Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters











Publication year range
1.
J Ethnopharmacol ; 333: 118443, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38909828

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys japonica (rock pine) has been used as a folk remedy to treat inflammation, hepatitis, and cancer in East Asia. AIM OF THE STUDY: The aim of this study was to investigate the effect of rock pine extract (RPE) on high-fat diet-induced obesity in mice and to examine its effects on gut dysbiosis. MATERIALS AND METHODS: The characteristic compound of RPE, kaempferol-3-O-rutinoside, was quantified using high-performance liquid chromatography. The prebiotic potential of RPE was evaluated by assessing the prebiotic activity score obtained using four prebiotic strains and high-fat (HF)-induced obesity C57BL/6 mice model. Analysis included examining the lipid metabolism and inflammatory proteins and evaluating the changes in gut permeability and metabolites to elucidate the potential signaling pathways involved. RESULTS: In vitro, RPE enhanced the proliferation of beneficial probiotic strains, including Lactiplantibacillus and Bifidobacterium. HF-induced model showed that the administration of 100 mg/kg/day of RPE for 8 weeks significantly (p < 0.05) reduced the body weight, serum lipid levels, and insulin resistance, which were associated with notable changes in lipid metabolism and inflammation-related markers. CONCLUSIONS: Our results demonstrate that rock pine consumption could mitigate obesity and metabolic endotoxemia in HF-fed mice through enhancing intestinal environment.


Subject(s)
Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Mice, Inbred C57BL , Obesity , Plant Extracts , Animals , Diet, High-Fat/adverse effects , Obesity/drug therapy , Dysbiosis/drug therapy , Male , Gastrointestinal Microbiome/drug effects , Plant Extracts/pharmacology , Mice , Crassulaceae/chemistry , Prebiotics , Lipid Metabolism/drug effects , Insulin Resistance
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732125

ABSTRACT

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Hypoglycemic Agents , PPAR gamma , Plant Extracts , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Crassulaceae/chemistry , Lipid Metabolism/drug effects , Cell Differentiation/drug effects
3.
J Ethnopharmacol ; 330: 118215, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641073

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys malacophylla (Pall.) Fisch (O. malacophylla) is a succulent herbaceous plant that is the Orostachys genus of Crassulaceae family. O. malacophylla has been widely used as a traditional Chinese medicine with antioxidant, anti-inflammatory, anti-febrile, antidote, anti-Toxoplasma gondii properties. However, the biological function of alleviating intestinal inflammation and key bioactive compounds were still unknown. AIM OF THE STUDY: We used a Drosophila model to study the protective effects and bioactive compounds of O. malacophylla water extract (OMWE) and butanol extract (OMBE) on intestinal inflammation. MATERIALS AND METHODS: Drosophila intestinal inflammation was induced by oral invasion of dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15). We revealed the protective effects of two extracts by determining intestinal reactive oxygen species (ROS) and antimicrobial peptide (AMP) levels and intestinal integrity, and using network pharmacology analysis to identify bioactive compounds. RESULTS: We demonstrated that both OMWE and OMBE could ameliorate the detrimental effects of DSS, including a decreased survival rate, elevated ROS levels, increased cell death, excessive proliferation of ISCs, acid-base imbalance, and disruption of intestinal integrity. Moreover, the overabundance of lipid droplets (LDs) and AMPs by Ecc15 infection is mitigated by these extracts, thereby enhancing the flies' resistance to adverse stimuli. In addition, we used widely targeted metabolomics and network pharmacology analysis to identify bioactive compounds associated with IBD healing that are present in OMWE and OMBE. CONCLUSIONS: In summary, our research indicates that OMWE and OMBE significantly mitigate intestinal inflammation and have the potential to be effective therapeutic agents for IBD in humans.


Subject(s)
Dextran Sulfate , Pectobacterium carotovorum , Plant Extracts , Reactive Oxygen Species , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Pectobacterium carotovorum/drug effects , Crassulaceae/chemistry , Intestines/drug effects , Intestines/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Drosophila melanogaster/drug effects , Disease Models, Animal , Drosophila , Network Pharmacology , Inflammation/drug therapy , Antimicrobial Cationic Peptides/pharmacology
4.
Altern Ther Health Med ; 29(6): 112-119, 2023 Sep.
Article in English | MEDLINE | ID: mdl-34936988

ABSTRACT

Context: Pterygium, meaty eyes, is a disease that produces a triangular, conjunctival-epithelial, neovascularized overgrowth covering the cornea, which can cause vision loss. Histological characterization of Pterygium reveals the presence of proliferating fibroblasts (FBs) that remodel the extracellular matrix, with infiltration of immune cells, causing chronic inflammation. The fresh juice of Echeveria pallida E. Walther (Crassulaceae), mechanically extracted from the leaves, can be used to lubricate the eyes and remove Pterygium, even in advanced, degenerative ocular disease. Objective: This study aimed to explore the healing mechanisms of an ethanolic extract of E. pallida on pterygium-derived FBs, lymphocytes, and neutrophils. Design: The research team designed an in-vitro study. Primary cultures of FBs were obtained from fresh, surgical pterygium tissues, and neutrophils and mononuclear cells were purified from the peripheral blood of healthy donors. Intervention: An ethanolic extract of E. pallida was evaluated at 30, 50, 80, 100, 200, and 300 µg/mL-the intervention groups-for viability and proliferation of FBs and lymphocytes. The study included a negative control with no extract, and a positive control, Mitomycin C (MMC), used as a FB proliferation inhibitor and anti-inflammatory. Because some reports have suggested that DMSO at low concentrations can stimulate or inhibit lymphocyte proliferation depending on the cell type, the study also included a DMSO control. Outcome Measures: The measures included an analysis of E. pallida's effects on the proliferation and viability of FBs, the proliferation of human lymphocytes, and human neutrophil extracellular traps (NETs) production. NETs were induced using biochemical and microbiological stimuli-phorbol myristate acetate (PMA), hypochlorous acid (HOCl), Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans-through fluorescence microscopy. Results: The ethanolic extract didn't affect the viability or proliferation of pterygium-derived FBs and human blood lymphocytes, but it showed significant inhibitory activity, from 100 µg/mL, on FB adhesion and the production of NETs. Conclusion: The study found scientific evidence that supports the effects of an extract of the medicinal plant E. pallida in inhibiting the adhesion of FBs derived from human pterygium and NET production.


Subject(s)
Crassulaceae , Extracellular Traps , Fibroblasts , Plant Extracts , Pterygium , Fibroblasts/drug effects , Neutrophils , Cell Adhesion , Humans , Crassulaceae/chemistry , Plant Extracts/pharmacology , Cells, Cultured
5.
Molecules ; 26(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34885697

ABSTRACT

The present study elucidated the structural characteristics and anti-inflammatory activity of a novel polysaccharide isolated from Orostachys fimbriata, which is a traditional Chinese medicinal plant. O. fimbriata polysaccharide (OFP) was extracted and subsequently purified by chromatography using a DEAE cellulose-52 and Sephadex G-75 column. The molecular weight was determined as 6.2 kDa. HPGPC and monosaccharide composition analysis revealed a homogeneous polysaccharide containing only Glc. Chromatography and spectral analysis showed that the possible chemical structure consisted of →4)-α-Glcp-(1→ and a small quantity of →4,6)-ß-Glcp-(1→ in the main chain and →6)-ß-Glcp-(1→, α-Glcp-(1→, and ß-Glcp-(1→ in the side chain. Morphological analysis using scanning electron microscopy (SEM) and atomic force microscopy (AFM) indicated that OFP had a multi-branched structure, and the sugar chain molecules of polysaccharide appeared aggregated. OFP was found to exhibit anti-inflammatory activity by reducing the secretion of inflammatory factors in RAW264.7 cells and by decreasing the extent of xylene-induced ear swelling in mice.


Subject(s)
Anti-Inflammatory Agents/chemistry , Crassulaceae/chemistry , Inflammation/drug therapy , Polysaccharides/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Dietary Carbohydrates/metabolism , Glucose/metabolism , Humans , Inflammation/pathology , Mice , Molecular Weight , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Polysaccharides/isolation & purification , Polysaccharides/pharmacology
6.
Nutrients ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959868

ABSTRACT

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer's disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses ß-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Subject(s)
Aging/drug effects , Crassulaceae/chemistry , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/drug effects , Amyloid beta-Peptides/drug effects , Animals , Autophagy/drug effects , Caenorhabditis elegans/drug effects , Cell Culture Techniques , Disease Models, Animal , Humans , Longevity/drug effects , Mice , Mice, Transgenic
7.
J Ethnopharmacol ; 280: 114412, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34265383

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys japonica A. Berger, also known as Wa-song in Korea, has traditionally been used as a folk medicine, but the potential anti-cancer effects of aqueous extract of Orostachys japonica (OJe) have not yet been thoroughly investigated. AIM OF THE STUDY: To evaluate the anti-cancer effects of OJe, its possible mechanisms of action were investigated in 5-fluorouracil (5-FU) resistant SNU-C5/5-FUR colorectal cancer cells. MATERIALS AND METHODS: The functional compounds of OJe were identified with high performance liquid chromatography. The anti-cancer effects of OJe in SNU-C5/5-FUR cells were investigated by a cell viability assays, flow cytometry analysis, and a subcutaneous xenograft model employing BALB/c-nude mice. Possible signalling pathways were assayed with Western blotting. RESULTS: OJe (250 µg/ml) showed anti-cancer effects in SNU-C5/5-FUR cells, that were mediated via apoptosis as well as cell cycle arrest at the G0/G1 phase. Gallic acid and (-)-epicatechin, the major functional components of OJe, induced cell cycle arrest. OJe treatment (250 mg/kg, p.o.) produced a significant anti-proliferative effect in the xenograft model via decreased ß-catenin/GSK3ß and increased p27 expression. OJe treatment significantly activated ERK and p38 both in vitro and in vivo. CONCLUSIONS: These results suggest that OJe has anti-proliferative effects on 5-FU-resistant colorectal cancer cells via regulation of MAPK signalling pathways.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Crassulaceae/chemistry , Fluorouracil/pharmacology , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Humans , Mice , Mice, Nude , Plant Extracts/chemistry , Random Allocation , Xenograft Model Antitumor Assays
8.
Molecules ; 26(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34299613

ABSTRACT

Aeonium is a genus of succulents belonging to the Crassulaceae family. Their importance in traditional medicine has stimulated both pharmacological and chemical research. In this study, we optimized extraction, separation, and analytical conditions using a high performance liquid chromatographic method coupled with electrospray ionization mass spectrometry by the negative mode (HPLC-ESI-MS) in order to, for the first time, determine thirty-four compounds from Aeonium arboreum leaves. Twenty-one of them are assigned among which are sixteen flavonoids and five phenolic acids. FRAP, TAC, DPPH, and ABTS•+ radical scavenging were used to evaluate antioxidant activity. The obtained IC50 values ranged from 0.031 to 0.043 mg.mL-1 for DPPH and between 0.048 and 0.09 mg·mL-1 for ABTS•+. Antimicrobial activity was also assessed. The obtained minimum inhibitory concentrations (MIC) of these extracts ranged from 12.5 to 50 µg·mL-1 against Micrococcus luteus, Listeria ivanovii, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, and Fusarium oxysporum, and from 25 to 50 µg·mL-1 against Candida albicans. Therefore, these extracts can be considered as a potential source of biological active compounds.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crassulaceae/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
9.
J Med Food ; 24(7): 732-740, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33179996

ABSTRACT

Diabetes Mellitus is associated with systemic inflammation and oxidative stress, which may play a central role in the development of diabetic complications. In this study, combined preparations of Kalanchoe pinnata and metformin were investigated to determine the effects on inflammatory activity in human skeletal muscle myoblasts (HSMMs) and human diabetic skeletal muscle myoblasts (DHSMMs). Results showed that combinatorial preparations sustained cell viability for 3 days in both HSMM and DHSMM cells. However, a significant decrease in cellular viability occurred for both cell lines on day 5. Results also indicate that combinatorial preparations of K. pinnata may modulate immune responses by significantly upregulating proinflammatory markers, interleukin (IL) 2, and tumor necrosis factor-alpha, and upregulating the anti-inflammatory marker, IL-10, in HSMM and DHSMM cells. The combined preparations significantly downregulated the anti-inflammatory glycoprotein IL-6 in both diabetic and nondiabetic human skeletal muscle cells. The findings suggest that combined preparations of K. pinnata and metformin might be a potential immune-modulating agent that may promote inflammation and adversely affect the outcome of diabetic patients.


Subject(s)
Cytokines , Diabetes Mellitus, Experimental , Metformin , Muscle Fibers, Skeletal/drug effects , Plant Preparations/pharmacology , Animals , Crassulaceae/chemistry , Humans , Metformin/pharmacology , Muscle, Skeletal
10.
J Ethnopharmacol ; 265: 113392, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32946962

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys japonicus A. Berger (O. japonicus), referred to as Wa-song in Korea is a traditional and herbal medicine. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of ethanol extract of O. japonicus (OJE) on acetaminophen (N-acetyl-p-aminophenol, APAP) overdose-induced hepatotoxicity have not been determined yet. AIM OF THE STUDY: The present study was aimed to investigate the effects of OJE against APAP-induced acute liver injury (ALI) and explore the underlying mechanisms. MATERIALS AND METHODS: Mice were treated orally with OJE (50, 100, or 200 mg/kg) for seven days before APAP (300 mg/kg) injection. After 12 h of APAP treatment, serum and liver tissues were collected. An in vitro system using primary hepatocytes was also applied in this study. RESULTS: Pretreatment with OJE, especially at a dose of 200 mg/kg, reduced APAP overdose-induced ALI in mice, as evidenced by decreased serum alanine/aspartate aminotransferase levels, histopathological damage, and inflammation. Consistently, OJE pretreatment reduced the gene transcription of cytochrome P450 (CYP) 3A11 and CYP1A2 in livers of mice injected with or without APAP, at least in part, via inactivation of nuclear receptor pregnane X receptor (PXR). Furthermore, the role of PXR in mediating the OJE regulation of CYPs was confirmed in primary hepatocytes, which showed that OJE pretreatment inhibited PXR activity and APAP hepatotoxicity enhanced by pregnenolone 16α-carbonitrile, a mouse agonist of PXR. Besides, the antioxidative activity provided by OJE, involving increases in hepatic glutathione (GSH) content and decreases in malondialdehyde levels, has been shown to exert hepatoprotective effects in normal and injured livers. Moreover, APAP-activated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in mice liver were indirectly inhibited by pretreatment with OJE. CONCLUSIONS: Taken together, our findings showed that OJE attenuated APAP-induced ALI by decreasing APAP-metabolizing enzymes via inactivation of PXR and the restoration of hepatic GSH content. Therefore, OJE could be a promising hepatoprotective agent.


Subject(s)
Acetaminophen/poisoning , Chemical and Drug Induced Liver Injury/prevention & control , Crassulaceae/chemistry , Plant Extracts/pharmacology , Acetaminophen/pharmacokinetics , Animals , Dose-Response Relationship, Drug , Drug Overdose/complications , Glutathione/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Inflammation/drug therapy , Inflammation/pathology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Pregnane X Receptor/drug effects , Pregnane X Receptor/metabolism
11.
Bioorg Med Chem Lett ; 30(24): 127665, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33152378

ABSTRACT

In light of the adequate sources for Hylotelephium erythrostictum, its active components have aroused research interest. 2-(3',4'-dihydroxyphenyl)-2,3-dihydro-4,6-dihydroxy-2-(methoxy)- 3-benzofuranone(1), apigenin(2), diosmetin(3), kaempferol(4), kaempferide(5), rhamnocitrin(6), quercetin(7), and gallic acid(8) were isolated from H. erythrostictum. Rarely occurring naturally, 1 is 2-methoxybenzofuranone type compound against α-glucosidase and exhibits a potential inhibitory effect on α-glucosidase(IC50 = 1.8 µM), with a Ki value of 709 nM. In silico molecular docking was performed for the investigation of the inhibition mechanism. H. erythrostictum is a potential source of antidiabetic agent. This information is useful in finding more potent antidiabetic candidates from medicinal plants for the clinical development of therapeutics.


Subject(s)
Crassulaceae/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , Catalytic Domain/drug effects , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Glucosidases/chemistry
12.
Microsc Microanal ; 26(5): 1061-1068, 2020 10.
Article in English | MEDLINE | ID: mdl-32811591

ABSTRACT

Kalanchoe delagoensis is adapted to intense solar irradiation, drought, and heat, partially due to the presence of phenols, important photo-protective compounds and antioxidants. This study aimed to evaluate the distribution of flavonoids and phenolic acid derivatives throughout the erect-tubular leaves of K. delagoensis. Specimens grown under sunny conditions were used for histochemical and high-performance liquid chromatography coupled with diode array detection (liquid HPLC-DAD) analysis. The NP (2-aminoethyl diphenylborinate) test suggested the presence of phenolic acids throughout the leaf blade below the epidermis and in chloroplasts, mainly in the leaf base. Flavonoids were detected specifically in chloroplasts, on the adaxial side of the middle third and at the leaf apex, near the meristematic cells. There was a tendency of flavonoid accumulation from the middle third to the apex, especially surrounding the gem, while phenolic acids were observed mainly in the base. This can be explained by the more exposed leaf apex and to the presence of apical buds (high production and regulation sites of ROS). The HPLC-DAD analysis showed different classes of flavonoids and phenolic acid derivatives in the leaf extracts, agreeing with the NP test results. This is the first time that the substitution of phenolic acids by flavonoids from the leaf base to the apex has been described.


Subject(s)
Crassulaceae/chemistry , Flavonoids/chemistry , Hydroxybenzoates/chemistry , Kalanchoe/chemistry , Plant Extracts/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Crassulaceae/radiation effects , Flavonoids/analysis , Kalanchoe/cytology , Kalanchoe/radiation effects , Microscopy, Fluorescence , Phenols/analysis , Plant Extracts/analysis , Plant Leaves/chemistry , Plant Leaves/cytology
13.
Sci Rep ; 10(1): 10890, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616865

ABSTRACT

Subcritical-water extraction is an ecofriendly method for extracting antioxidant compounds only using water. The Subcritical-water extraction was employed for the extraction of bioactive compounds from Orostachys japonicus known as rock pine by investigating the use of various temperatures (110-260 °C) and extraction times (5-20 min). The Subcritical-water extraction condition at 220 °C for 15 min; the total phenolics content (39.9 ± 4.1 mg/g), flavonoids content (11.4 ± 0.6 mg/g), and antioxidant activities (90.3 ± 2.2%, 96.0 ± 2.9%, and 662.4 ± 17.2 mg/g) of Subcritical-water extract were higher under this condition than for extraction with either methanol or ethanol. Triterpene saponins were observed only in subcritical-water extraction condition at 220 °C for 15 min. Further, some of its phenolic constituents; gallic acid, quercetin, and kaempferol were quantified by high performance liquid chromatography. Subcritical-water extraction is an effective method for extracting valuable bioactive compounds from Orostachys japonicus.


Subject(s)
Antioxidants/isolation & purification , Crassulaceae/chemistry , Flavonoids/isolation & purification , Phenols/isolation & purification , Plants, Medicinal/chemistry , Benzothiazoles , Biphenyl Compounds , Chromatography, High Pressure Liquid , Ethanol , Free Radical Scavengers/isolation & purification , Gallic Acid/isolation & purification , Methanol , Picrates , Plant Extracts/chemistry , Saponins/isolation & purification , Solvents , Sulfonic Acids , Triterpenes/isolation & purification , Water
14.
J Ethnopharmacol ; 256: 112664, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32045685

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys japonicus A. Berger (O. japonicus), so-called Wa-song in Korea, a traditional food and medicine that grows on mountain rocks and roof tiles. Wa-song containing various phenolic compounds have been reported as a medicinal plant for prevention of fibrosis, cancer, inflammation, and oxidative damage. AIM OF THE STUDY: The present study was designed to examine the anti-angiogenic effects of cultivated Orostachys japonicus 70% ethanol extract (CE) in vascular endothelial growth factor (VEGF)-stimulated human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS: CE was prepared with 70% ethanol. HUVECs, rat aortic rings, and matrigel plug in mice were treated with CE (10-20 µg/mL) and VEGF (20-50 ng/mL), and the anti-angiogenic activities of CE were analyzed by SRB, wound healing, trans-well invasion, capillary-like tubule formation, rat aortas, Western blot, and matrigel plug assay. Phenolic compounds in CE were analyzed using a high-performance liquid chromatography (HPLC)-PDA system. RESULTS: Treatment of CE (10-20 µg/mL) markedly suppressed proliferation of HUVECs in the presence (from 136.5% to 112.2%) or absence of VEGF (from 100.0% to 92.1%). The proliferation inhibitory effect of CE was caused by G0/G1 cell cycle arrest, and the decrease of CDK-2, CDK-4, Cyclin D1 and Cyclin E1. Furthermore, CE treatment showed significant angiogenesis inhibitory effects on motility, invasion and micro-vessel formation of HUVECs, rat aortic rings and subcutaneous matrigels under VEGF-stimulation condition. In HUVECs, CE-induced anti-angiogenic effect was regulated by inhibition of the PI3K/AKT/mTOR, MAPK/p38, MAPK/ERK, FAK-Src, and VEGF-VEGFR2 signaling pathways. CONCLUSION: This study demonstrated that CE might be used as a potential natural substance, multi-targeted angiogenesis inhibitor, functional food material.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Crassulaceae/chemistry , Neovascularization, Pathologic/drug therapy , Plant Extracts/pharmacology , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Angiogenesis Inducing Agents/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/drug effects , Collagen/metabolism , Drug Combinations , G1 Phase/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Laminin/drug effects , Laminin/metabolism , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Proteoglycans/drug effects , Proteoglycans/metabolism , Rats , Rats, Sprague-Dawley , Resting Phase, Cell Cycle/drug effects
15.
J Plant Physiol ; 244: 153086, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31812905

ABSTRACT

We present changes in Tacitus bellus antioxidative system that specifically correspond to subsequent phases of hemibiotroph Fusarium verticillioides infection revealed by histological analysis. T. bellus response to spore germination 6 h post inoculation (hpi), manifested as first oxidative burst, was characterized by transient decrease in malondialdehyde (MDA) content, transient increase in catalase (CAT), low level of superoxide dismutase (SOD) and peroxidase (POD) activity, as well as with transient decrease in total antioxidant capacity (TAC), total phenol content (TPC) and phenylalanine ammonium lyase activity (PAL), and no changes in polyphenol oxidase (PPO) activity, or phenolic profile. During the biotrophic phase of F. verticillioides infection, characterized by hyphae spread intercellularly in epidermal and mesophyll tissue, the host antioxidative system was suppressed. The transition to necrotrophic phase of F. verticillioides infection (inter- and intracellular colonization and sporulation), occurred 3-4 days post inoculation (dpi). During the necrotrophic phase, 5-7 dpi, slowed progression of colonization of T. bellus mesophyll cells occurred and it coincided with sharp increase in MDA content and CAT, SOD and POD activities, but the drop in TAC, TPC content, and PPO activity, as well as the production of phytotoxin fusaric acid. Presented results add to the knowledge of events and mechanisms related to the transition from biotrophy to necrotrophy in F. verticillioides.


Subject(s)
Antioxidants/metabolism , Crassulaceae/chemistry , Fusarium/physiology , Humidity , Plant Diseases/microbiology , Crassulaceae/microbiology , Hyphae/physiology
16.
J Ethnopharmacol ; 248: 112321, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31655146

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: In traditional Mexican medicine, Echeveria gibbiflora DC has been used as a vaginal post-coital rinse to prevent pregnancy. The aqueous crude extract (OBACE) induces sperm immobilization/agglutination and a hypotonic-like effect, likely attributed to the high concentration of calcium bis-(hydrogen-1-malate) hexahydrate [Ca2+ (C4H5O5)2•6H2O]. Likewise, OBACE impedes the increase of [Ca2+]i during capacitation. AIM OF THE STUDY: Evaluate the effect of OBACE on sperm energy metabolism and the underlying mechanism of action on sperm-specific channel. MATERIAL AND METHODS: In vitro, we quantified the mouse sperm immobilization effect and the antifertility potential of OBACE. The energetic metabolism status was also evaluated by assessing the ATP levels, general mitochondrial activity, mitochondrial membrane potential, and enzymatic activity of three key enzymes of energy metabolism. Furthermore, the effect of the ion efflux of Cl- and K+, as well as the pHi, were investigated in order to elucidate which channel is suitable to perform an in silico study. RESULTS: Total and progressive motility notably decreased, as did fertility rates. ATP levels, mitochondrial activity and membrane potential were reduced. Furthermore, the activities of the three enzymes decreased. Neither Cl- or K+ channels activities were affected at low concentrations of OBACE; nevertheless, pHi did not alkalinize. Finally, an in silico analysis was performed between the Catsper channel and calcium bis-(hydrogen-1-malate) hexahydrate, which showed a possible blockade of this sperm cation channel. CONCLUSION: The results were useful to elucidate the effect of OBACE and to propose it as a future male contraceptive.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Signaling/drug effects , Contraceptive Agents, Male/pharmacology , Crassulaceae , Energy Metabolism/drug effects , Plant Extracts/pharmacology , Spermatozoa/drug effects , Animals , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/isolation & purification , Calcium Channels/chemistry , Calcium Channels/metabolism , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/isolation & purification , Crassulaceae/chemistry , Fertility/drug effects , Hydrogen-Ion Concentration , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , Plant Extracts/isolation & purification , Protein Conformation , Sperm Motility/drug effects , Spermatozoa/metabolism , Structure-Activity Relationship
17.
Sci Rep ; 9(1): 19301, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848379

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia and also one of the leading causes of death worldwide. However, the underlying mechanisms remain unclear, and currently there is no drug treatment that can prevent or cure AD. Here, we have applied the advantages of using induced pluripotent stem cell (iPSC)-derived neurons (iNs) from AD patients, which are able to offer human-specific drug responsiveness, in order to evaluate therapeutic candidates for AD. Using approach involving an inducible neurogenin-2 transgene, we have established a robust and reproducible protocol for differentiating human iPSCs into glutamatergic neurons. The AD-iN cultures that result have mature phenotypic and physiological properties, together with AD-like biochemical features that include extracellular ß-amyloid (Aß) accumulation and Tau protein phosphorylation. By screening using a gene set enrichment analysis (GSEA) approach, Graptopetalum paraguayense (GP) has been identified as a potential therapeutic agent for AD from among a range of Chinese herbal medicines. We found that administration of a GP extract caused a significantly reduction in the AD-associated phenotypes of the iNs, including decreased levels of extracellular Aß40 and Aß42, as well as reduced Tau protein phosphorylation at positions Ser214 and Ser396. Additionally, the effect of GP was more prominent in AD-iNs compared to non-diseased controls. These findings provide valuable information that suggests moving extracts of GP toward drug development, either for treating AD or as a health supplement to prevent AD. Furthermore, our human iN-based platform promises to be a useful strategy when it is used for AD drug discovery.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/genetics , Crassulaceae/chemistry , Peptide Fragments/genetics , tau Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/drug effects , Drug Discovery , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/pathology
18.
J Food Biochem ; 43(8): e12939, 2019 08.
Article in English | MEDLINE | ID: mdl-31368568

ABSTRACT

In this study, Orostachys japonicus was extracted with ethyl alcohol and fractionated by a serial of organic solvents. The ethyl acetate fraction was found to be the most effective among the tested five fractions. High-performance liquid chromatography and mass spectrometry analysis of the ethyl acetate fraction presented epicatechin gallate, quercetin-3-O-glucoside, and kaempferol-3-O-rutinoside. Treatment with O. japonicus inhibited reactive oxygen species (ROS) generation and lipid accumulation during adipogenesis. The gene expression of enzymes involved in the antioxidant system increased in O. japonicus-treated cells. messeanger RNA (mRNA) and protein expression of the pro-oxidant enzymes such as nicotinamide adenine dinucleotide phosphate hydrogen oxidase4 and glucose-6-phosphate dehydrogenase suppressed in O. japonicus-treated cells. O. japonicus also inhibited the mRNA and protein levels of adipogenic transcription factors (including proliferator activated receptor-γ and CCAAT/enhancer-binding protein-α) and their target gene (adipocyte protein 2). These results suggest that O. japonicus inhibits adipogenesis by controlling pro-/anti-oxidant enzyme responses and adipogenic transcription factors. PRACTICAL APPLICATIONS: ROS generation is markedly related to the pathogenesis and development of metabolic disorders. Treatment with O. japonicus inhibited ROS generation and lipid accumulation during adipogenesis. This result indicates that O. japonicus inhibit adipogenesis by controlling pro-/anti-oxidant enzyme responses and adipogenic mediators.


Subject(s)
Crassulaceae/chemistry , Lipid Metabolism/drug effects , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , 3T3-L1 Cells , Acetates , Adipogenesis/drug effects , Adipogenesis/physiology , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Free Radical Scavengers/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Mice , Oxygen Radical Absorbance Capacity , Plant Extracts/chemistry , Reactive Oxygen Species
19.
Phytochem Anal ; 30(5): 524-534, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31168900

ABSTRACT

INTRODUCTION: Sempervivum tectorum L. (Crassulaceae), is a succulent perennial plant widespread in Mediterranean countries and commonly used in traditional medicine for ear inflammation, ulcers and skin rashes as a refrigerant and astringent. OBJECTIVE: To demonstrate the therapeutic effects of the plant, various fractions were purified and characterised. The potential wound healing activity, proliferation rate and intracellular signalling cascades were investigated by using human epithelial colorectal carcinoma (HCT 116) cells. METHODOLOGY: An extraction method without organic solvents was applied for the first time. The purification was carried out by droplet counter current chromatography (DCCC) coupled with high-performance liquid chromatography (HPLC) and electrospray ionisation mass spectrometry (ESI-MS) data. By nuclear magnetic resonance (NMR) [1 H, 13 C and two-dimensional (2D) experiments] pure components were identified. Wound healing and cell proliferation assays were utilised to determine the role of the isolated S. tectorum (SVT) fraction on cellular migration and proliferation. The signalling pathways elicited from the SVT fractions, were analysed by Western blot analysis. RESULTS: In this study two rare natural components were identified, namely monosaccharide sedoheptulose and polyalcohol 2-C-methyl-D-erythritol, along with known organic acids and flavonoids. The fractions with high level of sedoheptulose enhance the proliferation and the cellular migration of epithelial HCT 116 cells. The intracellular signalling cascades elicited from the purified fractions induce the c-Src-mediated transactivation of EGFR and the activation of the STAT3 pathway which, in turn, are crucially involved in the cellular proliferation and migration. CONCLUSIONS: Our study demonstrates the efficacy of purified fractions of S. tectorum L. in enhancing cellular proliferation and migration, suggesting their potential role as topical therapeutic treatments for wound healing.


Subject(s)
Crassulaceae/chemistry , Phytochemicals/analysis , Plant Extracts/pharmacology , Wound Healing/drug effects , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , HCT116 Cells , Humans , Signal Transduction/drug effects , Spectrum Analysis/methods
20.
J Med Food ; 22(8): 797-809, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31211640

ABSTRACT

Orostachys japonicus A. Berger and Momordica charantia Linn have been widely used as an alternative medicine. Recently, patients with type 2 diabetes (T2D) have paid increasing attention to medical nutrition therapy due to its safety and cost-effectiveness. Therefore, we have developed a new health functional food that consists of a mixed extract of O. japonicus and M. charantia. The aim of this study is designed to assess the antidiabetic efficacy of O. japonicus and M. charantia extracts (OME, in an 8:2 ratio), especially focusing on the effects of O. japonicus via in vivo and in vitro experiments. Seven-week-old C57BL/Ksj-db/db (db/db; a genetic animal model of T2D) mice were used for inducing diabetes. Mice were administered with various concentrations of OME (OME 0, 100, 200, or 400 mg/kg/day) for 6 weeks. Metabolic parameters, fasting blood glucose and glycosylated hemoglobin levels were measured. Histopathologic analysis and the levels of serum or hepatic biochemicals were assessed to evaluate diabetic liver injury and steatosis. The expression levels of lipogenic and gluconeogenic genes were determined by quantitative real-time polymerase chain reaction. Activation of Akt was assessed by western blot analysis. Administration of OME significantly improved metabolic parameters in db/db mice, and also reduced diabetic liver injury and steatosis were observed by OME administration in db/db mice as confirmed by histopathologic and serum or hepatic biochemical analysis. Consistently, treatment of OME significantly increased Akt activation resulting in decreased expression levels of lipid-accumulation or gluconeogenesis-related genes. Similar results were observed in in vitro experiments using single extract of O. japonicus and using OME. OME has antidiabetic effects with increased insulin sensitivity, and may be a safe alternative therapy for the management of T2D.


Subject(s)
Crassulaceae/chemistry , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/administration & dosage , Hypoglycemic Agents/administration & dosage , Lipid Metabolism/drug effects , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drugs, Chinese Herbal/analysis , Gluconeogenesis/drug effects , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/analysis , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL