average-sized male ribs by between 20% and 36% across the rib cage, with the greatest differences seen in the central portions of rib 6. This trend persisted although to smaller differences of 14%-29% when comparing females and males of equal intermediate weight and stature. Cortical bone cross-sectional areas were up to 18% smaller in females than males of equivalent height and weight but also reached parity in certain regions of the rib cage. Increased age from 25 to 80 years was associated with reductions in cortical bone cross-sectional area (up to 37% in females and 26% in males at mid-rib levels). Total cross-sectional area was also seen to reduce with age in females but to a lesser degree (of up to 17% in mid-rib regions). Similar regions saw marginal increases in total cross-sectional area for male ribs, indicating age affects rib cortex thickness moreso than overall rib cross-sectional size. Increased subject height was associated with increased rib total and cortical bone cross-sectional areas by approximately 25% and 15% increases, respectively, in mid-rib sections for a given 30 cm increase in height, although the magnitudes of these associations varied by sex and rib location. Increased weight was associated with approximately equal changes in both cortical bone and total cross-sectional areas in males. These effects were most prominent (around 25% increases for an addition of 50 kg) toward lower ribs in the rib cage and had only modest effects (less than 12% change) in ribs 2-4. Females saw greater increases with weight in total rib area compared to cortical bone area, of up to 21% at the eighth rib level. Results from this study show the expected shapes of rib cross-sections across the adult rib cage and across a broad range of demographics. This detailed geometry can be used to produce accurate rib models representing widely varying populations.


Subject(s)
Ribs , Thorax , Adult , Humans , Male , Female , Middle Aged , Aged , Aged, 80 and over , Ribs/diagnostic imaging , Tomography, X-Ray Computed , Linear Models , Cortical Bone
19.
Bone ; 180: 116998, 2024 03.
Article in English | MEDLINE | ID: mdl-38184100

ABSTRACT

Osteon morphology provides valuable information about the interplay between different processes involved in bone remodelling. The correct quantitative interpretation of these morphological features is challenging due to the complexity of interactions between osteoblast behaviour, and the evolving geometry of cortical pores during pore closing. We present a combined experimental and mathematical modelling study to provide insights into bone formation mechanisms during cortical bone remodelling based on histological cross-sections of quiescent human osteons and hypothesis-testing analyses. We introduce wall thickness asymmetry as a measure of the local asymmetry of bone formation within an osteon and examine the frequency distribution of wall thickness asymmetry in cortical osteons from human iliac crest bone samples from women 16-78 years old. Our measurements show that most osteons possess some degree of asymmetry, and that the average degree of osteon asymmetry in cortical bone evolves with age. We then propose a comprehensive mathematical model of cortical pore filling that includes osteoblast secretory activity, osteoblast elimination, osteoblast embedment as osteocytes, and osteoblast crowding and redistribution along the bone surface. The mathematical model is first calibrated to symmetric osteon data, and then used to test three mechanisms of asymmetric wall formation against osteon data: (i) delays in the onset of infilling around the cement line; (ii) heterogeneous osteoblastogenesis around the bone perimeter; and (iii) heterogeneous osteoblast secretory rate around the bone perimeter. Our results suggest that wall thickness asymmetry due to off-centred Haversian pores within osteons, and that nonuniform lamellar thicknesses within osteons are important morphological features that can indicate the prevalence of specific asymmetry-generating mechanisms. This has significant implications for the study of disruptions of bone formation as it could indicate what biological bone formation processes may become disrupted with age or disease.


Subject(s)
Haversian System , Osteoblasts , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Haversian System/anatomy & histology , Bone and Bones , Osteocytes , Cortical Bone
20.
Bone ; 181: 117024, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266952

ABSTRACT

Functional adaptation refers to the active modification of bone structure according to the mechanical loads applied daily to maintain its mechanical integrity and adapt to the environment. Functional adaptation relates to bone mass, bone mineral density (BMD), and bone morphology (e.g., trabecular bone architecture). In this study, we discovered for the first time that another form of bone functional adaptation of a cortical bone involves a change in bone quality determined by the preferential orientation of apatite nano-crystallite, a key component of the bone. An in vivo rat ulnar axial loading model was adopted, to which a 3-15 N compressive load was applied, resulting in approximately 440-3200 µÉ› of compression in the bone surface. In the loaded ulnae, the degree of preferential apatite c-axis orientation along the ulnar long axis increased in a dose-dependent manner up to 13 N, whereas the increase in BMD was not dose-dependent. The Young's modulus along the same direction was enhanced as a function of the degree of apatite orientation. This finding indicates that bone has a mechanism that modifies the directionality (anisotropy) of its microstructure, strengthening itself specifically in the loaded direction. BMD, a scalar quantity, does not allow for load-direction-specific strengthening. Functional adaptation through changes in apatite orientation is an excellent strategy for bones to efficiently change their strength in response to external loading, which is mostly anisotropic.


Subject(s)
Apatites , Bone and Bones , Rats , Animals , Apatites/chemistry , Elastic Modulus , Cortical Bone , Bone Density/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...