Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
New Phytol ; 243(1): 466-476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757753

ABSTRACT

Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.


Subject(s)
Biological Evolution , Biomass , Crops, Agricultural , Seeds , Crops, Agricultural/growth & development , Crops, Agricultural/anatomy & histology , Crops, Agricultural/physiology , Seeds/growth & development , Seeds/anatomy & histology , Seeds/physiology
2.
BMC Plant Biol ; 22(1): 110, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35277127

ABSTRACT

BACKGROUND: The plant architecture traits of maize determine the yield. Plant height, ear position, leaf angle above the primary ear and internode length above the primary ear together determine the canopy structure and photosynthetic efficiency of maize and at the same time affect lodging and disease resistance. A flat and tall plant architecture confers an obvious advantage in the yield of a single plant but is not conducive to dense planting and results in high rates of lodging; thus, it has been gradually eliminated in production. Although using plants that are too compact, short and density tolerant can increase the yield per unit area to a certain extent, the photosynthetic efficiency of such plants is low, ultimately limiting yield increases. Genetic mapping is an effective method for the improvement of plant architecture to identify candidate genes for regulating plant architecture traits. RESULTS: To find the best balance between the yield per plant and the yield per unit area of maize, in this study, the F2:3 pedigree population and a RIL population with the same male parent were used to identify QTL for plant height (PH), ear height (EH), leaf angle and internode length above the primary ear (LAE and ILE) in Changchun and Gongzhuling for 5 consecutive years (2016-2020). A total of 11, 13, 23 and 13 QTL were identified for PH, EH, LAE, and ILE, respectively. A pleiotropic consistent QTL for PH overlapped with that for EH on chromosome 3, with a phenotypic variation explanation rate from 6.809% to 21.96%. In addition, there were major consistent QTL for LAE and ILE, and the maximum phenotypic contribution rates were 24.226% and 30.748%, respectively. Three candidate genes were mined from the three consistent QTL regions and were involved in the gibberellin-activated signal pathway, brassinolide signal transduction pathway and auxin-activated signal pathway, respectively. Analysis of the expression levels of the three genes showed that they were actively expressed during the jointing stage of vigorous maize growth. CONCLUSIONS: In this study, three consistent major QTL related to plant type traits were identified and three candidate genes were screened. These results lay a foundation for the cloning of related functional genes and marker-assisted breeding of related functional genes.


Subject(s)
Chromosome Mapping , Genetic Association Studies , Phenotype , Quantitative Trait Loci , Zea mays/anatomy & histology , Zea mays/genetics , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype
3.
Plant Sci ; 315: 111148, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067311

ABSTRACT

Phosphorus (P) deficiency affects soybean growth and development, resulting in significant reduction of yields. However, the regulatory mechanism of P deficiency tolerance in soybean is still largely unclear. WRKY transcription factors are a family of regulators involved in a variety of abiotic stresses in plants while rarely reported in P deficiency. Here, we demonstrated that a soybean GmWRKY46 gene, belonging to group III of WRKY TF family, was involved in the regulation of P deficiency tolerance in soybean. The expression of GmWRKY46 in low P sensitive soybean varieties was significantly higher than that in tolerant soybean varieties. It was primarily expressed in roots and strongly induced by P deprivation. GmWRKY46 was localized in the nucleus. Compared with the control expressing the empty vector, overexpression of GmWRKY46 in soybean hairy roots exhibited more sensitive phenotypes to low P stress, while the RNA interfered GmWRKY46 significantly enhanced P deficiency tolerance by increasing the proliferation, elongation and P absorption efficiency of hairy roots. Expression patterns of a number of P-responsive genes (GmPht1;1, GmPht1;4, GmPTF1, GmACP1, GmPAP21 and GmExpansin-A7) were altered in both overexpression and gene silenced plants. The results provided a novel insight into how soybean responds to low P stress and new gene that may be used to improve soybean low P tolerance through gene editing approach.


Subject(s)
Adaptation, Physiological/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Glycine max/genetics , Phosphorus/deficiency , Plant Roots/anatomy & histology , Transcription Factors/metabolism , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Plant Roots/metabolism , Plants, Genetically Modified
4.
Plant Physiol ; 188(2): 1158-1173, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34865134

ABSTRACT

Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.


Subject(s)
Flowers/anatomy & histology , Flowers/growth & development , Flowers/genetics , Meristem/anatomy & histology , Meristem/growth & development , Zea mays/anatomy & histology , Zea mays/growth & development , Zea mays/genetics , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Meristem/genetics , Transcriptome
5.
Mol Plant ; 15(1): 125-137, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34896639

ABSTRACT

Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.


Subject(s)
Gravitropism/genetics , Oryza/anatomy & histology , Oryza/growth & development , Oryza/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant
6.
Plant J ; 109(2): 415-431, 2022 01.
Article in English | MEDLINE | ID: mdl-34724260

ABSTRACT

Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.


Subject(s)
Carbon/metabolism , Crops, Agricultural/anatomy & histology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/anatomy & histology , Agriculture , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Droughts , Phenotype , Plant Breeding , Plant Roots/genetics , Plant Roots/physiology , Water/physiology
7.
Plant Physiol ; 187(3): 1057-1070, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34734279

ABSTRACT

Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.


Subject(s)
Adaptation, Physiological , Cell Plasticity , Crops, Agricultural/physiology , Plant Growth Regulators/metabolism , Plant Roots/physiology , Stress, Physiological , Agriculture , Cold Temperature , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Droughts , Floods , Hot Temperature , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/growth & development , Soil
8.
Plant Physiol ; 187(3): 1551-1576, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618054

ABSTRACT

Measuring leaf area index (LAI) is essential for evaluating crop growth and estimating yield, thereby facilitating high-throughput phenotyping of maize (Zea mays). LAI estimation models use multi-source data from unmanned aerial vehicles (UAVs), but using multimodal data to estimate maize LAI, and the effect of tassels and soil background, remain understudied. Our research aims to (1) determine how multimodal data contribute to LAI and propose a framework for estimating LAI based on remote-sensing data, (2) evaluate the robustness and adaptability of an LAI estimation model that uses multimodal data fusion and deep neural networks (DNNs) in single- and whole growth stages, and (3) explore how soil background and maize tasseling affect LAI estimation. To construct multimodal datasets, our UAV collected red-green-blue, multispectral, and thermal infrared images. We then developed partial least square regression (PLSR), support vector regression, and random forest regression models to estimate LAI. We also developed a deep learning model with three hidden layers. This multimodal data structure accurately estimated maize LAI. The DNN model provided the best estimate (coefficient of determination [R2] = 0.89, relative root mean square error [rRMSE] = 12.92%) for a single growth period, and the PLSR model provided the best estimate (R2 = 0.70, rRMSE = 12.78%) for a whole growth period. Tassels reduced the accuracy of LAI estimation, but the soil background provided additional image feature information, improving accuracy. These results indicate that multimodal data fusion using low-cost UAVs and DNNs can accurately and reliably estimate LAI for crops, which is valuable for high-throughput phenotyping and high-spatial precision farmland management.


Subject(s)
Crops, Agricultural/anatomy & histology , Machine Learning , Plant Leaves/anatomy & histology , Unmanned Aerial Devices/statistics & numerical data , Zea mays/anatomy & histology , China , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Farms , Plant Leaves/growth & development , Plant Leaves/physiology , Zea mays/physiology
10.
Plant Physiol ; 187(2): 739-757, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34608967

ABSTRACT

The development of crops with deeper roots holds substantial promise to mitigate the consequences of climate change. Deeper roots are an essential factor to improve water uptake as a way to enhance crop resilience to drought, to increase nitrogen capture, to reduce fertilizer inputs, and to increase carbon sequestration from the atmosphere to improve soil organic fertility. A major bottleneck to achieving these improvements is high-throughput phenotyping to quantify root phenotypes of field-grown roots. We address this bottleneck with Digital Imaging of Root Traits (DIRT)/3D, an image-based 3D root phenotyping platform, which measures 18 architecture traits from mature field-grown maize (Zea mays) root crowns (RCs) excavated with the Shovelomics technique. DIRT/3D reliably computed all 18 traits, including distance between whorls and the number, angles, and diameters of nodal roots, on a test panel of 12 contrasting maize genotypes. The computed results were validated through comparison with manual measurements. Overall, we observed a coefficient of determination of r2>0.84 and a high broad-sense heritability of Hmean2> 0.6 for all but one trait. The average values of the 18 traits and a developed descriptor to characterize complete root architecture distinguished all genotypes. DIRT/3D is a step toward automated quantification of highly occluded maize RCs. Therefore, DIRT/3D supports breeders and root biologists in improving carbon sequestration and food security in the face of the adverse effects of climate change.


Subject(s)
Botany/methods , Crops, Agricultural/anatomy & histology , Imaging, Three-Dimensional/methods , Phenotype , Plant Roots/anatomy & histology , Zea mays/anatomy & histology , Crops, Agricultural/genetics , Plant Roots/genetics , Zea mays/genetics
11.
Sci Rep ; 11(1): 20953, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697303

ABSTRACT

The geometric and color features of agricultural material along with related physical properties are critical to characterize and express its physical quality. The experiments were conducted to classify the physical characteristics like size, shape, color and texture and then workout the relationship between manual observations and using image processing techniques for weight and volume of the four wheat refractions i.e. sound, damaged, shriveled and broken grains of wheat variety PBW 725. A flatbed scanner was used to acquire the images and digital image processing method was used to process the images and output of image analysis was compared with the actual measurements data using digital vernier caliper. A linear relationship was observed between the axial dimensions of refractions between manual measurement and image processing method with R2 in the range of 0.798-0.947. The individual kernel weight and thousand grain weight of the refractions were observed to be in the range of 0.021-0.045 and 12.56-46.32 g respectively. Another linear relationship was found between individual kernel weight and projected area estimated using image processing methodology with R2 in the range of 0.841-0.920. The sphericity of the refractions varied in the range of 0.52-0.71. Analyses of the captured images suggest ellipsoid shape with convex geometry while the same observation was recorded by physical measurements also. A linear relationship was observed between the volume of refractions derived from measured dimensions and calculated from image with R2 in the range of 0.845-0.945. Various color and grey level co-variance matrix texture features were extracted from acquired images using the open-source Python programming language and OpenCV library which can exploit different machine and deep learning algorithms to properly classify these refractions.


Subject(s)
Image Processing, Computer-Assisted/methods , Triticum/anatomy & histology , Triticum/growth & development , Algorithms , Crops, Agricultural/anatomy & histology , Crops, Agricultural/classification , Crops, Agricultural/growth & development , Machine Learning , Seeds/anatomy & histology , Seeds/classification , Seeds/growth & development , Triticum/classification
12.
PLoS One ; 16(9): e0256978, 2021.
Article in English | MEDLINE | ID: mdl-34492059

ABSTRACT

Kenaf (Hibiscus cannabinus L.) is an industrial crop used as a raw material in various fields and is cultivated worldwide. Compared to high potential for its utilization, breeding sector is not vigorous partially due to laborous breeding procedure. Thus, efficient breeding methods are required for varieties that can adapt to various environments and obtain optimal production. For that, identifying kenaf's characteristics is very important during the breeding process. Here, we investigated if RGB based vegetative index (VI) could be associated with traits for biomass. We used 20 varieties and germplasm of kenaf and RGB images taken with unmanned aerial vehicles (UAVs) for field selection in early and late growth stage. In addition, measuring the stem diameter and the number of nodes confirmed whether the vegetative index value obtained from the RGB image could infer the actual plant biomass. Based on the results, it was confirmed that the individual surface area and estimated plant height, which were identified from the RGB image, had positive correlations with the stem diameter and node number, which are actual growth indicators of the rate of growth further, biomass could also be estimated based on this. Moreover, it is suggested that VIs have a high correlation with actual growth indicators; thus, the biomass of kenaf could be predicted. Interstingly, those traits showing high correlation in the late stage had very low correlations in the early stage. To sum up, the results in the current study suggest a more efficient breeding method by reducing labor and resources required for breeding selection by the use of RGB image analysis obtained by UAV. This means that considerable high-quality research could be performed even with a tight budget. Furthermore, this method could be applied to crop management, which is done with other vegetative indices using a multispectral camera.


Subject(s)
Crops, Agricultural/anatomy & histology , Hibiscus/anatomy & histology , Plant Breeding , Biomass , Phenotype , Seed Bank/standards
13.
BMC Plant Biol ; 21(1): 416, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34507525

ABSTRACT

BACKGROUND: Leaf color variation is a common trait in plants and widely distributed in many plants. In this study, a leaf color mutation in Camellia japonica (cultivar named as Maguxianzi, M) was used as material, and the mechanism of leaf color variation was revealed by physiological, cytological, transcriptome and microbiome analyses. RESULTS: The yellowing C. japonica (M) exhibits lower pigment content than its parent (cultivar named as Huafurong, H), especially chlorophyll (Chl) and carotenoid, and leaves of M have weaker photosynthesis. Subsequently, the results of transmission electron microscopy(TEM) exhibited that M chloroplast was accompanied by broken thylakoid membrane, degraded thylakoid grana, and filled with many vesicles. Furthermore, comparative transcriptome sequencing identified 3,298 differentially expressed genes (DEGs). KEGG annotation analysis results showed that 69 significantly enriched DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and plant-pathogen interaction. On this basis, we sequenced the microbial diversity of the H and M leaves. The sequencing results suggested that the abundance of Didymella in the M leaves was significantly higher than that in the H leaves, which meant that M leaves might be infected by Didymella. CONCLUSIONS: Therefore, we speculated that Didymella infected M leaves while reduced Chl and carotenoid content by damaging chloroplast structures, and altered the intensity of photosynthesis, thereby causing the leaf yellowing phenomenon of C. japonica (M). This research will provide new insights into the leaf color variation mechanism and lay a theoretical foundation for plant breeding and molecular markers.


Subject(s)
Camellia/anatomy & histology , Camellia/genetics , Camellia/metabolism , Color , Microbiota , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Carotenoids/metabolism , China , Chlorophyll/metabolism , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Variation , Genotype , Phenotype , Transcriptome
14.
BMC Plant Biol ; 21(1): 398, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433428

ABSTRACT

BACKGROUND: The root distribution in the soil is one of the elements that comprise the root system architecture (RSA). In monocots, RSA comprises radicle and crown roots, each of which can be basically represented by a single curve with lateral root branches or approximated using a polyline. Moreover, RSA vectorization (polyline conversion) is useful for RSA phenotyping. However, a robust software that can enable RSA vectorization while using noisy three-dimensional (3D) volumes is unavailable. RESULTS: We developed RSAtrace3D, which is a robust 3D RSA vectorization software for monocot RSA phenotyping. It manages the single root (radicle or crown root) as a polyline (a vector), and the set of the polylines represents the entire RSA. RSAtrace3D vectorizes root segments between the two ends of a single root. By utilizing several base points on the root, RSAtrace3D suits noisy images if it is difficult to vectorize it using only two end nodes of the root. Additionally, by employing a simple tracking algorithm that uses the center of gravity (COG) of the root voxels to determine the tracking direction, RSAtrace3D efficiently vectorizes the roots. Thus, RSAtrace3D represents the single root shape more precisely than straight lines or spline curves. As a case study, rice (Oryza sativa) RSA was vectorized from X-ray computed tomography (CT) images, and RSA traits were calculated. In addition, varietal differences in RSA traits were observed. The vector data were 32,000 times more compact than raw X-ray CT images. Therefore, this makes it easier to share data and perform re-analyses. For example, using data from previously conducted studies. For monocot plants, the vectorization and phenotyping algorithm are extendable and suitable for numerous applications. CONCLUSIONS: RSAtrace3D is an RSA vectorization software for 3D RSA phenotyping for monocots. Owing to the high expandability of the RSA vectorization and phenotyping algorithm, RSAtrace3D can be applied not only to rice in X-ray CT images but also to other monocots in various 3D images. Since this software is written in Python language, it can be easily modified and will be extensively applied by researchers in this field.


Subject(s)
Oryza/anatomy & histology , Oryza/growth & development , Phenotype , Plant Roots/anatomy & histology , Plant Roots/growth & development , Software , Algorithms , Crops, Agricultural/anatomy & histology , Crops, Agricultural/growth & development , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
15.
BMC Plant Biol ; 21(1): 346, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301195

ABSTRACT

BACKGROUND: Root system architecture (RSA), which is determined by the crown root angle (CRA), crown root diameter (CRD), and crown root number (CRN), is an important factor affecting the ability of plants to obtain nutrients and water from the soil. However, the genetic mechanisms regulating crown root traits in the field remain unclear. METHODS: In this study, the CRA, CRD, and CRN of 316 diverse maize inbred lines were analysed in three field trials. Substantial phenotypic variations were observed for the three crown root traits in all environments. A genome-wide association study was conducted using two single-locus methods (GLM and MLM) and three multi-locus methods (FarmCPU, FASTmrMLM, and FASTmrEMMA) with 140,421 SNP. RESULTS: A total of 38 QTL including 126 SNPs were detected for CRA, CRD, and CRN. Additionally, 113 candidate genes within 50 kb of the significant SNPs were identified. Combining the gene annotation information and the expression profiles, 3 genes including GRMZM2G141205 (IAA), GRMZM2G138511 (HSP) and GRMZM2G175910 (cytokinin-O-glucosyltransferase) were selected as potentially candidate genes related to crown root development. Moreover, GRMZM2G141205, encoding an AUX/IAA transcriptional regulator, was resequenced in all tested lines. Five variants were identified as significantly associated with CRN in different environments. Four haplotypes were detected based on these significant variants, and Hap1 has more CRN. CONCLUSIONS: These findings may be useful for clarifying the genetic basis of maize root system architecture. Furthermore, the identified candidate genes and variants may be relevant for breeding new maize varieties with root traits suitable for diverse environmental conditions.


Subject(s)
Plant Roots/anatomy & histology , Plant Roots/genetics , Zea mays/anatomy & histology , Zea mays/genetics , China , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Genotype , Phenotype , Plant Breeding , Quantitative Trait Loci
16.
Biomolecules ; 11(6)2021 06 03.
Article in English | MEDLINE | ID: mdl-34204908

ABSTRACT

Sweet pepper (Capsicum annuum L.) is one of the most important vegetable crops in the world because of the nutritional value of its fruits and its economic importance. Calcium (Ca) improves the quality of sweet pepper fruits, and the application of calcite nanoparticles in agricultural practice has a positive effect on the morphological, physiological, and physicochemical properties of the whole plant. The objectives of this study were to investigate the effect of commercial calcite nanoparticles on yield, chemical, physical, morphological, and multispectral properties of sweet pepper fruits using a combination of conventional and novel image-based nondestructive methods of fruit quality analysis. In the field trial, two sweet pepper cultivars, i.e., Soroksari and Kurtovska kapija, were treated with commercial calcite nanoparticles (at a concentration of 3% and 5%, calcite-based foliar fertilizer (positive control), and water (negative control) three times during vegetation). Sweet pepper fruits were harvested at the time of technological and physiological maturity. Significant differences were observed between pepper cultivars as well as between harvests times. In general, application of calcite nanoparticles reduced yield and increased fruit firmness. However, different effects of calcite nanoparticles were observed on almost all properties depending on the cultivar. In Soroksari, calcite nanoparticles and calcite-based foliar fertilizers significantly increased N, P, K, Mg, Fe, Zn, Mn, and Cu at technological maturity, as well as P, Ca, Mg, Fe, Zn, Mn, Cu, and N at physiological maturity. However, in Kurtovska kapija, the treatments increased only Ca at technological maturity and only P at physiological maturity. The effect of treatments on fruit morphological properties was observed only at the second harvest. In Soroksari, calcite nanoparticles (3% and 5%) increased the fruit length, minimal circle area, and minimal circle radius, and it decreased the fruit width and convex hull compared to the positive and negative controls, respectively. In Kurtovska kapija, calcite nanoparticles increased the fruit width and convex hull compared to the controls. At physiological maturity, lower anthocyanin and chlorophyll indices were found in Kurtovska kapija in both treatments with calcite nanoparticles, while in Soroksari, the opposite effects were observed.


Subject(s)
Calcium Carbonate/administration & dosage , Capsicum/chemistry , Capsicum/drug effects , Fruit/chemistry , Fruit/drug effects , Nanoparticles/administration & dosage , Capsicum/anatomy & histology , Croatia , Crops, Agricultural/anatomy & histology , Crops, Agricultural/chemistry , Crops, Agricultural/drug effects , Fertilizers , Fruit/anatomy & histology
17.
BMC Plant Biol ; 21(1): 352, 2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34303354

ABSTRACT

BACKGROUND: Sesame (Sesamum indicum L.) leaves, flowers, especially seeds are used in traditional medicine to prevent or cure various diseases. Its seed's market is expanding. However, the other tissues are still underexploited due to the lack of information related to metabolites distribution and variability in the plant. Herein, the metabolite profiles of five sesame tissues (leaves, fresh seeds, white and purple flowers, and fresh carpels) have been investigated using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS)-based widely targeted metabolomics analysis platform. RESULTS: In total, 776 metabolites belonging to diverse classes were qualitatively and quantitatively identified. The different tissues exhibited obvious differences in metabolites composition. The majority of flavonoids predominantly accumulated in flowers. Amino acids and derivatives, and lipids were identified predominantly in fresh seeds followed by flowers. Many metabolites, including quinones, coumarins, tannins, vitamins, terpenoids and some bioactive phenolic acids (acteoside, isoacteoside, verbascoside, plantamajoside, etc.) accumulated mostly in leaves. Lignans were principally detected in seeds. 238 key significantly differential metabolites were filtered out. KEGG annotation and enrichment analyses of the differential metabolites revealed that flavonoid biosynthesis, amino acids biosynthesis, and phenylpropanoid biosynthesis were the main differently regulated pathways. In addition to the tissue-specific accumulation of metabolites, we noticed a cooperative relationship between leaves, fresh carpels, and developing seeds in terms of metabolites transfer. Delphinidin-3-O-(6"-O-p-coumaroyl)glucoside and most of the flavonols were up-regulated in the purple flowers indicating they might be responsible for the purple coloration. CONCLUSION: This study revealed that the metabolic processes in the sesame tissues are differently regulated. It offers valuable resources for investigating gene-metabolites interactions in sesame tissues and examining metabolic transports during seed development in sesame. Furthermore, our findings provide crucial knowledge that will facilitate sesame biomass valorization.


Subject(s)
Flowers/metabolism , Metabolic Networks and Pathways/genetics , Metabolomics , Plant Leaves/metabolism , Seeds/metabolism , Sesamum/genetics , Sesamum/metabolism , China , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant , Genetic Variation , Genotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Seeds/anatomy & histology , Seeds/genetics , Sesamum/anatomy & histology
18.
Nat Plants ; 7(8): 1093-1107, 2021 08.
Article in English | MEDLINE | ID: mdl-34183784

ABSTRACT

Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.


Subject(s)
Hordeum/anatomy & histology , Hordeum/growth & development , Hordeum/genetics , Hot Temperature , Inflorescence/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Australia , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Inflorescence/anatomy & histology , Inflorescence/genetics , Phenotype
19.
Nat Plants ; 7(7): 966-978, 2021 07.
Article in English | MEDLINE | ID: mdl-34183783

ABSTRACT

Pollen apertures are an interesting model for the formation of specialized plasma-membrane domains. The plant-specific protein INP1 serves as a key aperture factor in such distantly related species as Arabidopsis, rice and maize. Although INP1 orthologues probably play similar roles throughout flowering plants, they show substantial sequence divergence and often cannot substitute for each other, suggesting that INP1 might require species-specific partners. Here, we present a new aperture factor, INP2, which satisfies the criteria for being a species-specific partner for INP1. Both INP proteins display similar structural features, including the plant-specific DOG1 domain, similar patterns of expression and mutant phenotypes, as well as signs of co-evolution. These proteins interact with each other in a species-specific manner and can restore apertures in a heterologous system when both are expressed but not when expressed individually. Our findings suggest that the INP proteins form a species-specific functional module that underlies formation of pollen apertures.


Subject(s)
Arabidopsis/growth & development , Oryza/growth & development , Plant Proteins/metabolism , Pollen/anatomy & histology , Pollen/growth & development , Pollen/genetics , Zea mays/growth & development , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Cell Wall/genetics , Cell Wall/metabolism , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mutation , Oryza/anatomy & histology , Oryza/genetics , Phenotype , Plant Proteins/genetics , Species Specificity , Zea mays/anatomy & histology , Zea mays/genetics
20.
BMC Plant Biol ; 21(1): 269, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116636

ABSTRACT

BACKGROUND: Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. RESULTS: Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0-10 cm and 10-20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0-10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. CONCLUSION: Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.


Subject(s)
Charcoal/metabolism , Gossypium/growth & development , Gossypium/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/growth & development , Seedlings/metabolism , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gossypium/anatomy & histology , Plant Roots/anatomy & histology , Seedlings/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL