Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
J Mech Behav Biomed Mater ; 151: 106403, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237206

ABSTRACT

This study proposed and validated a 2D finite element (FE) model for conducting in-silico simulations of in-situ nanoindentation tests on mineralized collagen fibrils (MCF) and the extrafibrillar matrix (EFM) within human cortical bone. Initially, a multiscale cohesive FE model was developed by adapting a previous model of bone lamellae, encompassing both MCF and EFM. Subsequently, nanoindentation tests were simulated in-silico using this model, and the resulting predictions were compared to AFM nanoindentation test data to verify the model's accuracy. The FE model accurately predicted nanoindentation results under wet conditions, closely aligning with outcomes obtained from AFM nanoindentation tests. Specifically, it successfully mirrored the traction/separation curve, nanoindentation modulus, plastic energy dissipation, and plastic energy ratio obtained from AFM nanoindentation tests. Additionally, this in-silico model demonstrated its ability to capture alterations in nanoindentation properties caused by the removal of bound water, by considering corresponding changes in mechanical properties of the collagen phase and the interfaces among bone constituents. Notably, significant changes in the elastic modulus and plastic energy dissipation were observed in both MCF and EFM compartments of bone, consistent with observations in AFM nanoindentation tests. These findings indicate that the proposed in-silico model effectively captures the influence of ultrastructural changes on bone's mechanical properties at sub-lamellar levels. Presently, no experimental methods exist to conduct parametric studies elucidating the ultrastructural origins of bone tissue fragility. The introduction of this in-silico model presents an invaluable tool to bridge this knowledge gap in the future.


Subject(s)
Bone and Bones , Cortical Bone , Humans , Finite Element Analysis , Stress, Mechanical , Bone and Bones/metabolism , Cortical Bone/metabolism , Collagen/chemistry
2.
Bone ; 175: 116836, 2023 10.
Article in English | MEDLINE | ID: mdl-37414200

ABSTRACT

Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.


Subject(s)
Bone and Bones , Osteocytes , Mice , Male , Animals , Female , Osteocytes/metabolism , Bone and Bones/metabolism , Cortical Bone/metabolism , Bone Density , Energy Metabolism
3.
Aging Cell ; 22(6): e13846, 2023 06.
Article in English | MEDLINE | ID: mdl-37147884

ABSTRACT

As we age, our bones undergo a process of loss, often accompanied by muscle weakness and reduced physical activity. This is exacerbated by decreased responsiveness to mechanical stimulation in aged skeleton, leading to the hypothesis that decreased mechanical stimulation plays an important role in age-related bone loss. Piezo1, a mechanosensitive ion channel, is critical for bone homeostasis and mechanotransduction. Here, we observed a decrease in Piezo1 expression with age in both murine and human cortical bone. Furthermore, loss of Piezo1 in osteoblasts and osteocytes resulted in an increase in age-associated cortical bone loss compared to control mice. The loss of cortical bone was due to an expansion of the endosteal perimeter resulting from increased endocortical resorption. In addition, expression of Tnfrsf11b, encoding anti-osteoclastogenic protein OPG, decreases with Piezo1 in vitro and in vivo in bone cells, suggesting that Piezo1 suppresses osteoclast formation by promoting Tnfrsf11b expression. Our results highlight the importance of Piezo1-mediated mechanical signaling in protecting against age-associated cortical bone loss by inhibiting bone resorption in mice.


Subject(s)
Bone Diseases, Metabolic , Mechanotransduction, Cellular , Aged , Animals , Humans , Mice , Bone and Bones/metabolism , Cortical Bone/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism
4.
Bone ; 173: 116804, 2023 08.
Article in English | MEDLINE | ID: mdl-37201674

ABSTRACT

The effect of the pathogenesis of chronic obstructive pulmonary disease (COPD) on bone fracture healing is unknown. Oxidative stress has been implicated in the systemic complications of COPD, and decreased activity of Nrf2 signaling, a central component of the in vivo antioxidant mechanism, has been reported. We investigated the process of cortical bone repair in a mouse model of elastase-induced emphysema by creating a drill hole and focusing on Nrf2 and found that the amount of new bone in the drill hole was reduced and bone formation capacity was decreased in the model mice. Furthermore, nuclear Nrf2 expression in osteoblasts was reduced in model mice. Sulforaphane, an Nrf2 activator, improved delayed cortical bone healing in model mice. This study indicates that bone healing is delayed in COPD mice and that impaired nuclear translocation of Nrf2 is involved in delayed cortical bone healing, suggesting that Nrf2 may be a novel target for bone fracture treatment in COPD patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Mice , Bone and Bones/metabolism , Cortical Bone/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Oxidative Stress , Pulmonary Emphysema/chemically induced
5.
Bone ; 173: 116811, 2023 08.
Article in English | MEDLINE | ID: mdl-37244427

ABSTRACT

Kynurenine (Kyn) is a tryptophan metabolite that increases with age and promotes musculoskeletal dysfunction. We previously found a sexually dimorphic pattern in how Kyn affects bone, with harmful effects more prevalent in females than males. This raises the possibility that male sex steroids might exert a protective effect that blunts the effects of Kyn in males. To test this, orchiectomy (ORX) or sham surgeries were performed on 6-month-old C57BL/6 mice, after which mice received Kyn (10 mg/kg) or vehicle via intraperitoneal injection, once daily, 5×/week, for four weeks. Bone histomorphometry, DXA, microCT, and serum marker analyses were performed after sacrifice. In vitro studies were performed to specifically test the effect of testosterone on activation of aryl hydrocarbon receptor (AhR)-mediated signaling by Kyn in mesenchymal-lineage cells. Kyn treatment reduced cortical bone mass in ORX- but not sham-operated mice. Trabecular bone was unaffected. Kyn's effects on cortical bone in ORX mice were attributed primarily to enhanced endosteal bone resorption activity. Bone marrow adipose tissue was increased in Kyn-treated ORX animals but was unchanged by Kyn in sham-operated mice. ORX surgery increased mRNA expression of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1a1 in the bone, suggesting a priming and/or amplification of AhR signaling pathways. Mechanistic in vitro studies revealed that testosterone blunted Kyn-stimulated AhR transcriptional activity and Cyp1a1 expression in mesenchymal-linage cells. These data suggest a protective role for male sex steroids in blunting the harmful effects of Kyn in cortical bone. Therefore, testosterone may play an important role in regulating Kyn/AhR signaling in musculoskeletal tissues, suggesting crosstalk between male sex steroids and Kyn signaling may influence age-associated musculoskeletal frailty.


Subject(s)
Kynurenine , Receptors, Aryl Hydrocarbon , Female , Mice , Male , Animals , Kynurenine/metabolism , Kynurenine/pharmacology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Orchiectomy , Cytochrome P-450 CYP1A1 , Mice, Inbred C57BL , Cortical Bone/metabolism , Testosterone/pharmacology
6.
J Bone Miner Res ; 38(5): 765-774, 2023 05.
Article in English | MEDLINE | ID: mdl-36891756

ABSTRACT

The development of Wnt-based osteoanabolic agents has progressed rapidly in recent years, given the potent effects of Wnt modulation on bone homeostasis. Simultaneous pharmacologic inhibition of the Wnt antagonists sclerostin and Dkk1 can be optimized to create potentiated effects in the cancellous bone compartment. We looked for other candidates that might be co-inhibited along with sclerostin to potentiate the effects in the cortical compartment. Sostdc1 (Wise), like sclerostin and Dkk1, also binds and inhibits Lrp5/6 coreceptors to impair canonical Wnt signaling, but Sostdc1 has greater effects in the cortical bone. To test this concept, we deleted Sostdc1 and Sost from mice and measured the skeletal effects in cortical and cancellous compartments individually. Sost deletion alone produced high bone mass in all compartments, whereas Sostdc1 deletion alone had no measurable effects on either envelope. Mice with codeletion of Sostdc1 and Sost had high bone mass and increased cortical properties (bone mass, formation rates, mechanical properties), but only among males. Combined administration of sclerostin antibody and Sostdc1 antibody in wild-type female mice produced potentiation of cortical bone gain despite no effect of Sostdc1 antibody alone. In conclusion, Sostdc1 inhibition/deletion can work in concert with sclerostin deficiency to improve cortical bone properties. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Glycoproteins , Intercellular Signaling Peptides and Proteins , Male , Female , Animals , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Glycoproteins/metabolism , Bone and Bones/metabolism , Cortical Bone/metabolism , Cancellous Bone/metabolism , Adaptor Proteins, Signal Transducing/metabolism
7.
Front Endocrinol (Lausanne) ; 14: 1063083, 2023.
Article in English | MEDLINE | ID: mdl-36777346

ABSTRACT

Introduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.


Subject(s)
Renal Insufficiency, Chronic , Transcriptome , Mice , Animals , Bone and Bones/metabolism , Osteoblasts/metabolism , Cortical Bone/metabolism , Renal Insufficiency, Chronic/pathology , Membrane Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
9.
Front Endocrinol (Lausanne) ; 13: 1032262, 2022.
Article in English | MEDLINE | ID: mdl-36568088

ABSTRACT

Introduction: Sirtuin 1 (SIRT1) is a key player in aging and metabolism and regulates bone mass and architecture. Sexual dimorphism in skeletal effects of SIRT1 has been reported, with an unfavorable phenotype primarily in female mice. Methods: To investigate the mechanisms of gender differences in SIRT1 skeletal effect, we investigated femoral and vertebral cortical and cancellous bone in global Sirt1 haplo-insufficient 129/Sv mice aged 2,7,12 months lacking Sirt1 exons 5,6,7 (Sirt1+/Δ ) and their wild type (WT) counterparts. Results: In females, femoral bone mineral content, peak cortical thickness, and trabecular bone volume (BV/TV%), number and thickness were significantly lower in Sirt1+/Δ compared to WT mice. Increased femoral cortical porosity was observed in 7-month-old Sirt1+/Δ compared to WT female mice, accompanied by reduced biomechanical strength. No difference in vertebral indices was detected between Sirt1+/Δ and WT female mice. SIRT1 decreased with aging in WT female mice and was lower in vertebrae and femur in 18- and 30- versus 3-month-old 129/Sv and C57BL/6J female mice, respectively. Decreased bone estrogen receptor alpha (ERα) was observed in Sirt1+/Δ compared to WT female mice and was significantly higher in Sirt1 over-expressing C3HT101/2 murine mesenchymal stem cells. In males no difference in femoral indices was detected in Sirt1+/Δ versus WT mice, however vertebral BV/TV%, trabecular number and thickness were higher in Sirt1+/Δ vs. WT mice. No difference in androgen receptor (AR) was detected in bone in Sirt1+/Δ vs. WT male mice. Bone SIRT1 was significantly lower in male compared to female WT mice, suggesting that SIRT1 maybe more significant in female than male skeleton. Discussion: These findings demonstrate that 50% reduction in SIRT1 is sufficient to induce the hallmarks of skeletal aging namely, decreased cortical thickness and increased porosity in female mice, highlighting the role of SIRT1 as a regulator of cortical bone quantity and quality. The effects of SIRT1 in cortical bone are likely mediated in part by its regulation of ERα. The age-associated decline in bone SIRT1 positions SIRT1 as a potential therapeutic target to ameliorate age-related cortical bone deterioration in females. The crosstalk between ERα, AR and SIRT1 in the bone microenvironment remains to be further investigated.


Subject(s)
Cortical Bone , Estrogen Receptor alpha , Osteoporosis , Sirtuin 1 , Animals , Female , Male , Mice , Cortical Bone/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Mice, Inbred C57BL , Porosity , Sirtuin 1/genetics , Osteoporosis/genetics , Osteoporosis/metabolism
10.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36278488

ABSTRACT

Patients with the renal phosphate-wasting disease X-linked hypophosphatemia (XLH) and Hyp mice, the murine homolog of XLH, are characterized by loss-of-function mutations in phosphate-regulating endopeptidase homolog X-linked (PHEX), leading to excessive secretion of the bone-derived phosphotropic hormone FGF23. The mineralization defect in patients with XLH and Hyp mice is caused by a combination of hypophosphatemia and local accumulation of mineralization-inhibiting molecules in bone. However, the mechanism by which PHEX deficiency regulates bone cell metabolism remains elusive. Here, we used spatial metabolomics by employing matrix-assisted laser desorption/ionization (MALDI) Fourier-transform ion cyclotron resonance mass spectrometry imaging (MSI) of undecalcified bone cryosections to characterize in situ metabolic changes in bones of Hyp mice in a holistic, unbiased manner. We found complex changes in Hyp bone metabolism, including perturbations in pentose phosphate, purine, pyrimidine, and phospholipid metabolism. Importantly, our study identified an upregulation of several biochemical pathways involved in intra- and extracellular production of the mineralization inhibitor pyrophosphate in the bone matrix of Hyp mice. Our data emphasize the utility of MSI-based spatial metabolomics in bone research and provide holistic in situ insights as to how Phex deficiency-induced changes in biochemical pathways in bone cells are linked to impaired bone mineralization.


Subject(s)
Familial Hypophosphatemic Rickets , Mice , Animals , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Diphosphates/metabolism , Up-Regulation , Cortical Bone/metabolism , Phosphates/metabolism , Metabolomics , Purines , Hormones , Pyrimidines , Phospholipids , Pentoses
11.
Bone ; 165: 116548, 2022 12.
Article in English | MEDLINE | ID: mdl-36122648

ABSTRACT

Bone material / compositional properties are significant determinants of bone quality, thus strength. Raman spectroscopic analysis provides information on the quantity and quality of all three bone tissue components (mineral, organic matrix, and tissue water). The overwhelming majority of the published reports on the subject concern adults. We have previously reported on these properties in growing children and young adults, in the cancellous compartment. The purpose of the present study was to create normative reference data of bone material / compositional properties for children and young adults, in the cortical compartment. We performed Raman (Senterra (Bruker Optik GmbH), 50× objective, with an excitation of 785 nm (100 mW) and a lateral resolution of ~0.6 µm) microspectroscopic analysis of transiliac bone samples from 54 individuals between 1.5 and 23 years of age, with no known metabolic bone disease, and which have been previously used to establish histomorphometric, bone mineralization density distribution, and cancellous bone quality reference values. The bone quality indices that were determined were: mineral/matrix ratio (MM) from the integrated areas of the v2PO4 (410-460 cm-1) and the amide III (1215-1300 cm-1) bands, tissue water in nanopores approximated by the ratio of the integrated spectral area ~ 494-509 cm-1 to Amide III band, the glycosaminoglycan (GAG) content (ratio of integrated area 1365-1390 cm-1 to the Amide III band, the sulfated proteoglycan (sPG) content as the ratio of the integrated peaks ~1062 cm-1 and 1365-1390 cm-1, the pyridinoline (Pyd) content estimated from the ratio of the absorbance height at 1660 cm-1 / area of the amide I (1620-1700 cm-1) band, and the mineral maturity / crystallinity (MMC) estimated from the inverse of the full width at half height of the v1PO4 (930-980 cm-1) band. Analyses were performed at the three distinct cortical surfaces (endosteal, osteonal, periosteal) at specific anatomical microlocations, namely the osteoid, and the three precisely known tissue ages based on the presence of fluorescence double labels. Measurements were also taken in interstitial bone, a much older tissue that has undergone extensive secondary mineralization. Overall, significant dependencies of the measured parameters on tissue age were observed, while at any given tissue age, sex and subject age were minimal confounders. The established Raman database in the cortical compartments complements the previously published one in cancellous bone, and provides healthy baseline bone quality indices that may serve as a valuable tool to identify alterations due to pediatric disease.


Subject(s)
Bone and Bones , Cortical Bone , Child , Humans , Young Adult , Amides , Bone and Bones/metabolism , Bone Density , Cortical Bone/metabolism , Glycosaminoglycans/metabolism , Minerals/metabolism , Proteoglycans , Water , Infant , Child, Preschool , Adolescent
12.
J Agric Food Chem ; 70(34): 10476-10489, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35993842

ABSTRACT

Poultry is vulnerable to bone problems throughout their lives or production period due to rapid growth in broilers and the active laying cycle in layers. The calcium-sensing receptor (CaSR) is important in calcium and bone metabolism. The objective of this study was to investigate the effect of the CaSR ligand (l-Trp) and 1,25-dihydroxycholecalciferol (1,25OHD3) on the regulation of proliferation and osteogenic differentiation of chicken mesenchymal stem cells (MSCs) isolated from the compact bones of 14-day-old Ross 308 chickens and Dekalb pullets, which can provide cell-based evidence for the prevention or alleviation of skeletal disorders in the poultry industry. First, the dose- (0, 0.5, 1, 2, 5, 10, and 15 mM) and time-effects (0, 7, and 14 days) of l-Trp on the proliferation and osteogenic differentiation in chicken MSCs were investigated. The 5 mM l-Trp had a balanced effect between proliferation and osteogenic differentiation in broiler and layer MSCs when differentiated for 7 days. The broiler and layer MSCs were then treated with (1) osteogenic medium, osteogenic medium supplemented with (2) 1 nM 1,25OHD3, (3) 2.5 mM Ca2+, (4) 2.5 mM Ca2+ + 5 mM l-Trp and (5) 2.5 mM Ca2+ + 5 mM l-Trp + 1 µM NPS-2143, separately for 7 days. Results showed that the 5 mM l-Trp significantly inhibited the proliferation of broiler and layer MSCs on day 7 (P < 0.05), but 1 nM 1,25OHD3 significantly promoted the proliferation of layer MSCs (P < 0.05). Only the 2.5 mM Ca2+ + 5 mM l-Trp group significantly increased the mineralization process during osteogenic differentiation (P < 0.05), and this treatment also significantly upregulated the mRNA expression of the vitamin D receptor (VDR), ß-catenin, and osteogenesis genes in broiler MSCs (P < 0.05). The osteogenic differentiation process in layer MSCs was faster than that in broiler MSCs. In layer MSCs, Ca2+ alone significantly facilitated mineralization and ALP activity after 7-day osteogenic differentiation (P < 0.05). However, the 5 mM l-Trp significantly inhibited the differentiation and mineralization process by downregulating the mRNA expression of CaSR, VDR, ß-catenin, and osteogenic genes (P < 0.05) in layer MSCs. Taken together, l-Trp and 1,25OHD3 can regulate proliferation and osteogenic differentiation in both broiler and layer MSCs depending on the dose, treatment time, and cell proliferation and differentiation stages.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Calcitriol/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chickens/metabolism , Cortical Bone/metabolism , Female , RNA, Messenger/metabolism , Tryptophan/metabolism , beta Catenin/metabolism
14.
Int J Mol Sci ; 23(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35742850

ABSTRACT

Chronic kidney disease (CKD) frequently leads to hyperphosphatemia and hyperparathyroidism, mineral bone disorder (CKD-MBD), ectopic calcifications and cardiovascular mortality. PTH activates the osteoanabolic Gαs/PKA and the Gαq/11/PKC pathways in osteoblasts, the specific impact of the latter in CKD-MBD is unknown. We generated osteoblast specific Gαq/11 knockout (KO) mice and established CKD-MBD by subtotal nephrectomy and dietary phosphate load. Bone morphology was assessed by micro-CT, osteoblast function by bone planar scintigraphy at week 10 and 22 and by histomorphometry. Osteoblasts isolated from Gαq/11 KO mice increased cAMP but not IP3 in response to PTH 1-34, demonstrating the specific KO of the PKC signaling pathway. Osteoblast specific Gαq/11 KO mice exhibited increased serum calcium and reduced bone cortical thickness and mineral density at 24 weeks. CKD Gαq/11 KO mice had similar bone morphology compared to WT, while CKD Gαq/11-KO on high phosphate diet developed decreased metaphyseal and diaphyseal cortical thickness and area, as well as a reduction in trabecular number. Gαq/11-KO increased bone scintigraphic tracer uptake at week 10 and mitigated tracer uptake in CKD mice at week 22. Histological bone parameters indicated similar trends. Gαq/11-KO in osteoblast modulates calcium homeostasis, bone formation rate, bone morphometry, and bone mineral density. In CKD and high dietary phosphate intake, osteoblast Gαq/11/PKC KO further aggravates mineral bone disease.


Subject(s)
Bone Diseases , Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Animals , Bone Density , Calcium , Cortical Bone/diagnostic imaging , Cortical Bone/metabolism , Mice , Mice, Knockout , Osteoblasts/metabolism , Parathyroid Hormone , Phosphates , Renal Insufficiency, Chronic/metabolism , Signal Transduction
15.
J Bone Miner Res ; 37(7): 1335-1351, 2022 07.
Article in English | MEDLINE | ID: mdl-35560108

ABSTRACT

Osteoarthritis (OA) is a common degenerative disease of the joint, with a complex multifactorial not yet fully understood etiology. Over the past years, the Wnt signaling pathway has been implicated in osteoarthritis. In a recent genomewide association study (GWAS), the chromosomal location on chromosome 1, linked to the Wnt3a-Wnt9a gene locus, was identified as the most significant locus associated with a thumb osteoarthritis endophenotype. Previously, it was shown that WNT9a is involved in maintaining synovial cell identity in the elbow joint during embryogenesis. Here, we report that the conditional loss of Wnt9a in the Prx1-Cre expressing limb mesenchyme or Prg4-CreER expressing cells predispositions the mice to develop spontaneous OA-like changes with age. In addition, the trabecular bone volume is altered in these mice. Similarly, mice with a conditional loss of Wnt4 in the limb mesenchyme are also more prone to develop spontaneously OA-like joint alterations with age. These mice display additional alterations in their cortical bone. The combined loss of Wnt9a and Wnt4 increased the likelihood of the mice developing osteoarthritis-like changes and enhanced disease severity in the affected mice. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteoarthritis , Wnt Proteins , Wnt4 Protein , Animals , Bone and Bones/metabolism , Cortical Bone/metabolism , Mesoderm/metabolism , Mice , Osteoarthritis/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Wnt4 Protein/genetics
16.
J Mech Behav Biomed Mater ; 131: 105220, 2022 07.
Article in English | MEDLINE | ID: mdl-35427958

ABSTRACT

Cortical bone tissue, primarily composed of collagen, hydroxyapatite, and water, is a strong and tough natural, structural biomaterial. The integrity of the collagenous phase (native triple helix vs. damaged/denatured coil) has previously been correlated via various means, including hydrothermal isometric tension testing and FTIR and Raman spectroscopy, with the capability of cortical bone to undergo stable fracture. Collagen is a relatively stable protein, requiring around 70 J/g to thermally denature its native triple helix structure, through the melting of hydrogen bonds. It is widely thought that bone collagen molecules denature (unravel) during fracture, acting as a molecular-scale mechanical toughening mechanism, but this has not been empirically demonstrated to date. A new technology, fluorescently-labeled collagen hybridizing peptides (F-CHP), enables imaging that specifically detects denatured collagen. This provides an opportunity to empirically test whether bone collagen molecules do denature during bone fracture. Here, F-CHP was used to stain fracture surfaces produced by transverse Mode-I fracture of chevron-notched bovine and human cortical bone beams. The fracture surfaces demonstrated increased staining, above the level of rigorous paired controls, and the staining directly correlated with the work-to-fracture (WFx) of bovine bone beams. This increased denaturation signal was also constrained to a rough textured region visible on the fracture surface, which is known to correspond with stable tearing. Similar staining was also detected on the fracture surfaces of human cortical bone. Increased staining was not detected on the fracture surfaces of specimens that were dehydrated prior to fracture, suggesting a role for water in the denaturation process. This study provides the first empirical evidence of bone collagen denaturation resulting from cortical bone fracture and extends our understanding of this mechanism towards the mechanical performance of cortical bone.


Subject(s)
Bone and Bones , Fractures, Bone , Animals , Bone and Bones/metabolism , Cattle , Collagen/chemistry , Cortical Bone/metabolism , Humans , Peptides , Water
17.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054971

ABSTRACT

Bone morphogenetic proteins (BMPs) have a major role in tissue development. BMP3 is synthesized in osteocytes and mature osteoblasts and has an antagonistic effect on other BMPs in bone tissue. The main aim of this study was to fully characterize cortical bone and trabecular bone of long bones in both male and female Bmp3-/- mice. To investigate the effect of Bmp3 from birth to maturity, we compared Bmp3-/- mice with wild-type littermates at the following stages of postnatal development: 1 day (P0), 2 weeks (P14), 8 weeks and 16 weeks of age. Bmp3 deletion was confirmed using X-gal staining in P0 animals. Cartilage and bone tissue were examined in P14 animals using Alcian Blue/Alizarin Red staining. Detailed long bone analysis was performed in 8-week-old and 16-week-old animals using micro-CT. The Bmp3 reporter signal was localized in bone tissue, hair follicles, and lungs. Bone mineralization at 2 weeks of age was increased in long bones of Bmp3-/- mice. Bmp3 deletion was shown to affect the skeleton until adulthood, where increased cortical and trabecular bone parameters were found in young and adult mice of both sexes, while delayed mineralization of the epiphyseal growth plate was found in adult Bmp3-/- mice.


Subject(s)
Bone Morphogenetic Protein 3/genetics , Bone and Bones/metabolism , Cortical Bone/metabolism , Osteogenesis/genetics , Age Factors , Animals , Biomarkers , Bone Morphogenetic Protein 3/metabolism , Calcification, Physiologic , Female , Gene Expression , Growth Plate/growth & development , Growth Plate/metabolism , Immunohistochemistry , Male , Mice , Mice, Knockout , Sex Factors , X-Ray Microtomography
18.
J Cachexia Sarcopenia Muscle ; 13(1): 758-771, 2022 02.
Article in English | MEDLINE | ID: mdl-34997830

ABSTRACT

BACKGROUND: Chronic renal failure induces bone mineral disorders and sarcopenia. Skeletal muscle affects other tissues, including bone, by releasing myokines. However, the effects of chronic renal failure on the interactions between muscle and bone remain unclear. METHODS: We investigated the effects of renal failure on bone, muscle, and myokines linking muscle to bone using a mouse 5/6 nephrectomy (Nx) model. Muscle mass and bone mineral density (BMD) were analysed by quantitative computed tomography 8 weeks after Nx. RESULTS: Nephrectomy significantly reduced muscle mass in the whole body (12.1% reduction, P < 0.05), grip strength (10.1% reduction, P < 0.05), and cortical BMD at the femurs of mice (9.5% reduction, P < 0.01) 8 weeks after surgery, but did not affect trabecular BMD at the femurs. Among the myokines linking muscle to bone, Nx reduced the expression of irisin, a proteolytic product of fibronectin type III domain-containing 5 (Fndc5), in the gastrocnemius muscles of mice (38% reduction, P < 0.01). Nx increased myostatin mRNA levels in the gastrocnemius muscles of mice (54% increase, P < 0.01). In simple regression analyses, cortical BMD, but not trabecular BMD, at the femurs was positively related to Fndc5 mRNA levels in the gastrocnemius muscles of mice (r = 0.651, P < 0.05). The weekly administration of recombinant irisin to mice ameliorated the decrease in cortical BMD, but not muscle mass or grip strength, induced by Nx (6.2% reduction in mice with Nx vs. 3.3% reduction in mice with Nx and irisin treatment, P < 0.05). CONCLUSIONS: The present results demonstrated that renal failure decreases the expression of irisin in the gastrocnemius muscles of mice. Irisin may contribute to cortical bone loss induced by renal failure in mice as a myokine linking muscle to bone.


Subject(s)
Fibronectins , Renal Insufficiency , Animals , Bone and Bones/metabolism , Cortical Bone/metabolism , Fibronectins/biosynthesis , Fibronectins/genetics , Fibronectins/metabolism , Mice , Muscle, Skeletal/metabolism , Renal Insufficiency/metabolism
19.
Adv Sci (Weinh) ; 9(3): e2103343, 2022 01.
Article in English | MEDLINE | ID: mdl-34854257

ABSTRACT

Mechanical force regulates bone density, modeling, and homeostasis. Substantial periosteal bone formation is generated by external mechanical stimuli, yet its mechanism is poorly understood. Here, it is shown that myeloid-lineage cells differentiate into subgroups and regulate periosteal bone formation in response to mechanical loading. Mechanical loading on tibiae significantly increases the number of periosteal myeloid-lineage cells and the levels of active transforming growth factor ß (TGF-ß), resulting in cortical bone formation. Knockout of Tgfb1 in myeloid-lineage cells attenuates mechanical loading-induced periosteal bone formation in mice. Moreover, CD68+ F4/80+ macrophages, a subtype of myeloid-lineage cells, express and activate TGF-ß1 for recruitment of osteoprogenitors. Particularly, mechanical loading induces the differentiation of periosteal CD68+ F4/80- myeloid-lineage cells to the CD68+ F4/80+ macrophages via signaling of piezo-type mechanosensitive ion channel component 1 (Piezo1) for TGF-ß1 secretion. Importantly, CD68+ F4/80+ macrophages activate TGF-ß1 by expression and secretion of thrombospondin-1 (Thbs1). Administration of Thbs1 inhibitor significantly impairs loading-induced TGF-ß activation and recruitment of osteoprogenitors in the periosteum. The results suggest that periosteal myeloid-lineage cells respond to mechanical forces and consequently produce and activate TGF-ß1 for periosteal bone formation.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , B7-1 Antigen/metabolism , Cortical Bone/metabolism , Osteogenesis/physiology , Transforming Growth Factor beta1/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Periosteum/metabolism , Signal Transduction/physiology
20.
Front Endocrinol (Lausanne) ; 12: 775066, 2021.
Article in English | MEDLINE | ID: mdl-34803931

ABSTRACT

Chronic kidney disease (CKD) has a significant negative impact on bone health. However, the mechanisms of cortical bone deterioration and cortical porosity enlargement caused by CKD have not been fully described. We therefore examined the association of CKD stages with cortical porosity index (PI), and explored potential mediators of this association. Double-echo ultrashort echo-time magnetic resonance imaging (UTE MRI) provides the possibility of quantifying cortical porosity in vivo. A total of 95 patients with CKD stages 2-5 underwent 3D double-echo UTE-Cones MRI (3.0T) of the midshaft tibia to obtain the PI. PI was defined as the ratio of the image signal intensity of a sufficiently long echo time (TE) to the shortest achievable TE. Parathyroid hormone (PTH), ß-CrossLaps (ß-CTX), total procollagen type I amino-terminal propeptide (T-P1NP), osteocalcin (OC), 25-hydroxyvitamin D (25OHD), and lumbar bone mineral density (BMD) were measured within one week of the MRI. Partial correlation analysis was performed to address associations between PI, eGFR and potential mediators (PTH, ß-CTX, T-P1NP, OC, 25OHD, BMD, and T-score). Multiple linear regression models were used to assess the association between CKD stages and PI value. Then, a separate exploratory mediation analysis was carried out to explore the impact of CKD stages and mediators on the PI value. The increasing CKD stages were associated with a higher PI value (Ptrend < 0.001). The association of CKD stages and PI mediated 34.4% and 30.8% of the total effect by increased PTH and ß-CTX, respectively. Our study provides a new idea to monitor bone health in patients with CKD, and reveals the internal mechanism of bone deterioration caused by CKD to some extent.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Renal Insufficiency, Chronic , Absorptiometry, Photon , Adult , Biomarkers/metabolism , China/epidemiology , Cohort Studies , Cortical Bone/metabolism , Cortical Bone/pathology , Cross-Sectional Studies , Disease Progression , Female , Health Status Indicators , Humans , Kidney Function Tests , Male , Mediation Analysis , Middle Aged , Porosity , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...