Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(14): e17427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837263

ABSTRACT

Linear barriers pose significant challenges for wildlife gene flow, impacting species persistence, adaptation, and evolution. While numerous studies have examined the effects of linear barriers (e.g., fences and roadways) on partitioning urban and non-urban areas, understanding their influence on gene flow within cities remains limited. Here, we investigated the impact of linear barriers on coyote (Canis latrans) population structure in Seattle, Washington, where major barriers (i.e., interstate highways and bodies of water) divide the city into distinct quadrants. Just under 1000 scats were collected to obtain genetic data between January 2021 and December 2022, allowing us to identify 73 individual coyotes. Notably, private allele analysis underscored limited interbreeding among quadrants. When comparing one quadrant to each other, there were up to 16 private alleles within a single quadrant, representing nearly 22% of the population allelic diversity. Our analysis revealed weak isolation by distance, and despite being a highly mobile species, genetic structuring was apparent between quadrants even with extremely short geographic distance between individual coyotes, implying that Interstate 5 and the Ship Canal act as major barriers. This study uses coyotes as a model species for understanding urban gene flow and its consequences in cities, a crucial component for bolstering conservation of rarer species and developing wildlife friendly cities.


Subject(s)
Coyotes , Gene Flow , Genetics, Population , Coyotes/genetics , Animals , Washington , Genetic Variation , Cities , Alleles , Microsatellite Repeats/genetics
2.
J Hered ; 115(4): 480-486, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38416051

ABSTRACT

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding interspecific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n = 78. We evaluated mapping quality for previous RADseq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.


Subject(s)
Coyotes , Genome , Genomics , Wolves , Animals , Coyotes/genetics , Wolves/genetics , Genomics/methods , Female , Hybridization, Genetic , Phylogeny , Dogs/genetics , Haplotypes , Chromosome Mapping , Canidae/genetics
3.
Mol Biol Evol ; 40(4)2023 04 04.
Article in English | MEDLINE | ID: mdl-37046402

ABSTRACT

Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.


Subject(s)
Canidae , Coyotes , Wolves , Animals , Wolves/genetics , Coyotes/genetics , Canada , Canidae/genetics , Genome , Hybridization, Genetic
4.
Pol J Vet Sci ; 26(1): 143-149, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36961286

ABSTRACT

Antibiotic resistance has become a global public health concern in the last few years. Given the widespread rate of recurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance genes (ARGs) dissemination outside the clinical realm. In this study, a metagenome analysis of intestinal virus-like particle fraction (VLPs) from a wild coyote ( Canis latrans) revealed for the first time, multiple ARGs, such as B-lactamases and multidrug efflux pumps. Description of ARGs presence in natural environments is critical to understand the emergence of resistant strains.


Subject(s)
Anti-Bacterial Agents , Coyotes , Animals , Anti-Bacterial Agents/pharmacology , Coyotes/genetics , Gastrointestinal Contents , Drug Resistance, Bacterial/genetics , Genes, Bacterial
5.
BMC Ecol Evol ; 22(1): 134, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376792

ABSTRACT

BACKGROUND: Hybridization can be a conservation concern if genomic introgression leads to the loss of an endangered species' unique genome, or when hybrid offspring are sterile or less fit than their parental species. Yet hybridization can also be an adaptive management tool if rare populations are inbred and have reduced genetic variation, and there is the opportunity to enhance genetic variation through hybridization. The red wolf (Canis rufus) is a critically endangered wolf endemic to the eastern United States, where all extant red wolves are descended from 14 founders which has led to elevated levels of inbreeding over time. Red wolves were considered extirpated from the wild by 1980, but before they disappeared, they interbred with encroaching coyotes creating a genetically admixed population of canids along coastal Texas and Louisiana. In 2018, a genetic study identified individuals on Galveston Island, Texas with significant amounts of red wolf ancestry. We collected 203 fecal samples from Galveston for a more in-depth analysis of this population to identify the amount of red wolf ancestry present and potential mechanisms that support retention of red wolf ancestry on the landscape. RESULTS: We identified 24 individual coyotes from Galveston Island and 8 from mainland Texas with greater than 10% red wolf ancestry. Two of those individuals from mainland Texas had greater than 50% red wolf ancestry estimates. Additionally, this population had 5 private alleles that were absent in the North American reference canid populations used in this study, which included 107 southeastern coyotes, 19 captive red wolves, and 38 gray wolves, possibly representing lost red wolf genetic variation. We also identified several individuals on Galveston Island and the mainland of Texas that retained a unique red wolf mitochondrial haplotype present in the red wolf founding population. On Galveston Island, we identified a minimum of four family groups and found coyotes on the island to be highly related, but not genetically depauperate. We did not find clear associations between red wolf ancestry estimates and landscape features, such as open green space or developed areas. CONCLUSION: Our results confirm the presence of substantial red wolf ancestry persisting on Galveston Island and adjacent mainland Texas. This population has the potential to benefit future red wolf conservation efforts through novel reproductive techniques and possibly through de-introgression strategies, with the goals of recovering extinct red wolf genetic variation and reducing inbreeding within the species.


Subject(s)
Canidae , Coyotes , Wolves , Animals , United States , Wolves/genetics , Coyotes/genetics , Texas , Hybridization, Genetic , Canidae/genetics , Genetic Variation/genetics
6.
Mol Ecol ; 31(21): 5419-5422, 2022 11.
Article in English | MEDLINE | ID: mdl-36210646

ABSTRACT

Before Europeans colonized North America, a uniquely American wolf roamed the eastern forests of southern Canada to Florida and west to the Great Plains. Known today as "red wolf" (Canis rufus) in the south and "eastern wolf" (Canis lycaon) in the north, evidence suggests that these indigenous forest wolves shared a common evolutionary history until only a few centuries ago when they were extirpated from the intervening majority of their historical range. While the eastern wolf persists today primarily as a small population in Algonquin Provincial Park, Canada, the red wolf was ostensibly driven from its last stronghold in gulf-coastal Louisiana and Texas by 1980. The last-known red wolves were taken captive for propagation and reintroduction. Today, the red wolf exists as ~250 descendants of 12 founders and are distributed among 42 captive breeding facilities and one reintroduced population in coastal North Carolina. As red and eastern wolves declined in the 20th century, coyotes expanded from the west into the eastern forests, replacing them. Along with human persecution, coyote hybridization has been blamed for the late 20th century demise of the red wolf. However, rather than helping to drive the red wolf to extinction, coyote hybridization may have instead helped to preserve it. In this issue of Molecular Ecology, vonHoldt and colleagues provide the most comprehensive description yet of the substantial quantity and distribution of red wolf ancestry sequestered in southeastern coyote populations. They find the highest frequency of red wolf genes in coyotes from the gulf-coastal sites where the last known wild red wolves occurred, but also present evidence for a high prevalence of red wolf genes in coyotes throughout the southeastern expansion zone. Given the significant reduction in genetic diversity in extant red wolves owing to their late 20th century population bottleneck, this coyote-sequestered reservoir of red wolf genes could prove an important resource for red wolf conservation.


Subject(s)
Canidae , Coyotes , Wolves , Humans , Animals , Wolves/genetics , Coyotes/genetics , Hybridization, Genetic , Texas
7.
PeerJ ; 10: e13788, 2022.
Article in English | MEDLINE | ID: mdl-36164598

ABSTRACT

Carnivores are currently colonizing cities where they were previously absent. These urban environments are novel ecosystems characterized by habitat degradation and fragmentation, availability of human food, and different prey assemblages than surrounding areas. Coyotes (Canis latrans) established a breeding population in New York City (NYC) over the last few decades, but their ecology within NYC is poorly understood. In this study, we used non-invasive scat sampling and DNA metabarcoding to profile vertebrate, invertebrate, and plant dietary items with the goal to compare the diets of urban coyotes to those inhabiting non-urban areas. We found that both urban and non-urban coyotes consumed a variety of plants and animals as well as human food. Raccoons (Procyon lotor) were an important food item for coyotes within and outside NYC. In contrast, white-tailed deer (Odocoileus virginianus) were mainly eaten by coyotes inhabiting non-urban areas. Domestic chicken (Gallus gallus) was the human food item found in most scats from both urban and non-urban coyotes. Domestic cats (Felis catus) were consumed by urban coyotes but were detected in only a small proportion of the scats (<5%), which differs markedly from high rates of cat depredation in some other cities. In addition, we compared our genetic metabarcoding analysis to a morphological analysis of the same scat samples. We found that the detection similarity between the two methods was low and it varied depending on the type of diet item.


Subject(s)
Carnivora , Coyotes , Deer , Humans , Animals , Cats , Coyotes/genetics , New York City , Ecosystem , DNA Barcoding, Taxonomic
8.
Genes (Basel) ; 13(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36140828

ABSTRACT

Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York. We identified moderate-to-high estimates of relatedness among coyotes living in Queens (r = 0.0-0.5) and adjacent neighborhoods, suggestive of a relatively small population. Although we found low background levels of domestic-dog ancestry across most coyotes in our sample (5%), we identified a male suspected to be a first-generation coyote-dog hybrid with 46% dog ancestry, as well as his two putative backcrossed offspring that carried approximately 25% dog ancestry. The male coyote-dog hybrid and one backcrossed offspring each carried two transposable element insertions that are associated with human-directed hypersociability in dogs and gray wolves. An additional, unrelated coyote with little dog ancestry also carried two of these insertions. These genetic patterns suggest that gene flow from domestic dogs may become an increasingly important consideration as coyotes continue to inhabit metropolitan regions.


Subject(s)
Coyotes , Wolves , Animals , Coyotes/genetics , DNA Transposable Elements , Dogs , Genomics , Humans , Male , New York City , Wolves/genetics
9.
Mol Ecol ; 31(21): 5440-5454, 2022 11.
Article in English | MEDLINE | ID: mdl-34585803

ABSTRACT

Admixture and introgression play a critical role in adaptation and genetic rescue that has only recently gained a deeper appreciation. Here, we explored the geographical and genomic landscape of cryptic ancestry of the endangered red wolf that persists within the genome of a ubiquitous sister taxon, the coyote, all while the red wolf has been extinct in the wild since the early 1980s. We assessed admixture across 120,621 single nucleotiode polymorphism (SNP) loci genotyped in 293 canid genomes. We found support for increased red wolf ancestry along a west-to-east gradient across the southern United States associated with historical admixture in the past 100 years. Southwestern Louisiana and southeastern Texas, the geographical zone where the last red wolves were known prior to extinction in the wild, contained the highest and oldest levels of red wolf ancestry. Further, given the paucity of inferences based on chromosome types, we compared patterns of ancestry on the X chromosome and autosomes. We additionally aimed to explore the relationship between admixture timing and recombination rate variation to investigate gene flow events. We found that X-linked regions of low recombination rates were depleted of introgression, relative to the autosomes, consistent with the large X effect and enrichment with loci involved in maintaining reproductive isolation. Recombination rate was positively correlated with red wolf ancestry across coyote genomes, consistent with theoretical predictions. The geographical and genomic extent of cryptic red wolf ancestry can provide novel genomic resources for recovery plans targeting the conservation of the endangered red wolf.


Subject(s)
Canidae , Coyotes , Wolves , Animals , United States , Wolves/genetics , Coyotes/genetics , Hybridization, Genetic , Genome/genetics , Genomics
10.
Mol Ecol Resour ; 22(4): 1345-1361, 2022 May.
Article in English | MEDLINE | ID: mdl-34779133

ABSTRACT

Understanding predator population dynamics is important for conservation management because of the critical roles predators play within ecosystems. Noninvasive genetic sampling methods are useful for the study of predators like canids that can be difficult to capture or directly observe. Here, we introduce the FAECES* method (Fast and Accurate Enrichment of Canid Excrement for Species* and other analyses) which expands the toolbox for canid researchers and conservationists by using in-solution hybridization sequence capture to produce single nucleotide polymorphism (SNP) genotypes for multiple canid species from scat-derived DNA using a single enrichment. We designed a set of hybridization probes to genotype both coyotes (Canis latrans) and kit foxes (Vulpes macrotis) at hundreds of polymorphic SNP loci and we tested the probes on both tissues and field-collected scat samples. We enriched and genotyped by sequencing 52 coyote and 70 kit fox scats collected in and around a conservation easement in the Nevada Mojave Desert. We demonstrate that the FAECES* method produces genotypes capable of differentiating coyotes and kit foxes, identifying individuals and their sex, and estimating genetic diversity and effective population sizes, even using highly degraded, low-quantity DNA extracted from scat. We found that the study area harbours a large and diverse population of kit foxes and a relatively smaller population of coyotes. By replicating our methods in the future, conservationists can assess the impacts of management decisions on canid populations. The method can also be adapted and applied more broadly to enrich and sequence multiple loci from any species of interest using scat or other noninvasive genetic samples.


Subject(s)
Coyotes , Ecosystem , Animals , Coyotes/genetics , DNA , Foxes/genetics , Humans , Polymorphism, Single Nucleotide
11.
J Morphol ; 282(12): 1745-1764, 2021 12.
Article in English | MEDLINE | ID: mdl-34609013

ABSTRACT

The increasing awareness that hybridization, and resultant gene flow, plays a major role in animal diversification has led to a growing number of studies that have focused on assessing the morphological consequences of this process. Analyses of mammalian hybrids have identified skeletal effects of hybridization, including a suite of anomalous dental and sutural traits on the skull that are present at high frequencies in hybrid populations. These studies have also detected consistent patterns of morphological shape and size differences between hybrids and parental taxa across a wide variety of organisms. However, more research is required to understand the universality of these traits and shape/size differences. Building on these previous studies, a sample of genetically determined canid hybrids was examined, specifically the eastern coyote (Canis latrans var.), a hybrid between coyotes, wolves, and dogs, to test whether this group exhibits a comparable pattern of anomalous nonmetric characters, and to assess differences in craniomandibular shape and size. First, specimens of C. latrans var., C. latrans, and C. lupus were scored for anomalous traits, including supernumerary and rotated teeth, dental crowding, and sutural anomalies. Geometric morphometric analyses were then conducted on a subset of these individuals to explore craniomandibular size and shape variation, as well as allometry. The results are largely consistent with other studies, indicating that the incidence of dental anomalies, dental crowding, and sutural anomalies is significantly higher in hybrids. However, differences are not significant for supernumerary teeth. The exploration of morphometric variation identifies intermediate morphology in the hybrids, and some indication of greater morphological variability in the mandible. When these results are combined with previous studies, they suggest that skeletal signatures of hybridization are common to different mammalian taxa across multiple generations; however, some traits such as supernumerary teeth may be lost after a few generations.


Subject(s)
Coyotes , Wolves , Animals , Coyotes/genetics , Dogs , Hybridization, Genetic , Phenotype , Skull
12.
Mol Ecol ; 30(17): 4292-4304, 2021 09.
Article in English | MEDLINE | ID: mdl-34181791

ABSTRACT

The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread hybridization with red wolves. The observation of some grey wolf (C. lupus) ancestry within red wolves sparked controversy over whether it was historically a subspecies of grey wolf with its predominant "coyote-like" ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a distinct species closely related to the coyote that hybridized with grey wolf (3-species hypothesis). We analysed mitogenomes sourced from before the 20th century bottleneck and coyote invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to investigate a broader phylogeographic 3-species model suggested by the fossil record. Our findings broadly support this model, in which red wolves ranged the width of the American continent prior to arrival of the grey wolf to the mid-continent 60-80 ka; red wolves subsequently disappeared from the mid-continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in their place (50-30 ka); by the early Holocene (12-10 ka), coyotes had expanded into California, where they admixed with and phenotypically replaced western red wolves in a process analogous to the 20th century coyote invasion of the eastern forests. Findings indicate that the red wolf pre-dated not only European colonization but human, and possibly coyote, presence in North America. These findings highlight the urgency of expanding conservation efforts for the red wolf.


Subject(s)
Coyotes , Wolves , Animals , Coyotes/genetics , Ecosystem , Hybridization, Genetic , Phylogeography , Wolves/genetics
13.
Mol Ecol ; 30(23): 6340-6354, 2021 12.
Article in English | MEDLINE | ID: mdl-34161633

ABSTRACT

The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves.


Subject(s)
Coyotes , Wolves , Animals , Coyotes/genetics , Genetic Variation , Genome , Mexico , Wolves/genetics
14.
Mol Ecol Resour ; 20(6): 1505-1516, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32521101

ABSTRACT

Noninvasive genotyping methods have become key elements of wildlife research over the last two decades, but their widespread adoption is limited by high costs, low success rates and high error rates. The information lost when genotyping success is low may lead to decreased precision in animal population densities, which could misguide conservation and management actions. Single nucleotide polymorphisms (SNPs) provide a promising alternative to traditionally used microsatellites as SNPs allow amplification of shorter DNA fragments, are less prone to genotyping errors and produce results that are easily shared among laboratories. Here, we outline a detailed protocol for cost-effective and accurate noninvasive SNP genotyping using multiplexed amplicon sequencing optimized for degraded DNA. We validated this method for individual identification by genotyping 216 scats, 18 hairs and 15 tissues from coyotes (Canis latrans) using 26 SNPs. Our genotyping success rate for scat samples was 93%, and 100% for hair and tissue, representing a substantial increase compared to previous microsatellite-based studies while remaining at a low cost of under $5 per PCR replicate (excluding labour). The accuracy of the genotypes was further corroborated in that genotypes from scats matching known, GPS-collared coyotes were always located within the territory of the known individual. We also show that different levels of multiplexing produced similar results, but that PCR product cleanup strategies can have substantial effects on genotyping success. By making noninvasive genotyping more affordable, accurate and efficient, this research may allow for a substantial increase in the use of noninvasive methods to monitor and conserve free-ranging wildlife populations.


Subject(s)
Genetics, Population/methods , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Animals , Coyotes/genetics , Genotype , Microsatellite Repeats
15.
J Hered ; 111(3): 277-286, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32090268

ABSTRACT

The red wolf (Canis rufus), a legally recognized and critically endangered wolf, is known to interbreed with coyotes (Canis latrans). Declared extirpated in the wild in 1980, red wolves were reintroduced to northeastern North Carolina nearly a decade later. Interbreeding with coyotes was thought to be restricted to a narrow geographic region adjacent to the reintroduced population and largely believed to threaten red wolf recovery. However, red wolf ancestry was recently discovered in canids along the American Gulf Coast, igniting a broader survey of ancestry in southeastern canid populations. Here, we examine geographic and temporal patterns of genome-wide red wolf ancestry in 260 canids across the southeastern United States at over 164 000 SNP loci. We found that red wolf ancestry was most prevalent in canids sampled from Texas in the mid-1970s, although non-trivial amounts of red wolf ancestry persist in this region today. Further, red wolf ancestry was also observed in a subset of coyotes inhabiting North Carolina, despite management efforts to limit the occurrence of hybridization events. Lastly, we found no evidence of substantial red wolf ancestry in southeastern canids outside of these 2 admixture zones. Overall, this study provides a genome-wide survey of red wolf ancestry in canids across the southeastern United States, which may ultimately inform future red wolf restoration efforts.


Subject(s)
Canidae/genetics , Coyotes/genetics , Genetic Introgression , Wolves/genetics , Animals , Foxes/genetics , Genetics, Population , Phylogeography , Southeastern United States , Spatio-Temporal Analysis
16.
Parasitol Res ; 118(1): 119-125, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30415395

ABSTRACT

Efficient and sensitive diagnostic tools are essential for the study of the eco-epidemiology of Echinococcus species. We evaluated an automated magnetic bead-based DNA extraction commercial kit followed by qPCR (MB-qPCR), for the detection of Echinococcus multilocularis and Echinococcus canadensis in coyote (Canis latrans) fecal samples. The diagnostic sensitivity was determined by validating the method against the scraping, filtration, and counting technique (SFCT) for samples collected in Canada. From the 60 samples tested, 27 out of 31 SFCT positives samples for Echinococcus cestodes were positive in the MB-qPCR for E. multilocularis, with a sensitivity of 87.1% (95% CI 70.2 to 96.4%). Two samples were also positive for E. canadensis in the MB-qPCR and confirmed by morphological identification of adult worms. The agreement of the MB-qPCR and the SFCT was statistically significant with a kappa value of 0.67 (95% CI 0.48-0.85; p value < 0.001). The magnetic bead-based DNA extraction followed by qPCR proved to have a sensitivity comparable to the SFCT to detect E. multilocularis. Although the diagnostic sensitivity for E. canadensis was not estimated, MB-qPCR identified E. canadensis cases previously overlooked when using SFCT. We propose a combination of molecular and morphological identification using the MB-qPCR and the SFCT to detect both parasites, allowing for a more efficient large-scale surveillance, and detecting co-infections of Echinococcus species that can be difficult to identify when only based on morphology.


Subject(s)
Automation/methods , DNA, Helminth/isolation & purification , Echinococcosis/parasitology , Echinococcus multilocularis/isolation & purification , Magnetics/methods , Animals , Automation/instrumentation , Canada , Coyotes/genetics , DNA, Helminth/genetics , Echinococcus multilocularis/classification , Echinococcus multilocularis/genetics , Feces/parasitology , Female , Foxes/parasitology , Humans , Magnetics/instrumentation , Male , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
17.
PLoS Genet ; 14(11): e1007745, 2018 11.
Article in English | MEDLINE | ID: mdl-30419012

ABSTRACT

North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.


Subject(s)
Coyotes/genetics , Genetics, Population , Genome , Genomics , Wolves/genetics , Animals , Genomics/methods , Genotype , North America , Phylogeny
18.
BMC Genomics ; 19(1): 350, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29747566

ABSTRACT

BACKGROUND: Most genetic analyses of ancient and modern dogs have focused on variation in the autosomes or on the mitochondria. Mitochondrial DNA is more easily obtained from ancient samples than nuclear DNA and mitochondrial analyses have revealed important insights into the evolutionary history of canids. Utilizing a recently published dog Y-chromosome reference, we analyzed Y-chromosome sequence across a diverse collection of canids and determined the Y haplogroup of three ancient European dogs. RESULTS: We identified 1121 biallelic Y-chromosome SNVs using whole-genome sequences from 118 canids and defined variants diagnostic to distinct dog Y haplogroups. Similar to that of the mitochondria and previous more limited studies of Y diversity, we observe several deep splits in the Y-chromosome tree which may be the result of retained Y-chromosome diversity which predates dog domestication or post-domestication admixture with wolves. We find that Y-chromosomes from three ancient European dogs (4700-7000 years old) belong to distinct clades. CONCLUSIONS: We estimate that the time to the most recent comment ancestor of dog Y haplogroups is 68-151 thousand years ago. Analysis of three Y-chromosomes from the Neolithic confirms long stranding population structure among European dogs.


Subject(s)
Coyotes/genetics , Dogs/genetics , Evolution, Molecular , Haplotypes , Phylogeny , Sequence Analysis, DNA/methods , Wolves/genetics , Y Chromosome , Animals , Coyotes/classification , DNA, Mitochondrial/genetics , Dogs/classification , Genetic Variation , Genome , Male , Wolves/classification
19.
Heredity (Edinb) ; 120(3): 183-195, 2018 03.
Article in English | MEDLINE | ID: mdl-29269931

ABSTRACT

Human-mediated range expansions have increased in recent decades and represent unique opportunities to evaluate genetic outcomes of establishing peripheral populations across broad expansion fronts. Over the past century, coyotes (Canis latrans) have undergone a pervasive range expansion and now inhabit every state in the continental United States. Coyote expansion into eastern North America was facilitated by anthropogenic landscape changes and followed two broad expansion fronts. The northern expansion extended through the Great Lakes region and southern Canada, where hybridization with remnant wolf populations was common. The southern and more recent expansion front occurred approximately 40 years later and across territory where gray wolves have been historically absent and remnant red wolves were extirpated in the 1970s. We conducted a genetic survey at 10 microsatellite loci of 482 coyotes originating from 11 eastern U.S. states to address how divergent demographic histories influence geographic patterns of genetic diversity. We found that population structure corresponded to a north-south divide, which is consistent with the two known expansion routes. Additionally, we observed extremely high genetic diversity, which is atypical of recently expanded populations and is likely the result of multiple complex demographic processes, in addition to hybridization with other Canis species. Finally, we considered the transition of allele frequencies across geographic space and suggest the mid-Atlantic states of North Carolina and Virginia as an emerging contact zone between these two distinct coyote expansion fronts.


Subject(s)
Coyotes/genetics , Genetic Variation , Genetics, Population , Animal Distribution , Animals , Gene Frequency , Genotyping Techniques , Hybridization, Genetic , Microsatellite Repeats , Models, Genetic , United States
20.
Sci Rep ; 7(1): 17813, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259277

ABSTRACT

During the late Pleistocene of North America (≈36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A. simus, recovered from RLB. Our results suggest that the population of A. simus from RLB was more omnivorous than the highly carnivorous populations from the Northwest. This dietary variation may be a consequence of different competitive pressures.


Subject(s)
Dental Caries/genetics , Ursidae/genetics , Animals , Biological Evolution , Carnivora/genetics , Coyotes/genetics , Diet , Extinction, Biological , Fossils , North America , Tooth/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...