Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.481
Filter
1.
Top Curr Chem (Cham) ; 382(2): 16, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722386

ABSTRACT

Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.


Subject(s)
Coumarins , Fluorescent Dyes , Coumarins/chemistry , Coumarins/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Molecular Structure , Biological Products/chemistry , Biological Products/chemical synthesis
2.
Wiad Lek ; 77(3): 514-525, 2024.
Article in English | MEDLINE | ID: mdl-38691794

ABSTRACT

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Coumarin as cap groups. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group and Coumarin as cap groups known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. The synthesized compound assessed for their cytotoxic activity against hepatoblastoma HepG2 (IC50, I=0.094, II=0.040, III=0.032, IV=0.046, SAHA=0.141) and human colon adenocarcinoma MCF-7 (IC50, I=0.135, II=0.050, III= 0.065, IV=0.059, SAHA=0.107). The binding mode to the active site of [HDAC6] were determined by docking study which give results that they might be good inhibitors for [HDAC6]. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed a comparable cytotoxic result with FDA approved drug (SAHA) toward HepG2 and MCF-7 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Subject(s)
Antineoplastic Agents , Coumarins , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Sulfonamides , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hep G2 Cells , MCF-7 Cells
3.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691893

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
4.
J Agric Food Chem ; 72(19): 10958-10969, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703118

ABSTRACT

Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.


Subject(s)
Ailanthus , Coumarins , Insecticides , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Animals , Coumarins/pharmacology , Coumarins/chemistry , Ailanthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Molecular Structure , Larva/drug effects , Larva/growth & development , Moths/drug effects , Moths/growth & development , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Biological Assay , Monoterpenes/pharmacology , Monoterpenes/chemistry , Feeding Behavior/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
J Med Chem ; 67(10): 8271-8295, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717088

ABSTRACT

A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 µM) exhibited the highest potency, displaying 100% inhibition at 1.0 µM and 82.8% inhibition at an even lower concentration of 0.1 µM, which was much more potent than the lead compound BA (IC50 = 2.325 µM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.


Subject(s)
Osteoclasts , Osteoporosis , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/drug therapy , Female , RANK Ligand/metabolism , RANK Ligand/antagonists & inhibitors , Osteogenesis/drug effects , Structure-Activity Relationship , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Ovariectomy , Bone Resorption/drug therapy , Humans , RAW 264.7 Cells
6.
PLoS One ; 19(5): e0303186, 2024.
Article in English | MEDLINE | ID: mdl-38776295

ABSTRACT

Lung cancer is a major public health challenge and, despite therapeutic improvements, is the first leading cause of cancer worldwide. The current cure rate from advanced cancer treatment is excessively low. Therefore, it is of great importance to identify novel, potent and less toxic anticancer agents for the treatment of lung cancer. The aim of our research is to synthesize a new biscoumarin 3,3'-((3,4,5-trifluorop -phenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (C35) as an anticancer agent. C35 was simply prepared by 4-hydroxycoumarin and 3,4,5-trifluorobenzaldehyde under ethanol and its structure was analyzed by spectroscopic analyses. The anti-proliferation effect of C35 was detected using CCK-8 assay. Migration abilities were measured by Transwell assay. The expression of correlated proteins was determined by Western blot. The results showed that C35 displayed strong cytostatic effects on lung cancer cell proliferation. In addition, C35 possessed a significant inhibition of migration by reducing the expression of matrix metalloproteinases-2 (MMP-2) and MMP-9 in lung cancer cells. Furthermore, C35 treatment suppressed the phosphorylation of p38 in lung cancer cells. Moreover, in vivo experiments were carried out, in which we treated Lewis tumor-bearing C57 mice via intraperitoneal injection of C35. Results showed that C35 inhibited tumor growth in vivo. In conclusion, our study demonstrated the anticancer activity of C35 via suppression of lung cancer cell proliferation and migration, which is possibly involved with the inhibition of the p38 pathway.


Subject(s)
Antineoplastic Agents , Cell Movement , Cell Proliferation , Lung Neoplasms , Matrix Metalloproteinase 9 , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Antineoplastic Agents/pharmacology , Matrix Metalloproteinase 9/metabolism , Cell Line, Tumor , Coumarins/pharmacology , Coumarins/chemistry , Matrix Metalloproteinase 2/metabolism , A549 Cells , Xenograft Model Antitumor Assays
7.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731638

ABSTRACT

Copper-catalyzed azide-alkyne cycloaddition click (CuAAC) reaction is widely used to synthesize drug candidates and other biomolecule classes. Homogeneous catalysts, which consist of copper coordinated to a ligand framework, have been optimized for high yield and specificity of the CuAAC reaction, but CuAAC reaction with these catalysts requires the addition of a reducing agent and basic conditions, which can complicate some of the desired syntheses. Additionally, removing copper from the synthesized CuAAC-containing biomolecule is necessary for biological applications but inconvenient and requires additional purification steps. We describe here the design and synthesis of a PNN-type pincer ligand complex with copper (I) that stabilizes the copper (I) and, therefore, can act as a CuAAC catalyst without a reducing agent and base under physiologically relevant conditions. This complex was immobilized on two types of resin, and one of the immobilized catalyst forms worked well under aqueous physiological conditions. Minimal copper leaching was observed from the immobilized catalyst, which allowed its use in multiple reaction cycles without the addition of any reducing agent or base and without recharging with copper ion. The mechanism of the catalytic cycle was rationalized by density functional theory (DFT). This catalyst's utility was demonstrated by synthesizing coumarin derivatives of small molecules such as ferrocene and sugar.


Subject(s)
Alkynes , Azides , Click Chemistry , Copper , Cycloaddition Reaction , Copper/chemistry , Click Chemistry/methods , Ligands , Catalysis , Azides/chemistry , Alkynes/chemistry , Coumarins/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Molecular Structure
8.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708871

ABSTRACT

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Subject(s)
Anti-Bacterial Agents , Coumarins , Listeria monocytogenes , Microbial Sensitivity Tests , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumarins/pharmacology , Coumarins/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane Permeability/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
9.
Iran J Med Sci ; 49(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38751871

ABSTRACT

Background: Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice. Methods: Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. Results: FQ reduced IL-1ß (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively. Conclusion: All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.


Subject(s)
Cytokine Release Syndrome , Lipopolysaccharides , Quercetin , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Cytokine Release Syndrome/drug therapy , Lipopolysaccharides/pharmacology , COVID-19 Drug Treatment , Male , COVID-19 , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Interleukin-6/blood , Interleukin-6/analysis , Cytokines/drug effects , Interleukin-1beta , Tumor Necrosis Factor-alpha , Disease Models, Animal , Lung/drug effects , Lung/pathology , Coumarins
10.
Eur Phys J E Soft Matter ; 47(5): 31, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735010

ABSTRACT

Coumarins, a subgroup of colorless and crystalline oxygenated heterocyclic compounds originally discovered in the plant Dipteryx odorata, were the subject of a recent study investigating their quantitative structure-activity relationship (QSAR) in cancer pharmacotherapy. This study utilized graph theoretical molecular descriptors, also known as topological indices, as a numerical representation method for the chemical structures embedded in molecular graphs. These descriptors, derived from molecular graphs, play a pivotal role in quantitative structure-property relationship (QSPR) analysis. In this paper, intercorrelation between the Balban index, connective eccentric index, eccentricity connectivity index, harmonic index, hyper Zagreb index, first path Zagreb index, second path Zagreb index, Randic index, sum connectivity index, graph energy and Laplacian energy is studied on the set of molecular graphs of coumarins. It is found that the pairs of degree-based indices are highly intercorrelated. The use of these molecular descriptors in structure-boiling point modeling was analyzed. Finally, the curve-linear regression between considered molecular descriptors with physicochemical properties of coumarins and coumarin-related compounds is obtained.


Subject(s)
Coumarins , Quantitative Structure-Activity Relationship , Coumarins/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Models, Molecular , Humans
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692102

ABSTRACT

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Subject(s)
Coumarins , Fluorescent Dyes , Nitrogen Oxides , Coumarins/chemistry , Humans , Fluorescent Dyes/chemistry , Nitrogen Oxides/chemistry , Nitrogen Oxides/analysis , Spectrometry, Fluorescence , HeLa Cells
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124349, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692107

ABSTRACT

Fluorine (F) is a pivotal element in the formation of human dental and skeletal tissues, and the consumption of water and tea constitutes a significant source of fluoride intake. However, prolonged ingestion of water and tea with excessive fluoride content can lead to fluorosis, which poses a serious health hazard. In this manuscript, a novel turn-on fluorescent probe DCF synthesized by bis-coumarin and tert-butyldiphenylsilane (TBDPS) was introduced for detecting F- in potable water and tea infusions. By leveraging the unique chemical affinity between fluoride and silicon, F- triggers the silicon-oxygen bond cleavage in DCF, culminating in a conspicuous emission of yellow fluorescence. Validated through a succession of optical tests, this probe exhibits remarkable advantages in terms of superior selectivity, a low detection limit, a large Stokes shift, and robust interference resistance when detecting inorganic fluoride. Moreover, it can serve as portable test strips for on-site real-time identification and quantitative analysis of F-. Furthermore, the application of DCF for in-situ monitoring and imaging of F- in zebrafish and soybean root tissues proved its significant value for F- detection in both animal and plant systems. This probe potentially functions as an efficient instrument for delving into the toxic mechanisms of fluoride in physiological processes.


Subject(s)
Coumarins , Fluorescent Dyes , Tea , Zebrafish , Fluorescent Dyes/chemistry , Animals , Coumarins/chemistry , Tea/chemistry , Drinking Water/analysis , Spectrometry, Fluorescence/methods , Fluorine/analysis , Fluorine/chemistry , Fluorides/analysis , Glycine max/chemistry , Limit of Detection , Optical Imaging/methods
13.
Sci Rep ; 14(1): 11770, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783034

ABSTRACT

Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.


Subject(s)
Antineoplastic Agents , Coumarins , Umbelliferones , Humans , Coumarins/chemistry , Coumarins/pharmacology , Umbelliferones/pharmacology , Umbelliferones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Cell Survival/drug effects
14.
ACS Macro Lett ; 13(5): 571-576, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38647178

ABSTRACT

Controlling the access of proteases to cleavable peptides placed at specific locations within macromolecular architectures represents a powerful strategy for biologically responsive materials design. Here, we report the synthesis of peptide-containing bivalent bottlebrush (co)polymers (BBPs) featuring polyethylene glycol (PEG) and 7-amino-4-methylcoumarin (AMC) pendants on each backbone repeat unit. The AMCs are linked via caspase-3-cleavable peptides which, upon enzymatic cleavage, provide a "turn-on" fluorescence signal due to the release of free AMC. Time-dependent fluorscence measurements demonstrate that the caspase-3-induced peptide cleavage and AMC release from BBPs is strongly dependent on the BBP backbone length and the AMC-peptide linker location within the BBP architecture, revealing fundamental insights into the interactions of enzymes with BBPs.


Subject(s)
Caspase 3 , Fluorescent Dyes , Polyethylene Glycols , Fluorescent Dyes/chemistry , Caspase 3/metabolism , Polyethylene Glycols/chemistry , Coumarins/chemistry , Peptides/chemistry , Peptides/metabolism , Polymers/chemistry , Humans
15.
Phytother Res ; 38(4): 2077-2093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558449

ABSTRACT

Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In  summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Coumarins , Mice , Animals , Cisplatin/adverse effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Molecular Docking Simulation , Kidney , Autophagy , Apoptosis , Acute Kidney Injury/chemically induced
16.
Anal Methods ; 16(15): 2400-2411, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38572632

ABSTRACT

This study presents a novel approach for the detection of carbofuran (CBF) insecticide by systematically exploring a calix[4]arene-derived fluorescence probe, CouC4S, functionalized with two coumarin-labelled cystamine linkages at the narrow edge of the calix[4]arene platform. The proposed method showed a fluorescence "signal - off" effect when CBF binds with CouC4S by quenching the fluorescence intensity of CouC4S. Its limit of detection was as low as 5.55 µM according to the emission study. The working concentration range for this ligand was observed to be up to 5-65 µM. This method could be applied for the on-spot detection of CBF in real samples such as cabbage by spiking CBFvia in situ experiments, which exhibited a limit of detection of 8.823 ppm. For the further confirmation of CouC4S:CBF binding, cyclic voltammetry, differential pulse voltammetry, powder X-ray diffraction, FT-IR spectroscopy, 1H NMR titration, MALDI-TOF and computational investigations were carried out.


Subject(s)
Brassica , Carbofuran , Insecticides , Spectroscopy, Fourier Transform Infrared , Coumarins
17.
Sci Rep ; 14(1): 9106, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643226

ABSTRACT

Coumarins are heterocycles of great interest in the development of valuable active structures in chemistry and biological domains. The ability of coumarins to inhibit biofilm formation of Gram positive bacterium (Staphylococcus aureus), Gram negative bacterium (Escherichia coli) as well as the methicillin-resistant S. aureus (MRSA) has been previously described. In the present work, new hybrid coumarin-heterocycles have been synthesized via the reaction of coumarin-6-sulfonyl chloride and 6-aminocoumarin with different small heterocycle moieties. The biological efficacy of the new compounds was evaluated towards their ability to inhibit biofilm formation and their anti-inflammatory properties. The antimicrobial activities of the newly synthesized compounds were tested against Gram positive bacterium (S. aureus ATCC 6538), Gram negative bacterium (E. coli ATCC 25922), yeast (Candida albicans ATCC 10231) and the fungus (Aspergillus niger NRRL-A326). Compounds 4d, 4e, 4f, 6a and 9 showed significant MIC and MBC values against S. aureus, E. coli, C. albicans, and methicillin-resistant S. aureus (MRSA) with especial incidence on compound 9 which surpasses all the other compounds giving MIC and MBC values of (4.88 and 9.76 µg/mL for S. aureus), (78.13 and 312.5 µg/mL for E. coli), (9.77 and 78.13 µg/mL for C. albicans), and (39.06 and 76.7 µg/mL for MRSA), respectively. With reference to the antibiofilm activity, compound 9 exhibited potent antibiofilm activity with IC50 of 60, 133.32, and 19.67 µg/mL against S. aureus, E. coli, and MRSA, (respectively) considering the reference drug (neomycin). Out of all studied compounds, the anti-inflammatory results indicated that compound 4d effectively inhibited nitric oxide production in lipopolysaccharide-(LPS-) stimulated RAW264.7 macrophage cells, giving NO% inhibition of 70% compared to Sulindac (55.2%).


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Escherichia coli , Gram-Positive Bacteria , Gram-Negative Bacteria , Coumarins/pharmacology , Inflammation/drug therapy , Biofilms , Anti-Inflammatory Agents/pharmacology , Microbial Sensitivity Tests
18.
Sci Rep ; 14(1): 8709, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622262

ABSTRACT

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Subject(s)
Camellia , Hydroxybenzoates , Lignans , Camellia/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry , Flavonoids/analysis , Seeds/chemistry , Metabolomics/methods , Plant Extracts/chemistry , Lignans/analysis , Coumarins/analysis
19.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600497

ABSTRACT

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Subject(s)
Benzothiazoles , Chitosan , Coumarins , Nanoparticles , Sulfonic Acids , Folic Acid/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Lipids , Drug Carriers/chemistry
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1369-1377, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621985

ABSTRACT

A total of 11 active ingredients including psoralen, isopsoralen, bakuchiol, bavachalcone, bavachinin, corylin, coryfolin, isobavachalcone, neobavaisoflavone, bakuchalcone, and corylifol A from Psoraleae Fructus in the plasma samples of diabetic and normal rats were simultaneously determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated to elucidate the pharmacokinetic profiles of coumarins, flavonoids, and monoterpene phenols in normal and diabetic rats. The rat model of type 2 diabetes mellitus(T2DM) was induced by a high-sugar and high-fat diet combined with injection of 1% streptozotocin every two days. The plasma samples were collected at different time points after the rats were administrated with Psoraleae Fructus. The proteins in the plasma samples were precipitated by ethyl acetate, and the plasma concentrations of the 11 components of Psoraleae Fructus were determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated by DAS 3.0. The results showed that the pharmacokinetic beha-viors of 8 components including psoralen, isopsoralen, bakuchiol, and bavachinin from Psoraleae Fructus in both female and male mo-del rats were significantly different from those in normal rats. Among them, the coumarins including psoralen, isopsoralen, and corylin showed lowered levels in the blood of both female and male model rats. The flavonoids(bavachinin, corylifol A, and bakuchalcone) and the monoterpene phenol bakuchiol showed decreased levels in the female model rats but elevated levels in the male model rats. It is suggested that the dosage of Psoraleae Fructus should be reasonably adjusted for the patients of different genders at the time of clinical administration.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Furocoumarins , Phenols , Psoralea , Humans , Rats , Female , Male , Animals , Drugs, Chinese Herbal/pharmacokinetics , Tandem Mass Spectrometry/methods , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/pharmacology , Ficusin , Coumarins , Monoterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...